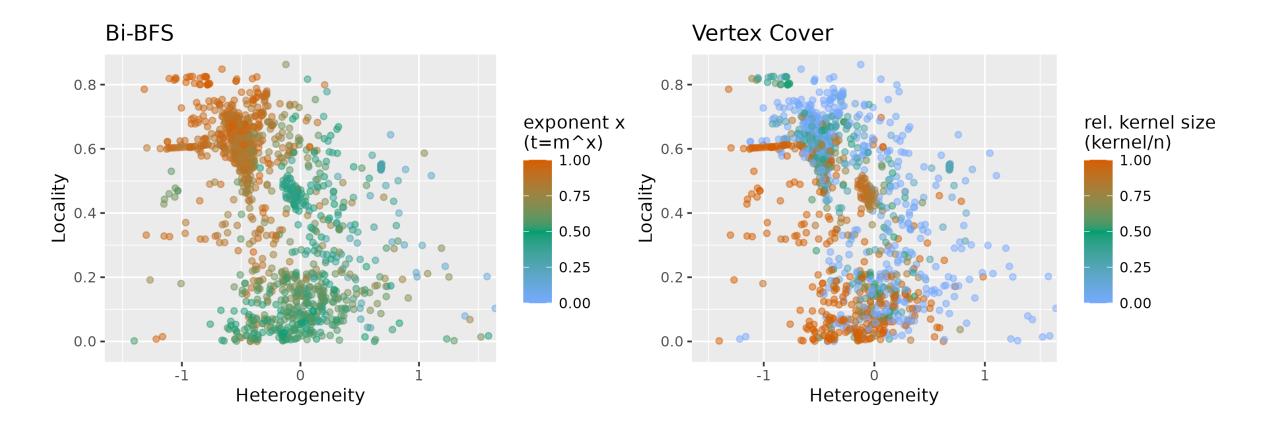


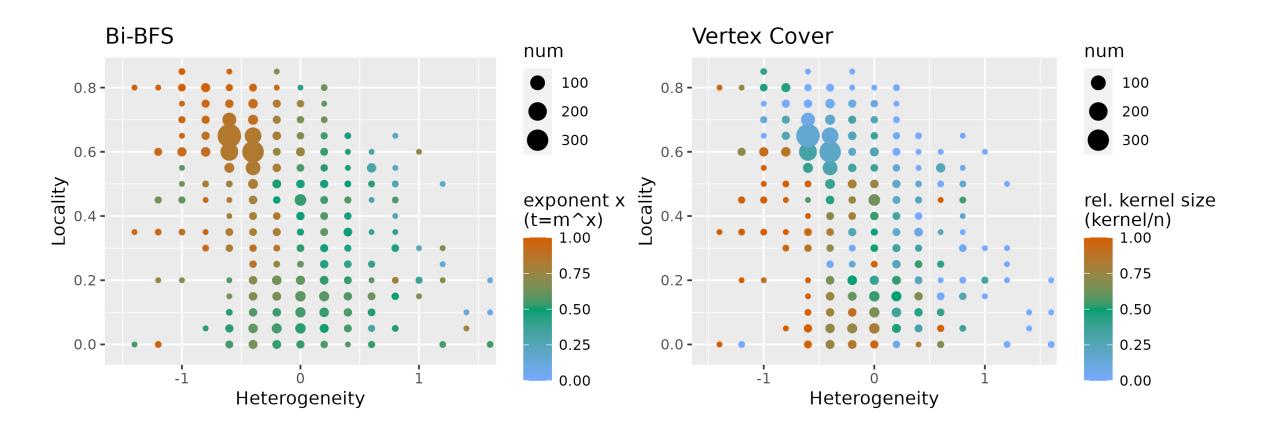
Beating the Worst Case

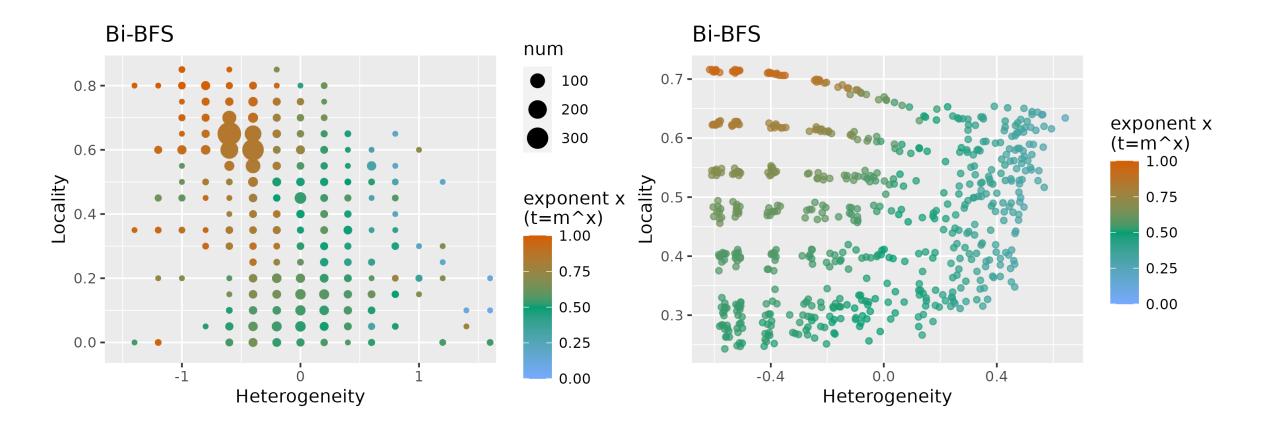
Practical Course – 7th meeting

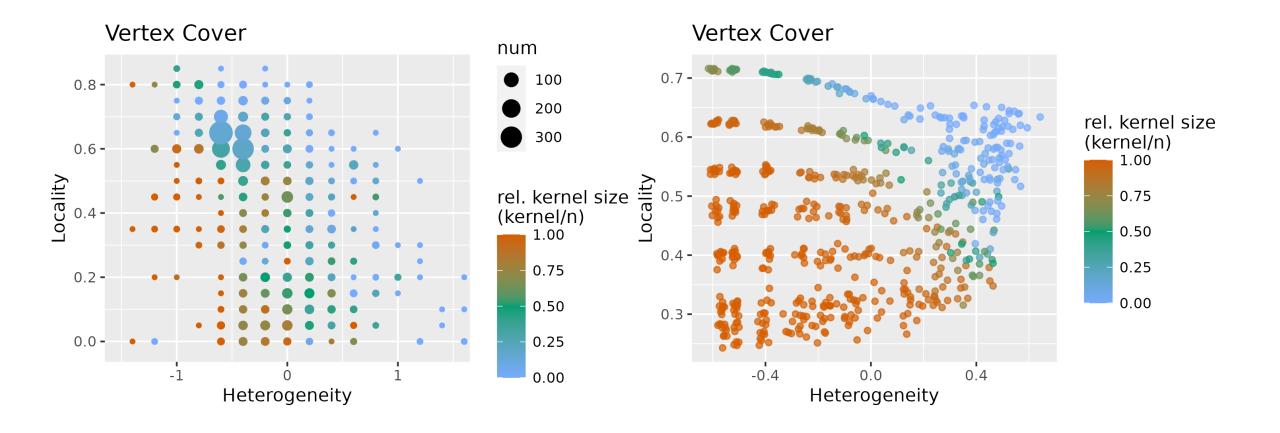
