

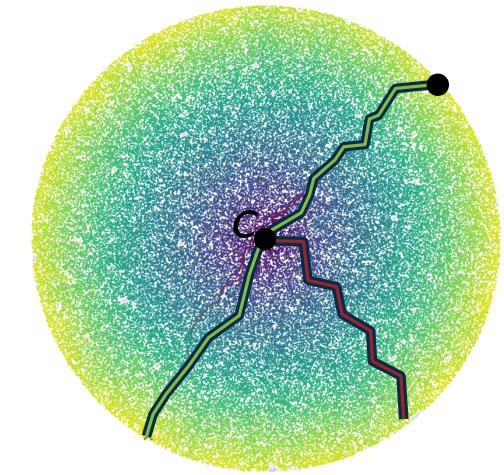
Beating the Worst Case

Practical Course – 8th meeting

Jean-Pierre, Marcus

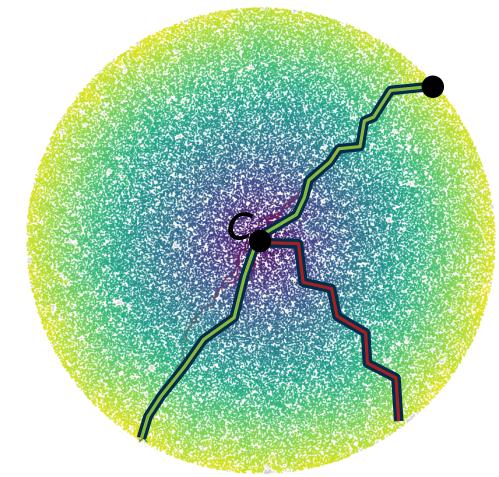
Recap: Exercise Sheet 4

- *eccentricity of v* : number of BFS layers in BFS tree from v
- find *central vertex c*
- starting at most distant layer from c : compute eccentricities



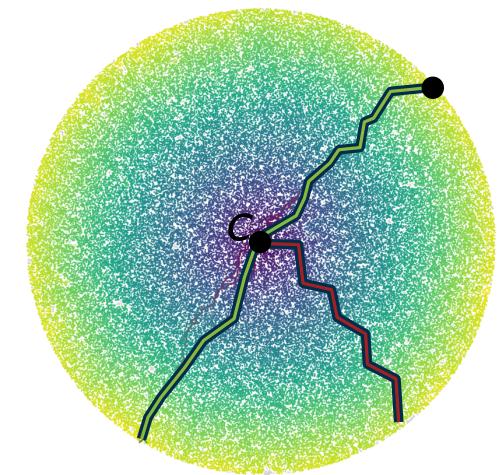
Recap: Exercise Sheet 4

- *eccentricity of v* : number of BFS layers in BFS tree from v
- find *central vertex c*
- starting at most distant layer from c : compute eccentricities
 - lower bound: highest found eccentricity
 - upper bound: distance to c and back ($2 \times$ index of current layer)



Recap: Exercise Sheet 4

- *eccentricity of v* : number of BFS layers in BFS tree from v
- find *central vertex c*
- starting at most distant layer from c : compute eccentricities
 - lower bound: highest found eccentricity
 - upper bound: distance to c and back ($2 \times$ index of current layer)
- stop once upper and lower bound coincide

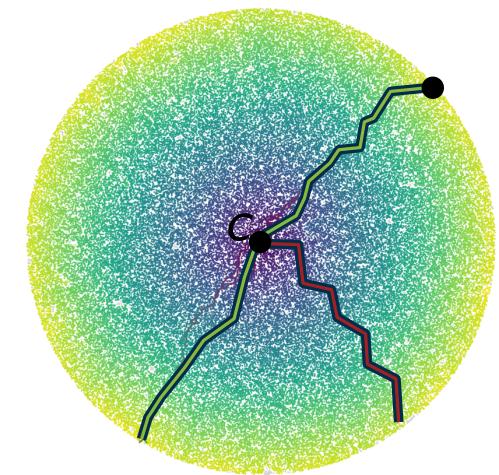


Recap: Exercise Sheet 4

- *eccentricity of v* : number of BFS layers in BFS tree from v
- find *central vertex c*
- starting at most distant layer from c : compute eccentricities
 - lower bound: highest found eccentricity
 - upper bound: distance to c and back ($2 \times$ index of current layer)
- stop once upper and lower bound coincide

How to select the central vertex?

- 2-sweep
- highest degree

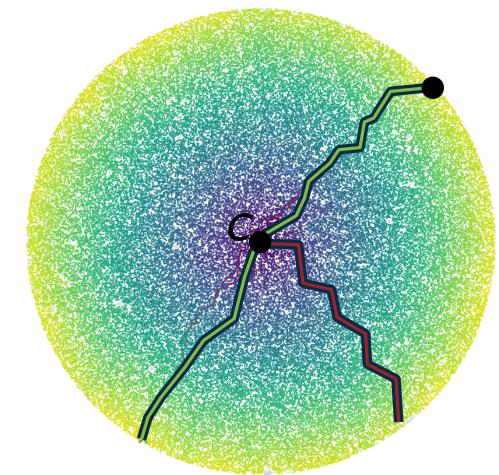


Recap: Exercise Sheet 4

- *eccentricity of v* : number of BFS layers in BFS tree from v
- find *central vertex c*
- starting at most distant layer from c : compute eccentricities
 - lower bound: highest found eccentricity
 - upper bound: distance to c and back ($2 \times$ index of current layer)
- stop once upper and lower bound coincide

How to select the central vertex?

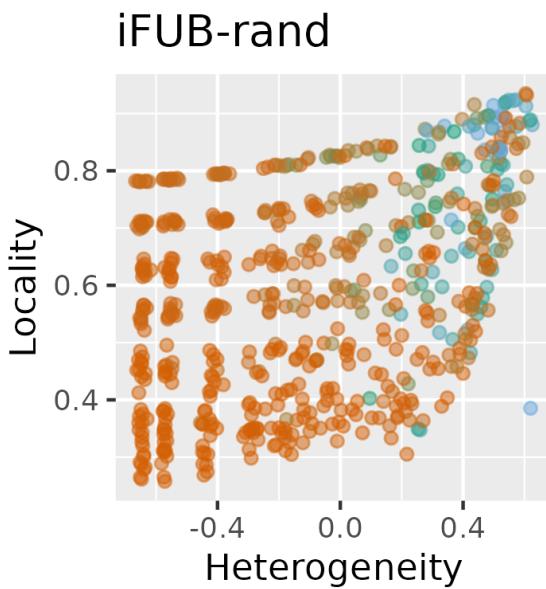
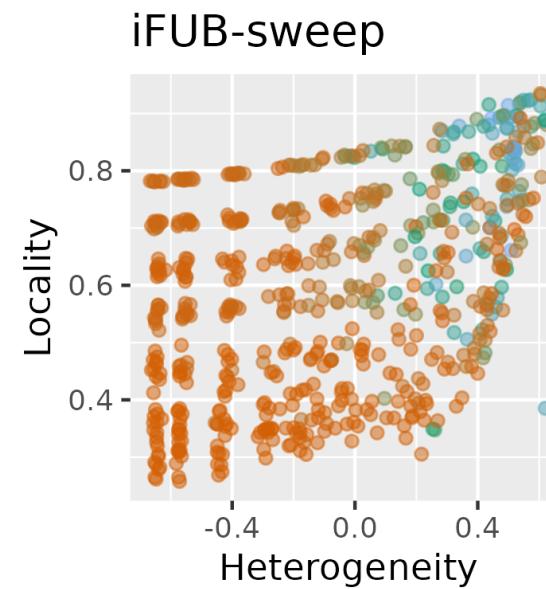
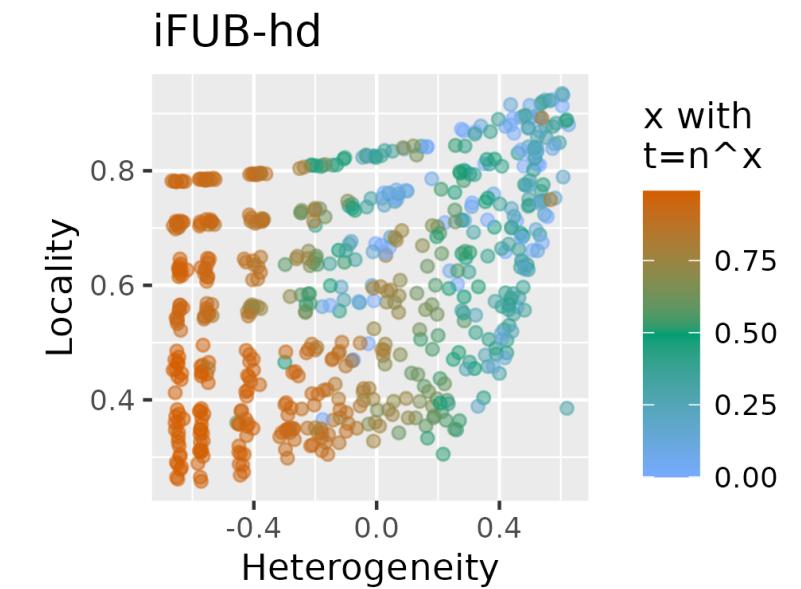
- 2-sweep
- highest degree



Exercise Sheet 4

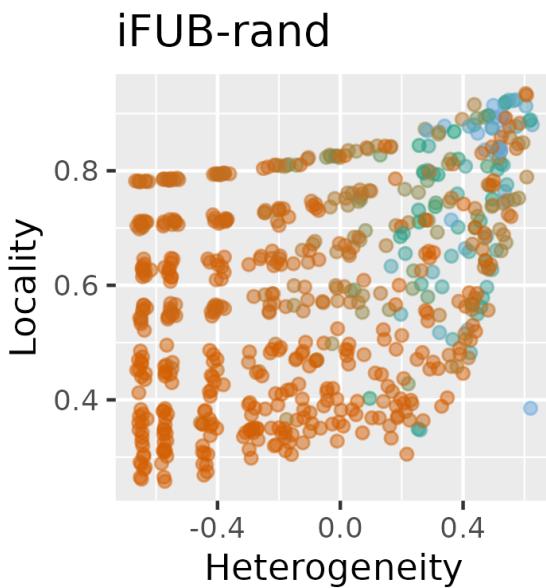
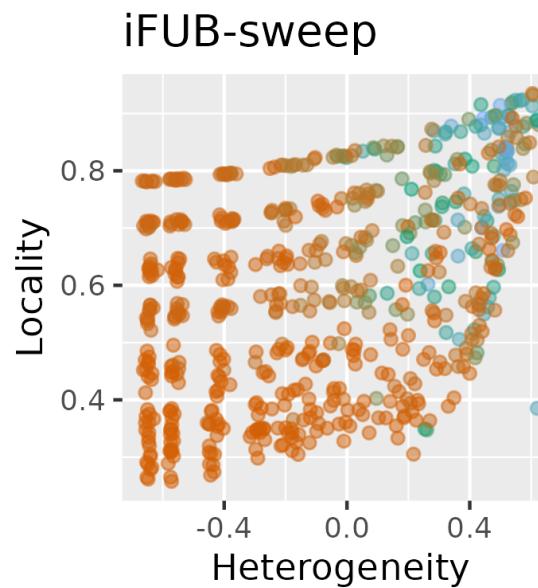
Solutions

Comparison of different heuristics for choosing the central vertex



Solutions

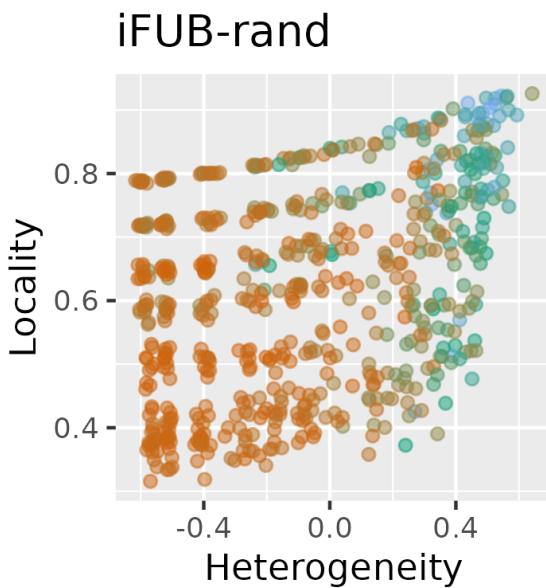
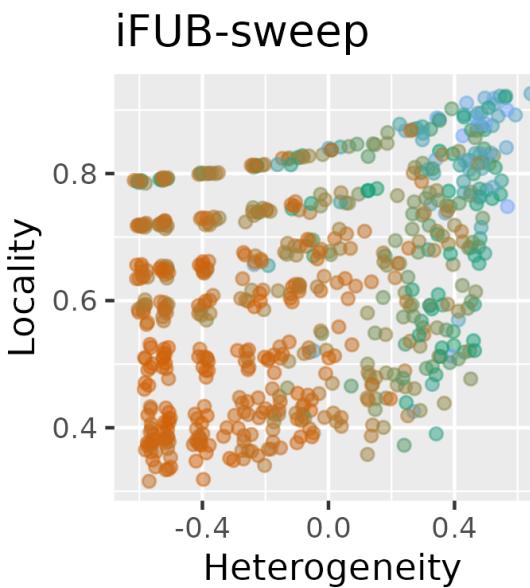
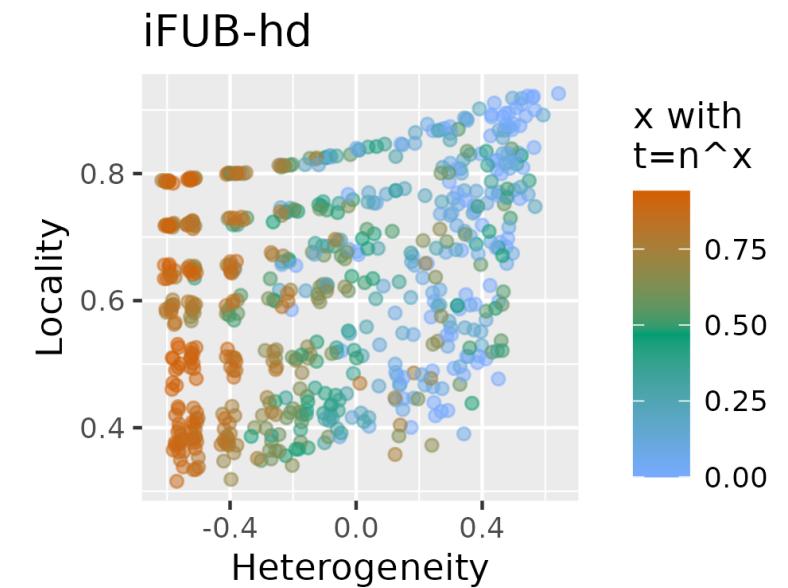
Comparison of different heuristics for choosing the central vertex



■ Ground-space: torus

Solutions

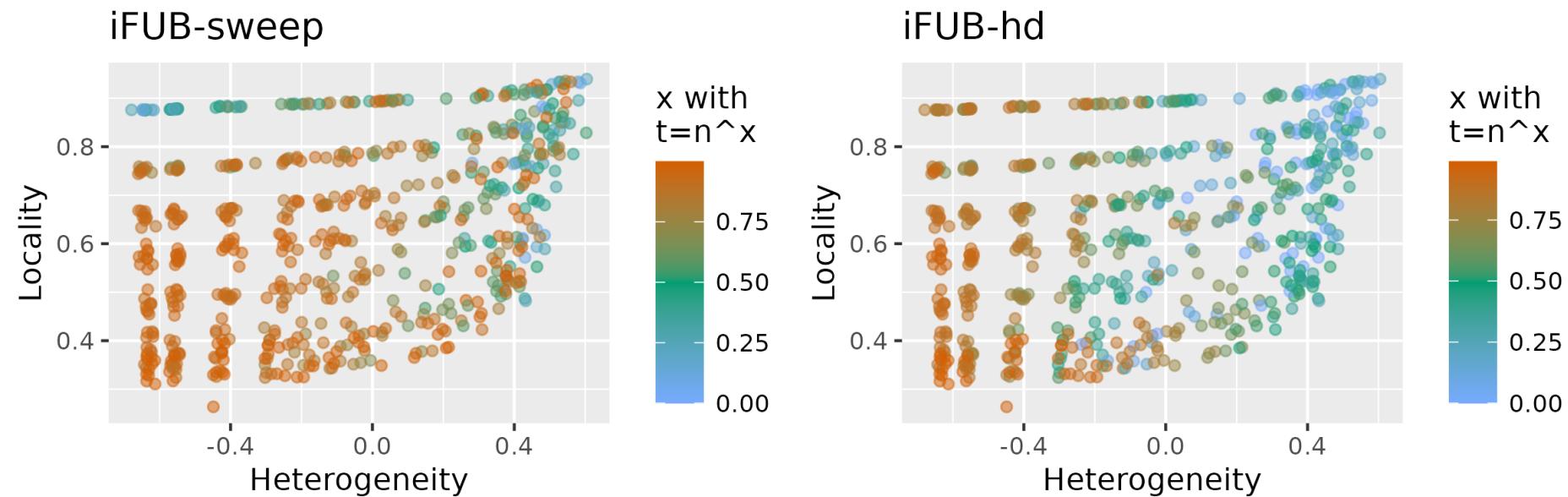
Comparison of different heuristics for choosing the central vertex



- Ground-space: **square**
- 2-sweep works better for high locality and low heterogeneity