Jean-Pierre, Marcus

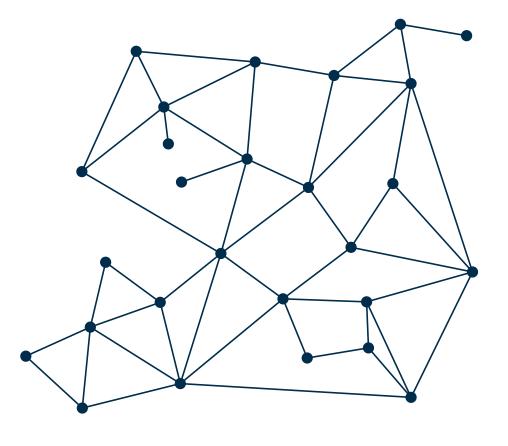
Exercise Sheet 3

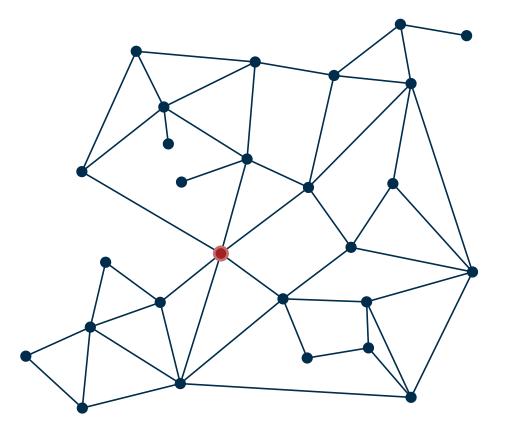


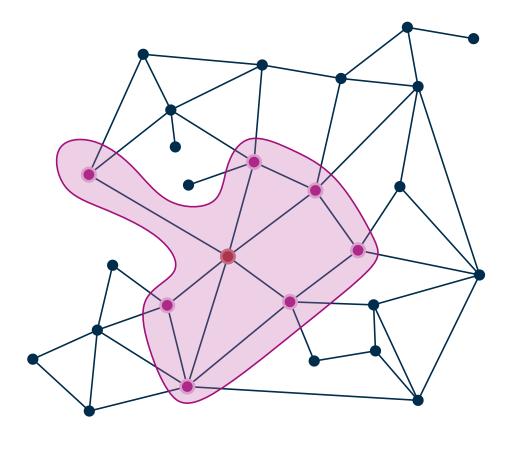


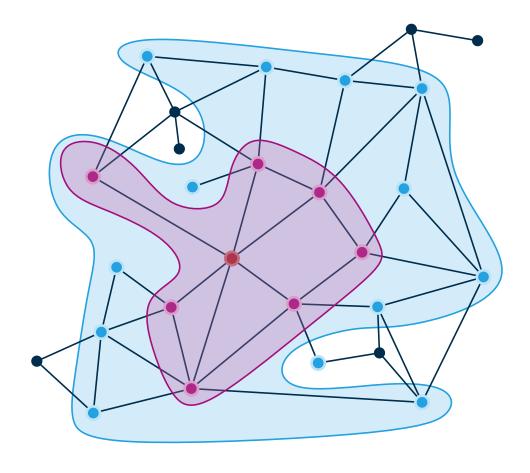


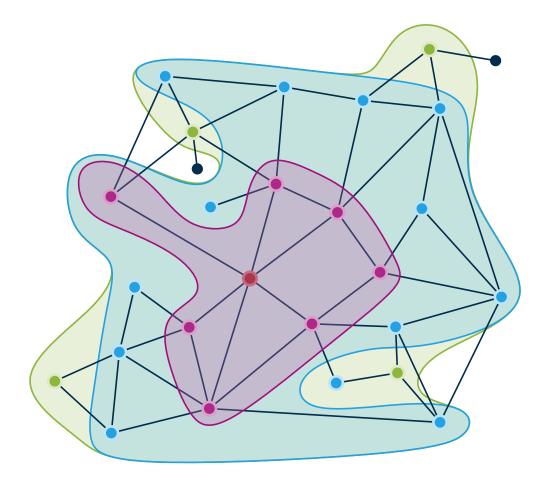


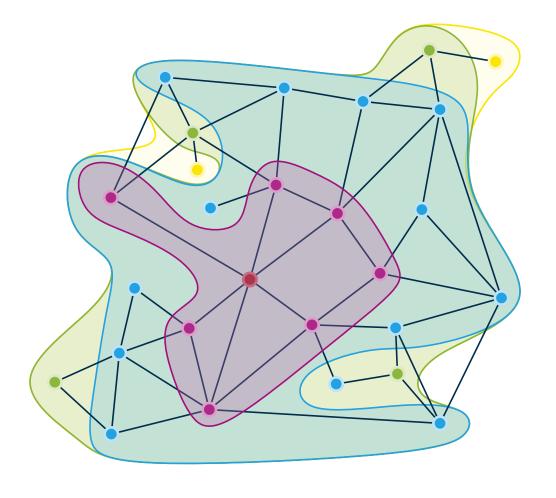


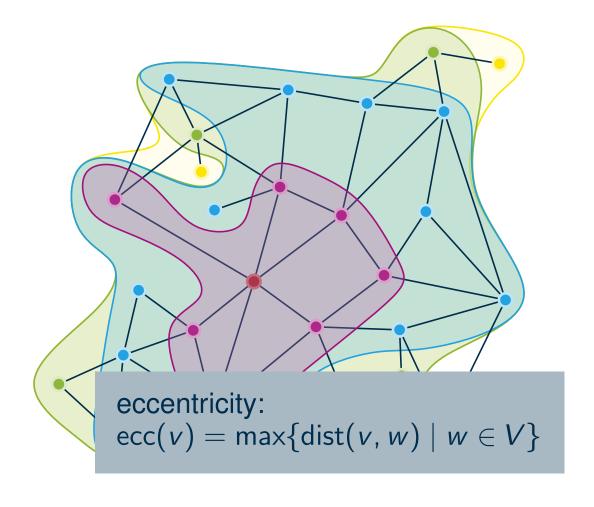


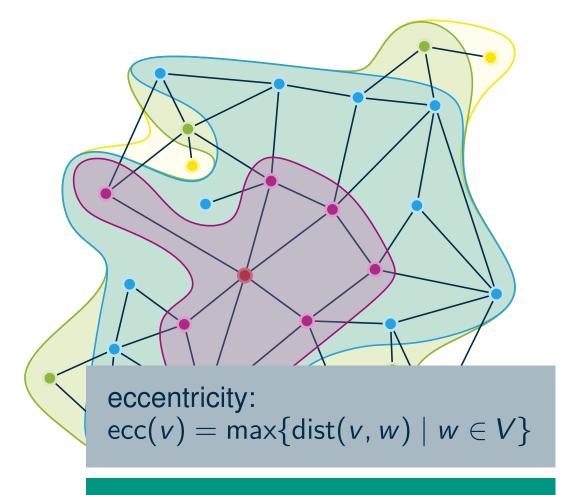




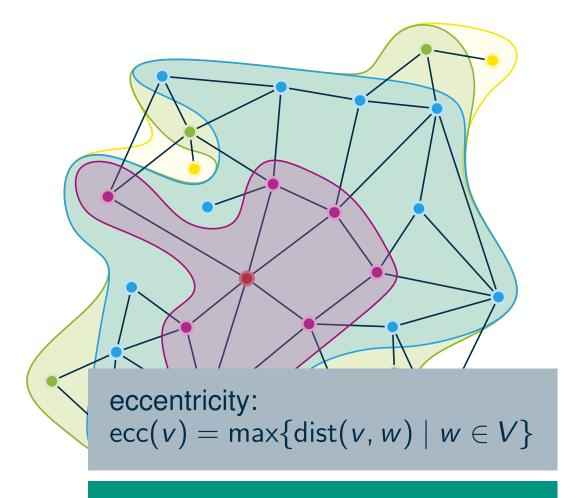