Solutions

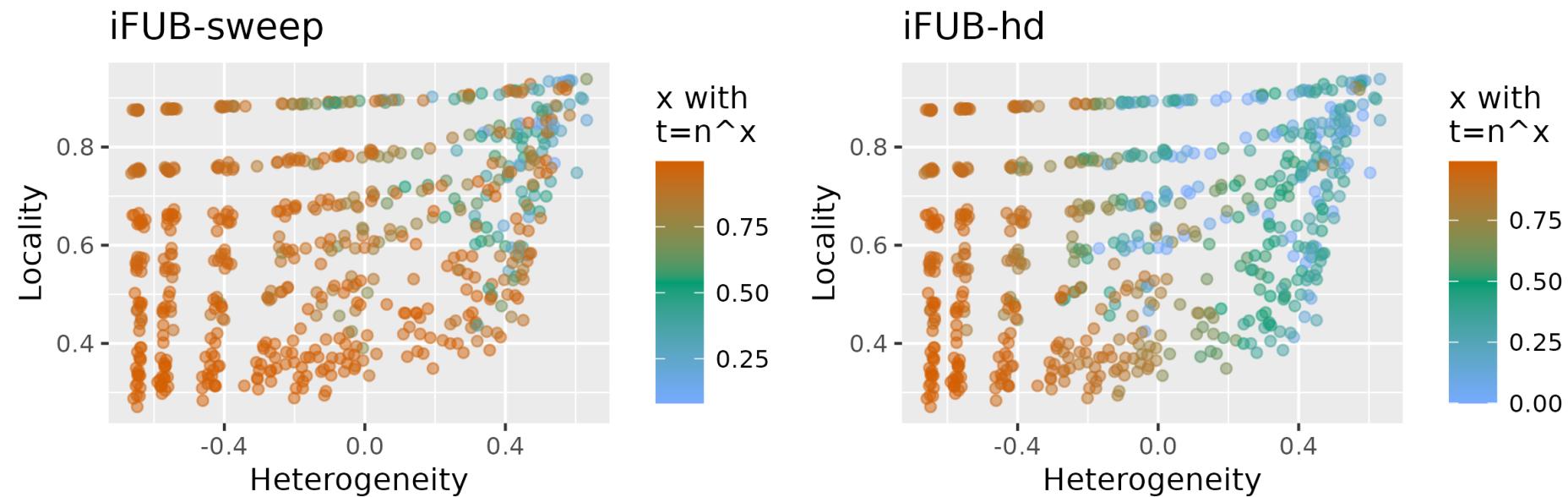
Comparison of different heuristics for choosing the central vertex