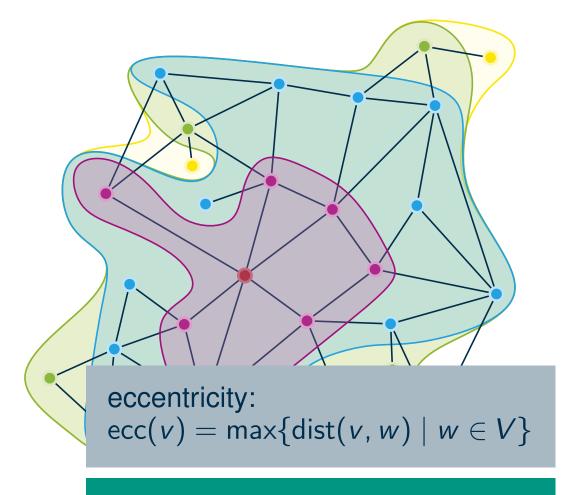


How to compute the diameter of a graph?



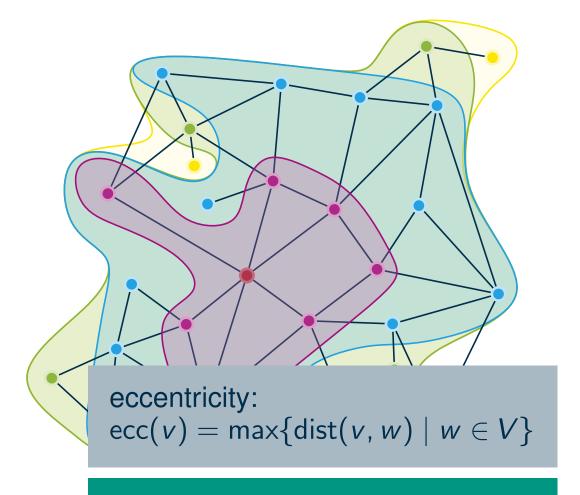
How to compute the diameter of a graph?

■ naive: *n* times BFS



How to compute the diameter of a graph?