■ Ground-space: 1D square

Solutions

Comparison of different heuristics for choosing the central vertex

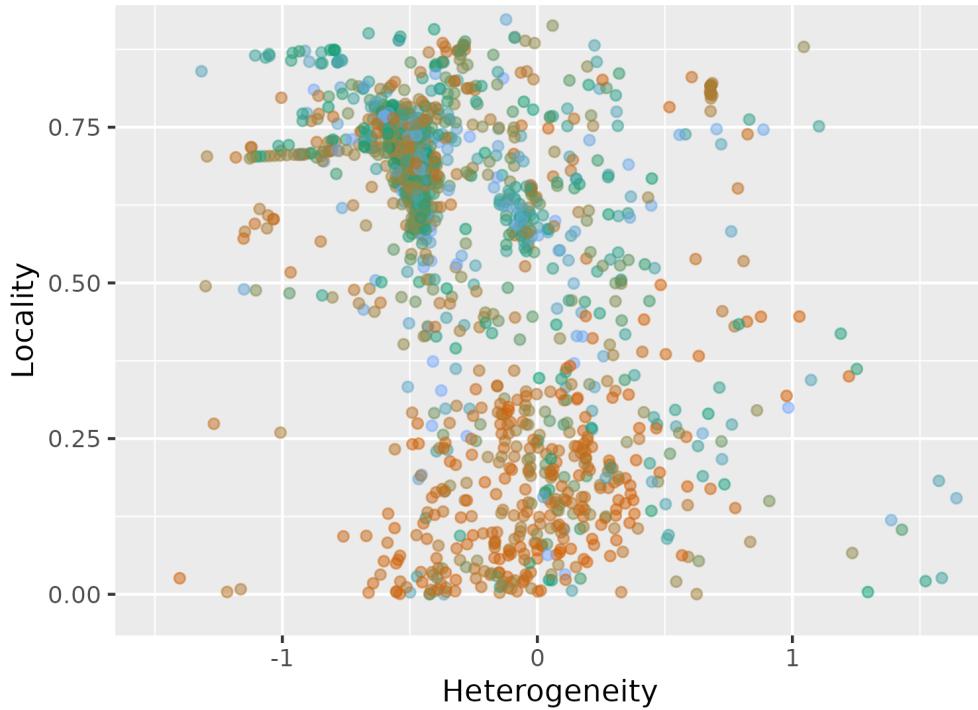


■ Ground-space: 1D torus

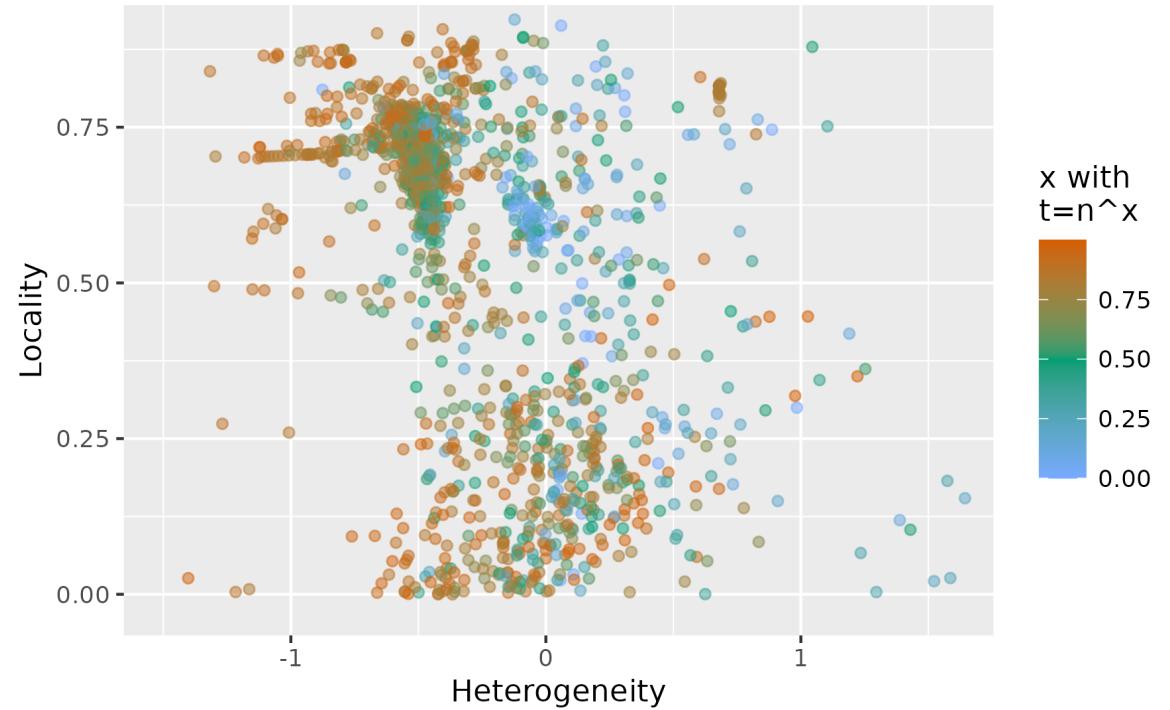
Solutions

Real-world networks

iFUB-sweep



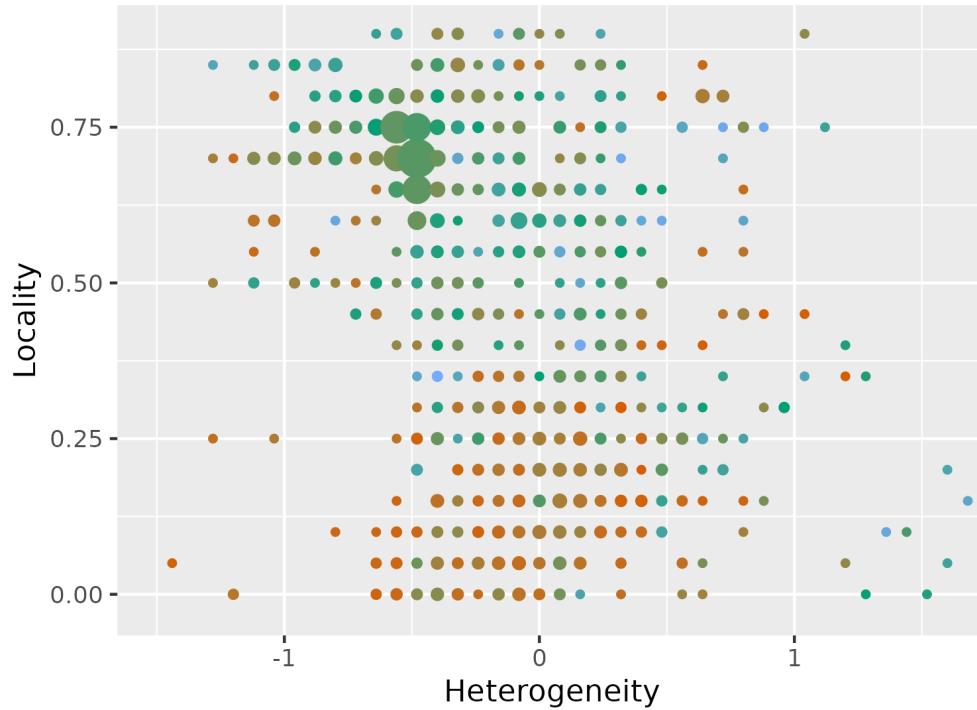
iFUB-hd



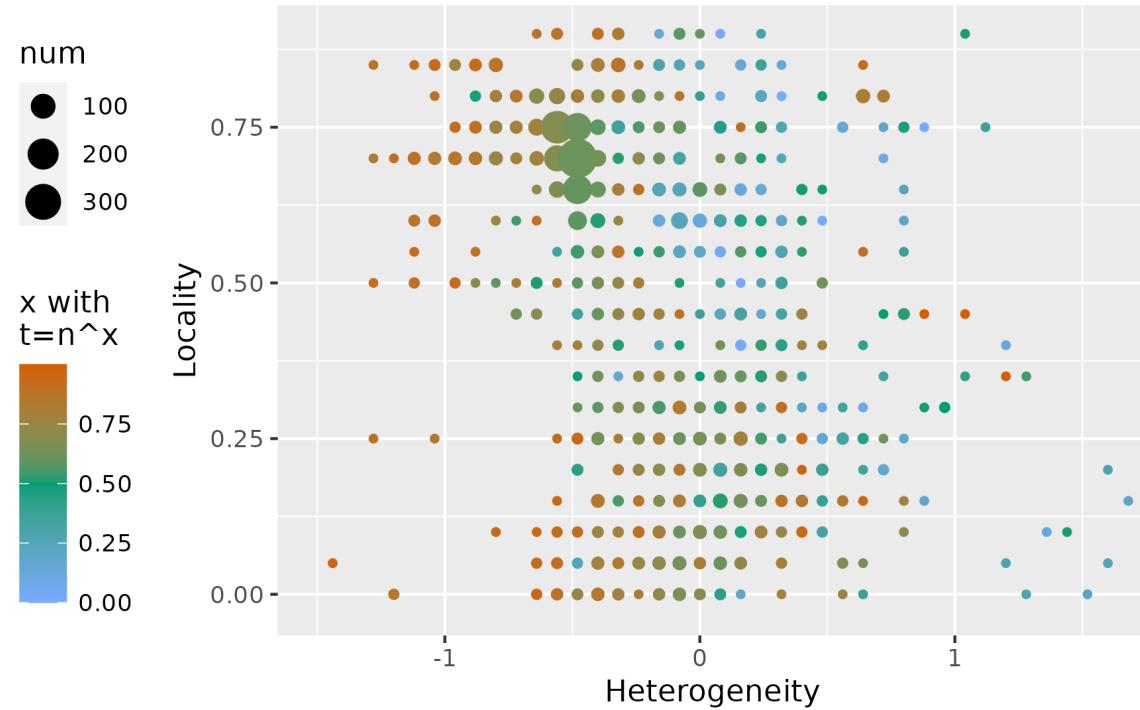
Solutions

Real-world networks

iFUB-sweep



iFUB-hd



Final project

- after christmas break
- each group works on their own research question
- weekly meetings with each group

Final project

- after christmas break
- each group works on their own research question
- weekly meetings with each group
- grading based on presentation + report

February 2026						
Mo	Tu	We	Th	Fr	Sa	Su
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	

Final project

- after christmas break
- each group works on their own research question
- weekly meetings with each group
- grading based on presentation + report
- reports due: 25.02.2026
 - length ~ 300 lines, socg-LIPICs format
 - report should be *self-contained*: explain necessary details about algorithms and evaluations
 - use informative and correctly labelled plots to support your report

February 2026						
Mo	Tu	We	Th	Fr	Sa	Su
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	

Final project

- after christmas break
- each group works on their own research question
- weekly meetings with each group
- grading based on presentation + report
- reports due: 25.02.2026
 - length ~ 300 lines, socg-LIPICs format
 - report should be *self-contained*: explain necessary details about algorithms and evaluations
 - use informative and correctly labelled plots to support your report
- presentations: ~ 15min, on 18.02.2026
 - showcase your results to the other teams

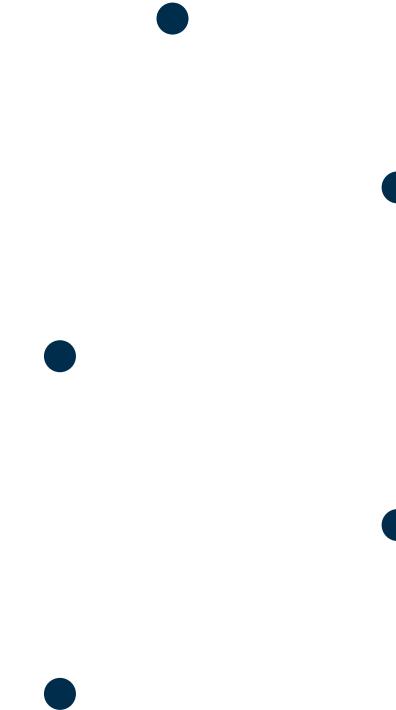
February 2026						
Mo	Tu	We	Th	Fr	Sa	Su
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	

Topic A: Hitting Set Reduction Rules

- **Hitting Set:** vertex cover on hypergraph

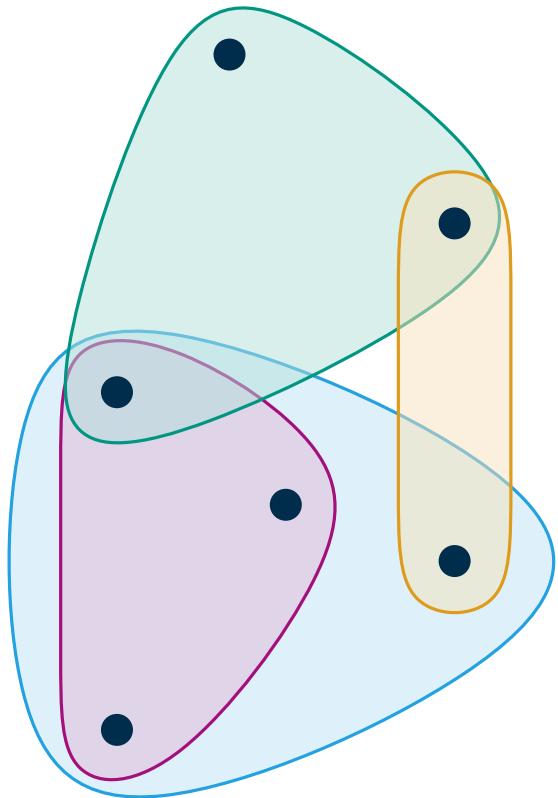
Topic A: Hitting Set Reduction Rules

- **Hitting Set:** vertex cover on hypergraph



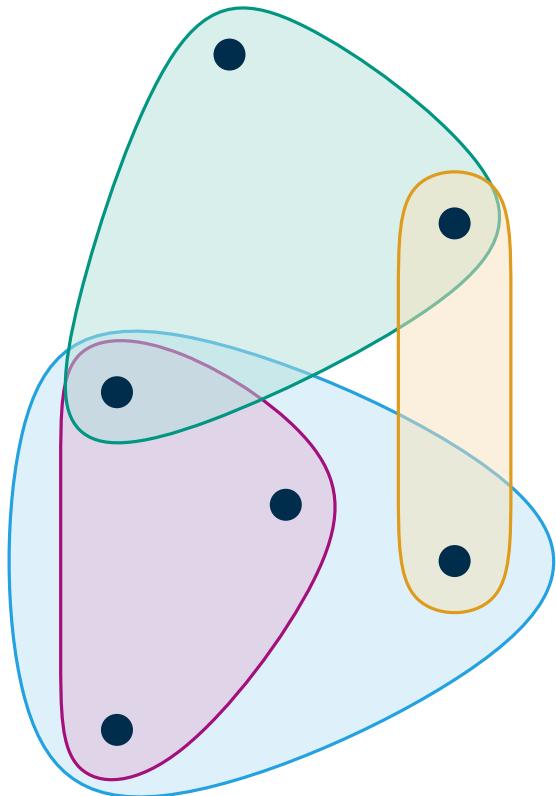
Topic A: Hitting Set Reduction Rules

- **Hitting Set:** vertex cover on hypergraph



Topic A: Hitting Set Reduction Rules

- **Hitting Set:** vertex cover on hypergraph
- reduction rules proposed by K. Weihe [ALEX'98]



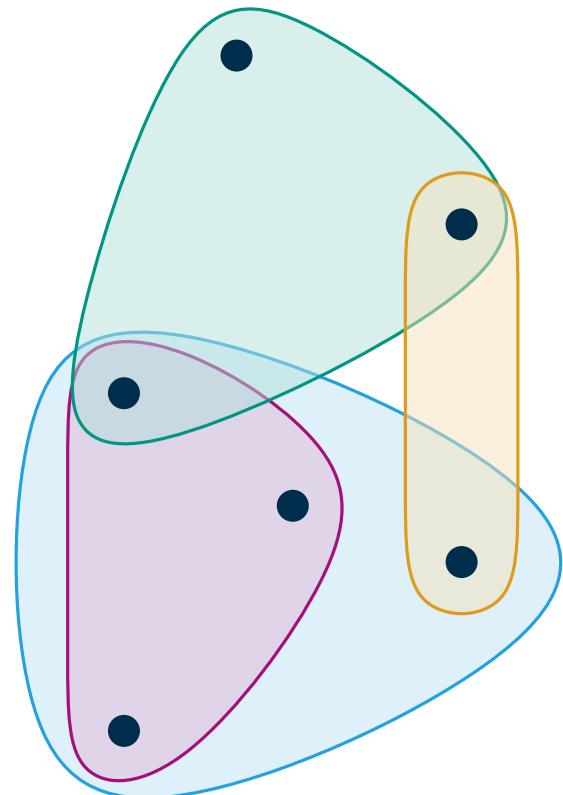
Topic A: Hitting Set Reduction Rules

- **Hitting Set:** vertex cover on hypergraph
- reduction rules proposed by K. Weihe [ALEX'98]

Task

Understand the effectiveness of these reduction rules

- adapt GIRG model to hypergraphs
- locality and heterogeneity on hypergraphs?



Topic B: SAT-Instances

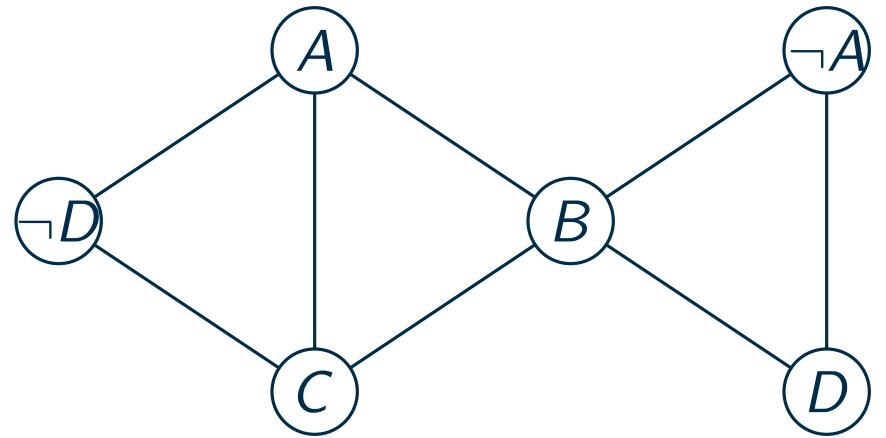
- **Satisfiability:** decide whether propositional logical formula admits satisfying assignment

$$(A \vee B \vee C) \wedge (\neg A \vee B \vee D) \wedge (A \vee C \vee \neg D)$$

Topic B: SAT-Instances

- **Satisfiability:** decide whether propositional logical formula admits satisfying assignment
- Multiple way to construct graphs out of SAT-instances

$$(A \vee B \vee C) \wedge (\neg A \vee B \vee D) \wedge (A \vee C \vee \neg D)$$



Topic B: SAT-Instances

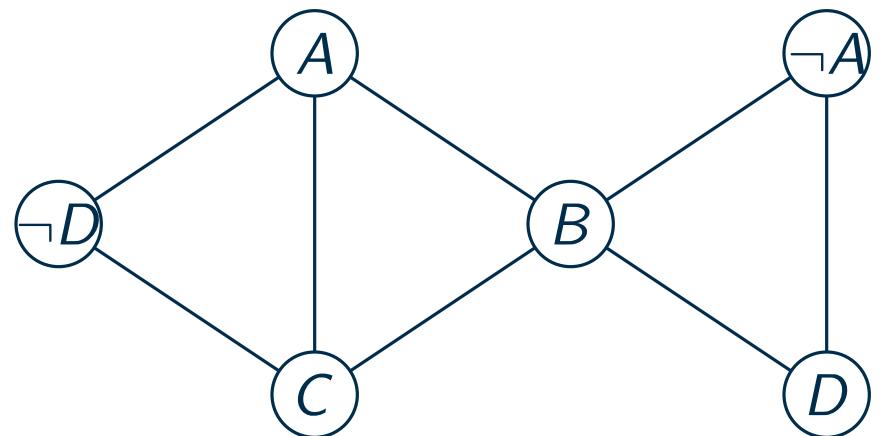
- **Satisfiability:** decide whether propositional logical formula admits satisfying assignment
- Multiple way to construct graphs out of SAT-instances

Task

Why are SAT-solvers so fast in practice?

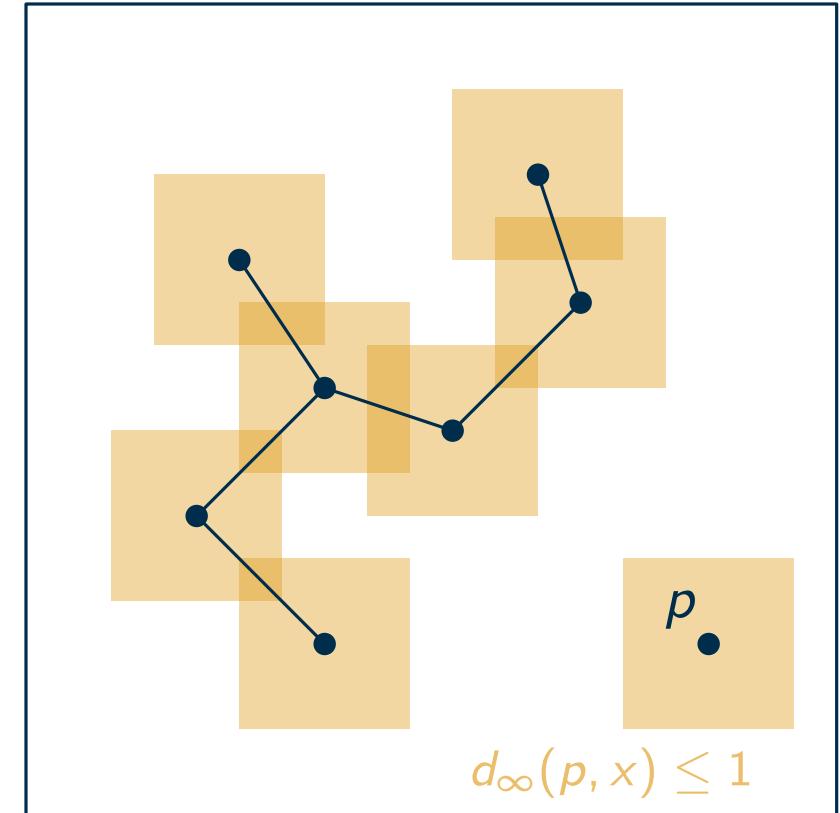
- graph perspective, locality, heterogeneity
- algorithms: DPLL, CDCL, miniSAT
- <https://benchmark-database.de/>

$$(A \vee B \vee C) \wedge (\neg A \vee B \vee D) \wedge (A \vee C \vee \neg D)$$



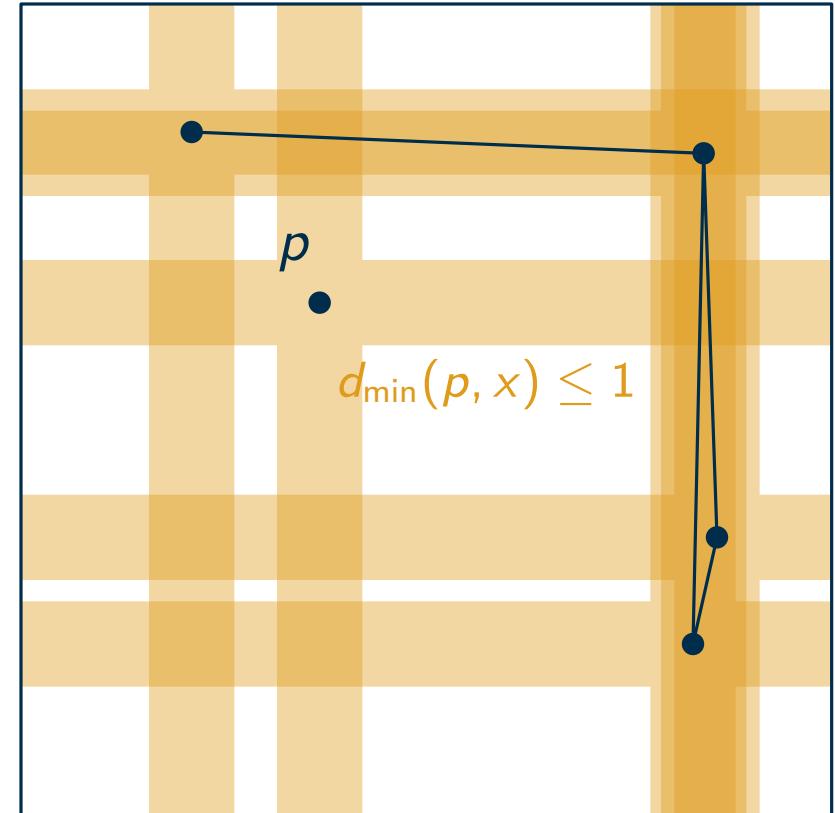
Topic C: Min-Norm GIRGs

- GIRGs use the L_∞ -norm for distances between vertices
- two vertices are close \Leftrightarrow similar along all dimensions



Topic C: Min-Norm GIRGs

- GIRGs use the L_∞ -norm for distances between vertices
- two vertices are close \Leftrightarrow similar along all dimensions
- *idea:* maybe similarity in one dimension is enough?
 - “distance”: minimum difference across dimensions



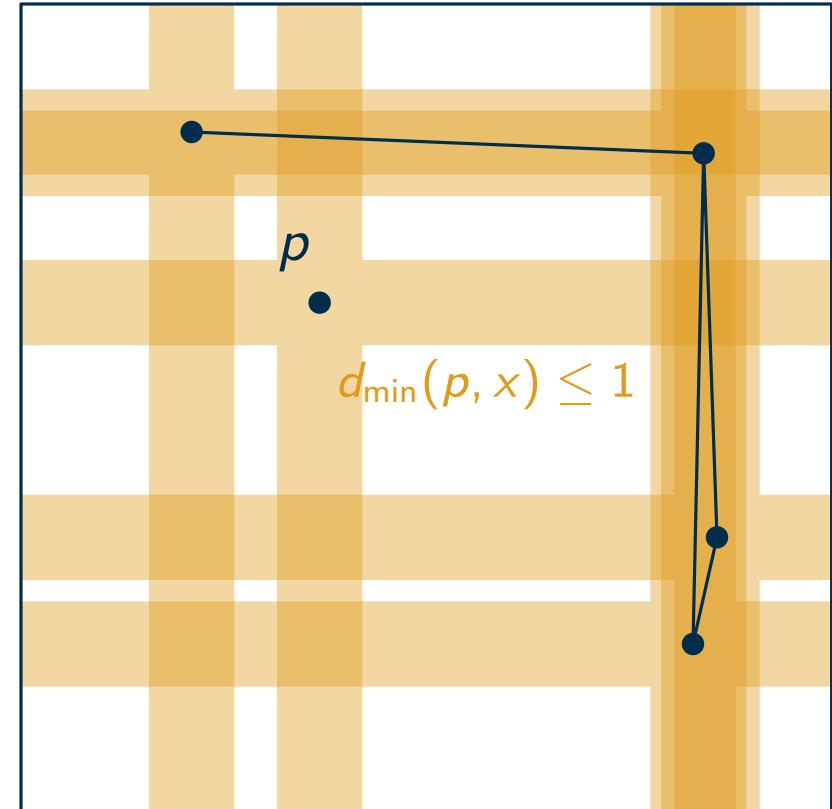
Topic C: Min-Norm GIRGs

- GIRGs use the L_∞ -norm for distances between vertices
- two vertices are close \Leftrightarrow similar along all dimensions
- *idea:* maybe similarity in one dimension is enough?
 - “distance”: minimum difference across dimensions

Task

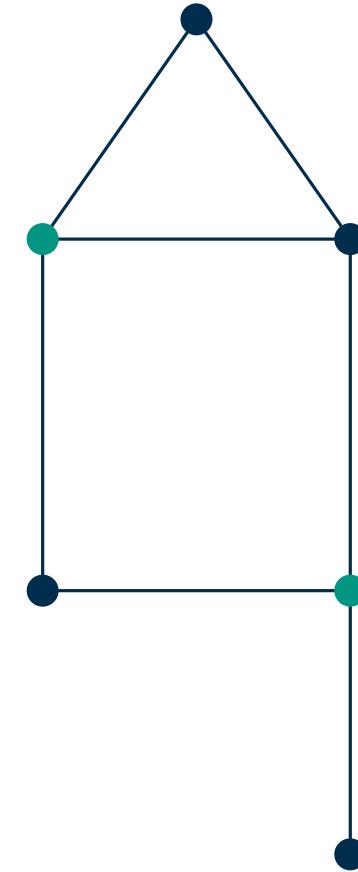
How different are min-norm GIRGs from max-norm GIRGs?

- generate min-norm GIRGs
- evaluate algorithms



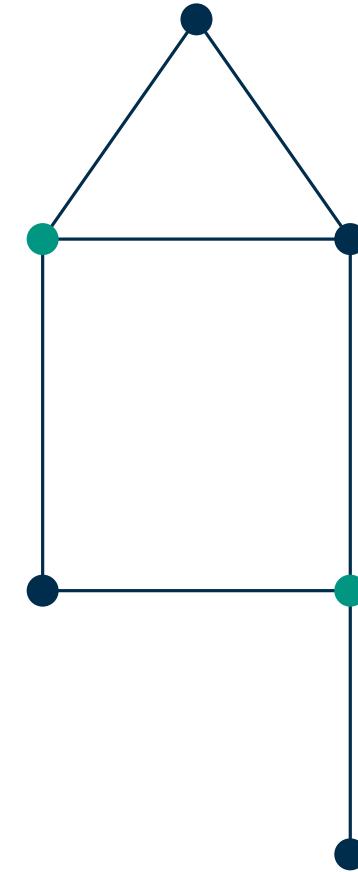
Topic D: Dominating Set Reduction Rule(s)

- **Dominating Set** is closely related to vertex cover
- Find set $D \subseteq V$, such that every vertex is either in D or is a neighbor of D



Topic D: Dominating Set Reduction Rule(s)

- **Dominating Set** is closely related to vertex cover
- Find set $D \subseteq V$, such that every vertex is either in D or is a neighbor of D
- multiple reduction rules are known



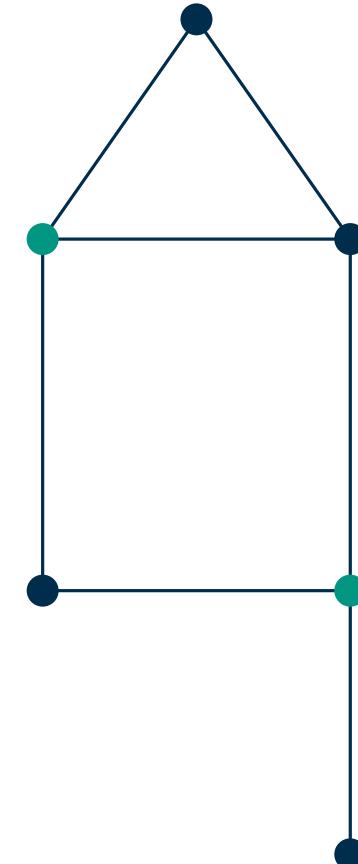
Topic D: Dominating Set Reduction Rule(s)

- **Dominating Set** is closely related to vertex cover
- Find set $D \subseteq V$, such that every vertex is either in D or is a neighbor of D
- multiple reduction rules are known

Task

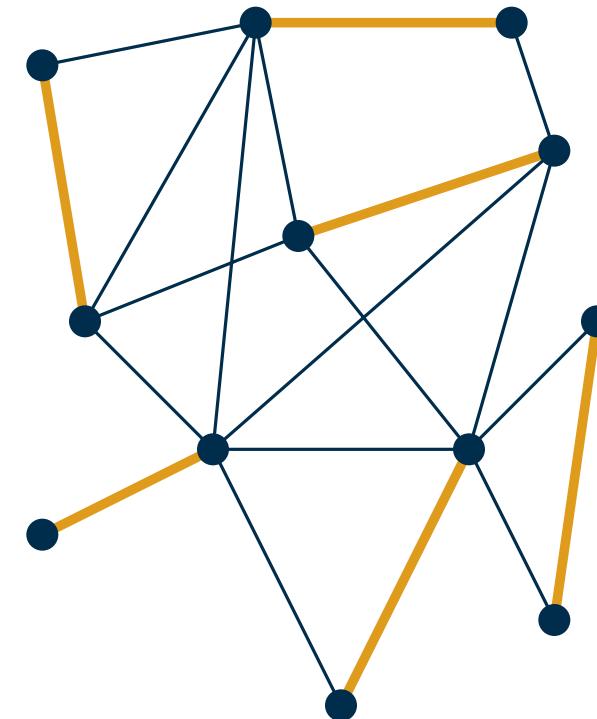
Which graph properties determine their effectiveness?

- start with one reduction rule from a recent paper



Topic E: Maximum Matching

- **Matching:** subgraph with maximum degree 1
- maximum matching can be found in polynomial time
 - Edmond's blossom algorithm

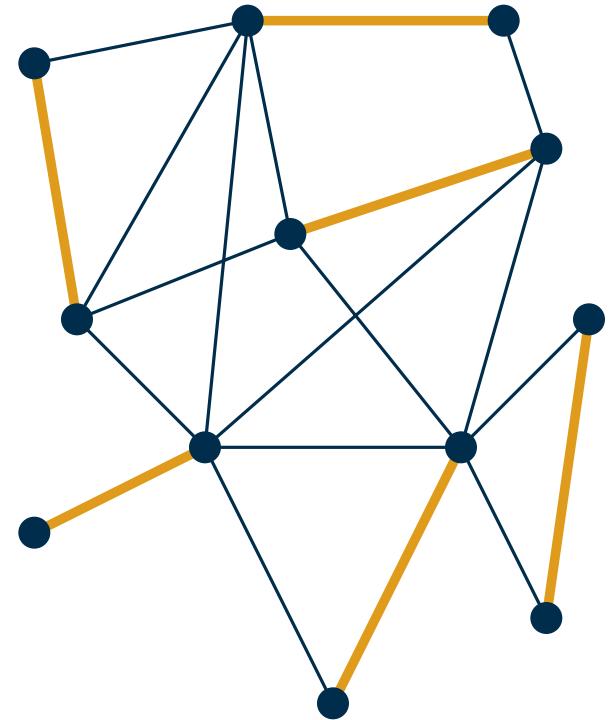


Topic E: Maximum Matching

- **Matching:** subgraph with maximum degree 1
- maximum matching can be found in polynomial time
 - Edmond's blossom algorithm

Task

Which graph properties determine the performance of the algorithm?



Topic F: Diameter Algorithms

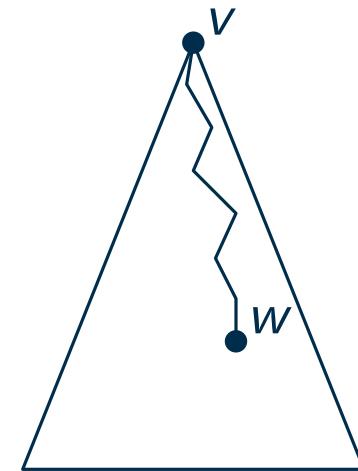
- you already know iFUB

Topic F: Diameter Algorithms

- you already know iFUB
- Takes and Koster proposed another practical algorithm

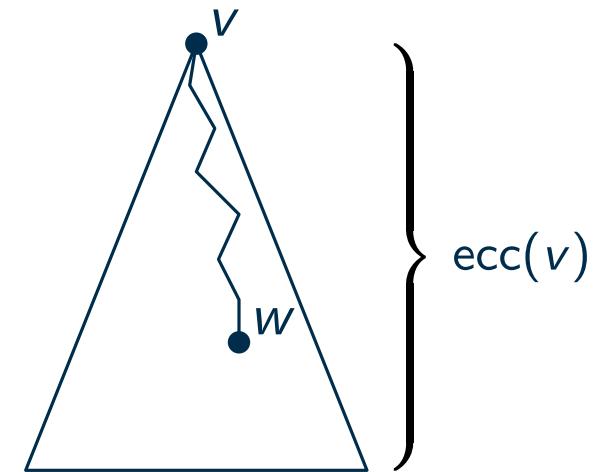
Topic F: Diameter Algorithms

- you already know iFUB
- Tries and Koster proposed another practical algorithm



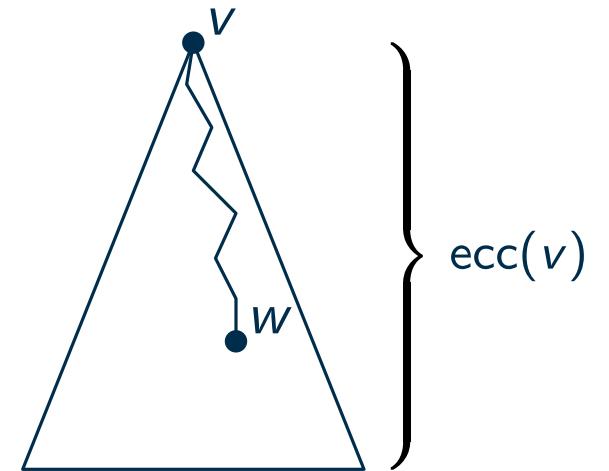
Topic F: Diameter Algorithms

- you already know iFUB
- Tries and Koster proposed another practical algorithm



Topic F: Diameter Algorithms

- you already know iFUB
- Tries and Koster proposed another practical algorithm



$$\text{dist}(v, w) \leq \text{ecc}(w) \leq \text{dist}(v, w) + \text{ecc}(v)$$

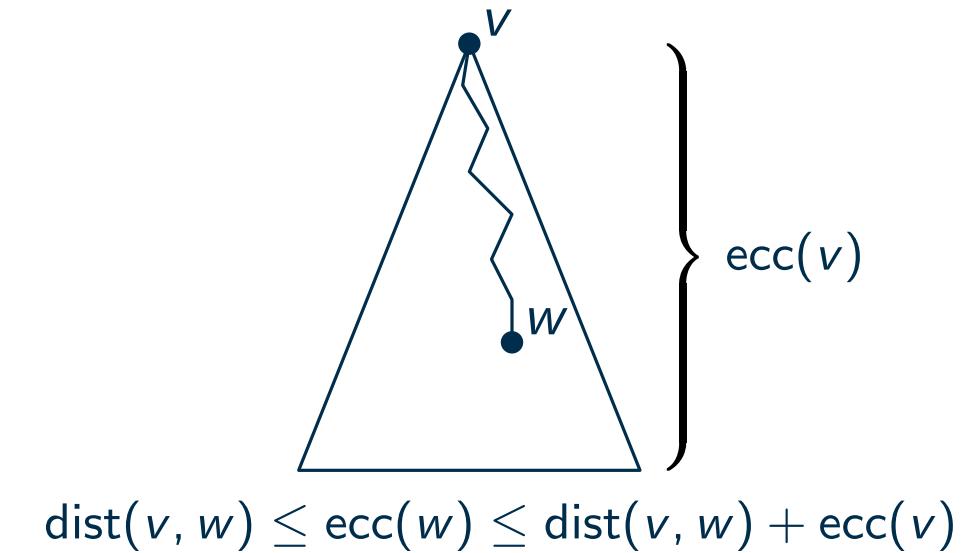
Topic F: Diameter Algorithms

- you already know iFUB
- Taks and Koster proposed another practical algorithm

Task

How does the performance of TK compare to iFUB?

- which properties are decisive?
- what happens on torus-like graphs?



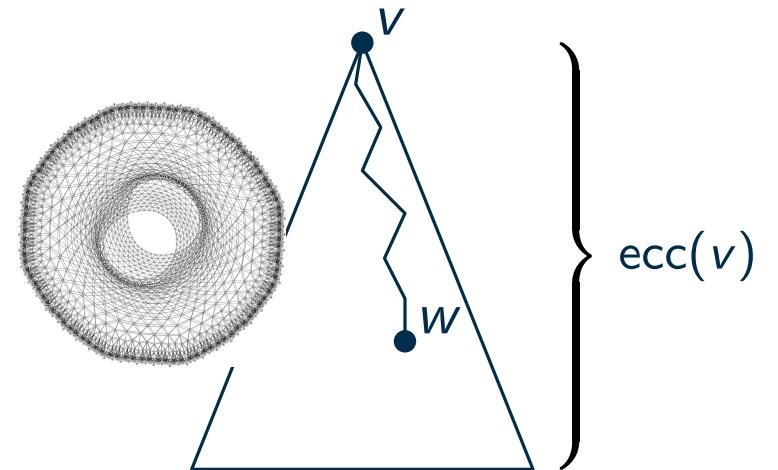
Topic F: Diameter Algorithms

- you already know iFUB
- Takes and Koster proposed another practical algorithm

Task

How does the performance of TK compare to iFUB?

- which properties are decisive?
- what happens on torus-like graphs?



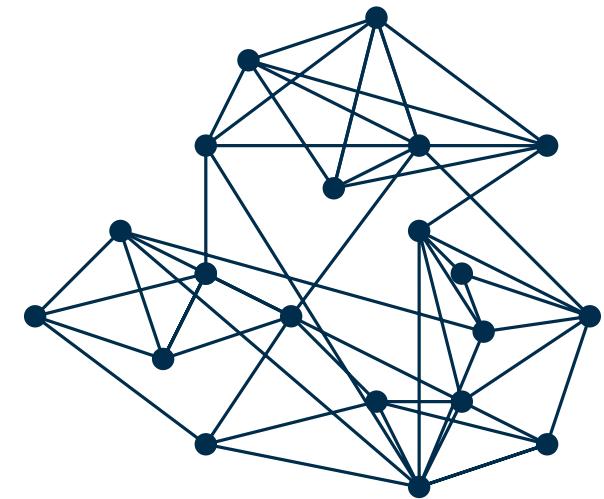
$$\text{dist}(v, w) \leq \text{ecc}(w) \leq \text{dist}(v, w) + \text{ecc}(v)$$

Topic G: Spanners

- subgraph H of G is t -spanner if $d_H(u, v) \leq t \cdot d_G(u, v)$ (for all u, v)
- goal: small t , small $\frac{|E(H)|}{|E(G)|}$

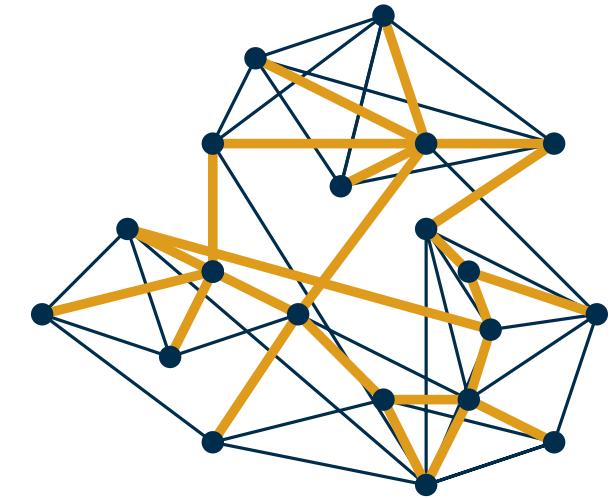
Topic G: Spanners

- subgraph H of G is t -spanner if $d_H(u, v) \leq t \cdot d_G(u, v)$ (for all u, v)
- goal: small t , small $\frac{|E(H)|}{|E(G)|}$



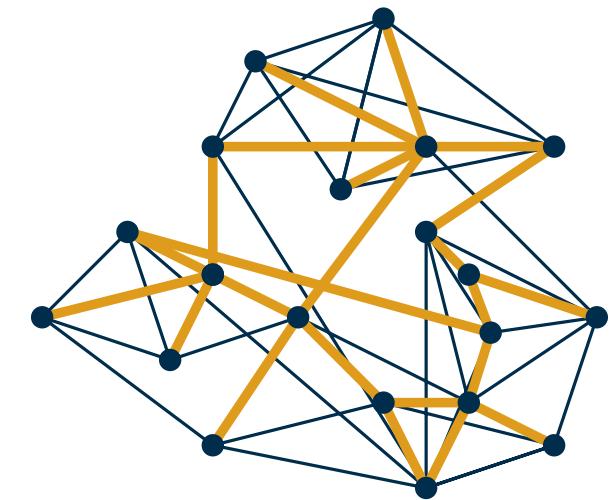
Topic G: Spanners

- subgraph H of G is t -spanner if $d_H(u, v) \leq t \cdot d_G(u, v)$ (for all u, v)
- goal: small t , small $\frac{|E(H)|}{|E(G)|}$



Topic G: Spanners

- subgraph H of G is t -spanner if $d_H(u, v) \leq t \cdot d_G(u, v)$ (for all u, v)
- goal: small t , small $\frac{|E(H)|}{|E(G)|}$
- many algorithms known
 - doi:10.4230/LIPIcs.ESA.2022.37



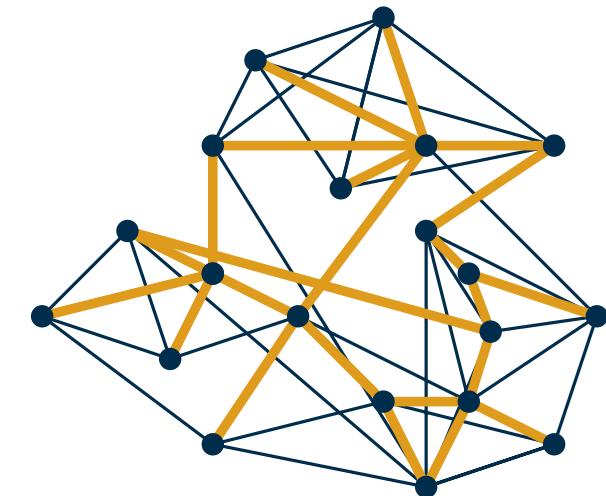
Topic G: Spanners

- subgraph H of G is t -spanner if $d_H(u, v) \leq t \cdot d_G(u, v)$ (for all u, v)
- goal: small t , small $\frac{|E(H)|}{|E(G)|}$
- many algorithms known
 - doi:10.4230/LIPIcs.ESA.2022.37

Task

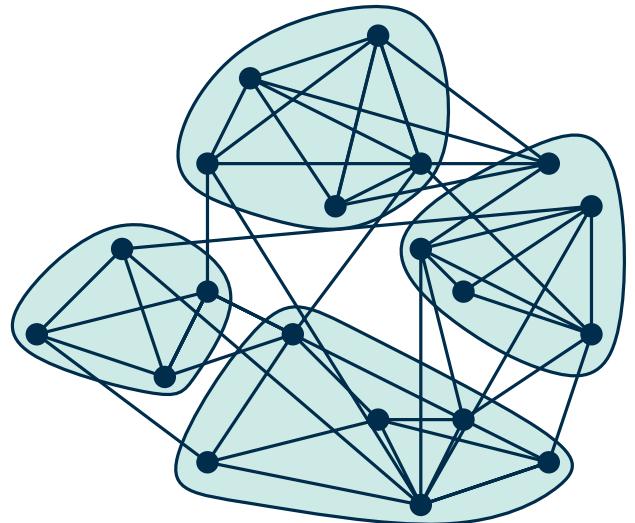
How good are (simple) spanner algorithms in practice?

- which graph properties are important?
- how does the quality–size trade-off look like?



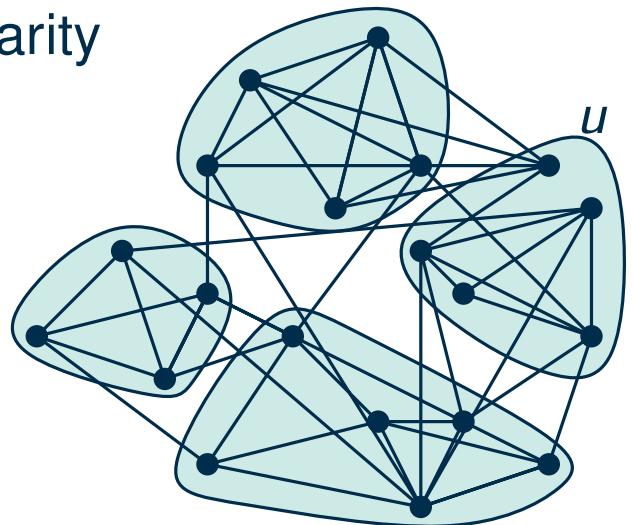
Topic H: Louvain Algorithm

- used to find community structures in graphs
- forms *clusters* with many edges inside clusters and few edges outside clusters
- optimizes *modularity*, a measure for quality of clusters



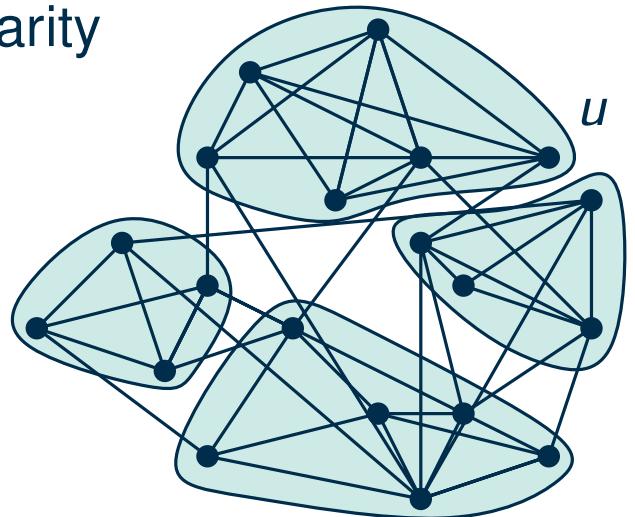
Topic H: Louvain Algorithm

- used to find community structures in graphs
- forms *clusters* with many edges inside clusters and few edges outside clusters
- optimizes *modularity*, a measure for quality of clusters
- *Louvain*: move vertex u in adjacent cluster, if this increases modularity
- repeat until modularity does no longer increase



Topic H: Louvain Algorithm

- used to find community structures in graphs
- forms *clusters* with many edges inside clusters and few edges outside clusters
- optimizes *modularity*, a measure for quality of clusters
- *Louvain*: move vertex u in adjacent cluster, if this increases modularity
- repeat until modularity does no longer increase

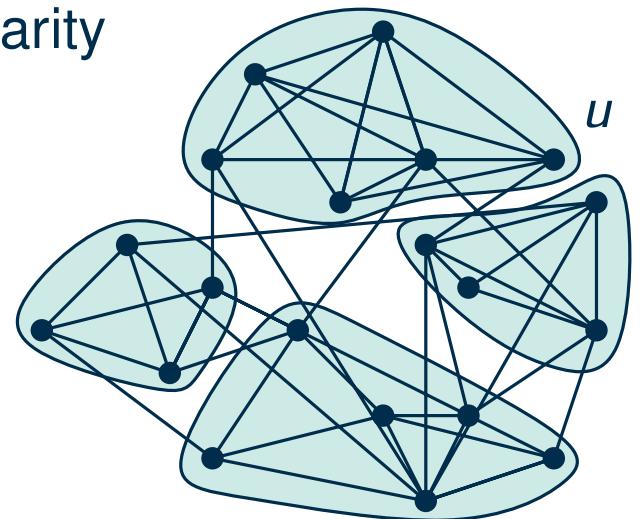


Topic H: Louvain Algorithm

- used to find community structures in graphs
- forms *clusters* with many edges inside clusters and few edges outside clusters
- optimizes *modularity*, a measure for quality of clusters
- *Louvain*: move vertex u in adjacent cluster, if this increases modularity
- repeat until modularity does no longer increase

Task

- How many iterations does the algorithm take?
- How do difficult instances look like?
- Can you interpolate between difficult and easy instances?
- How large do graphs need to be to measure asymptotics?



Summary of Topics