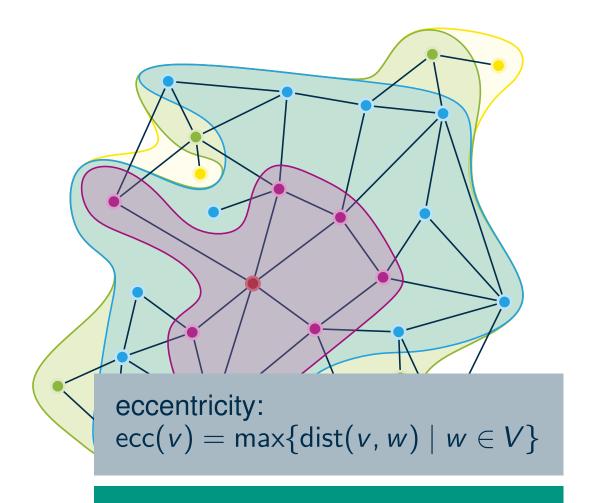
- naive: *n* times BFS
- can we do better?

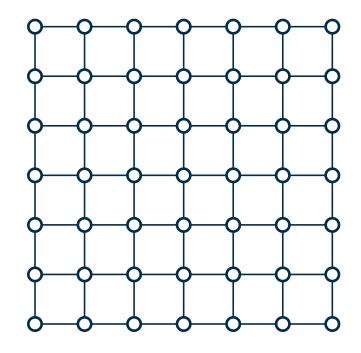


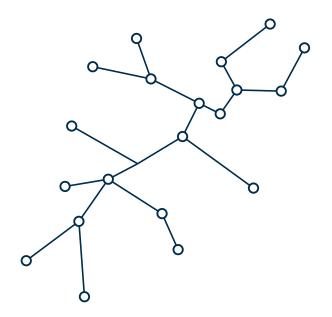
How to compute the diameter of a graph?

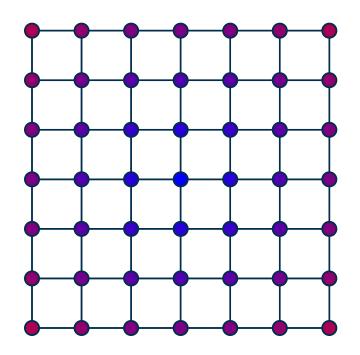
- naive: n times BFS
- can we do better?
 - no:
 (probably)

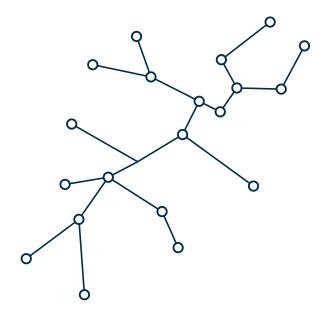
Any $O(m^{2-\varepsilon})$ time algorithm that distinguishes whether the diameter of a given undirected unweighted graph is 2 or at least 3 would imply an improved CNF-SAT algorithm. [Liam, Williams – STOC'13]

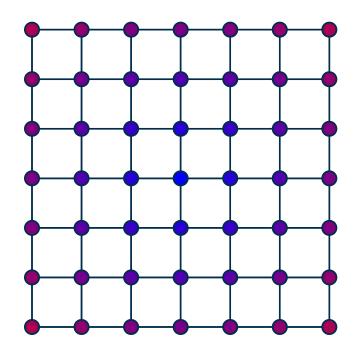


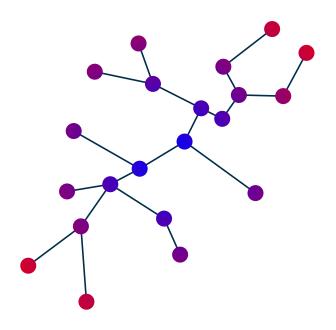


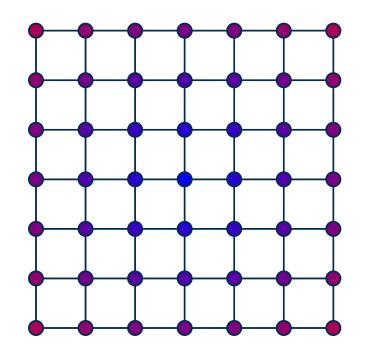


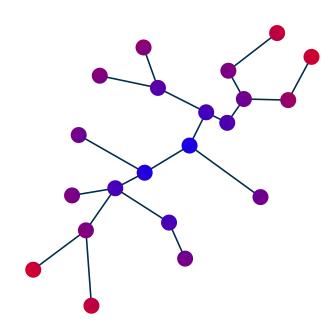








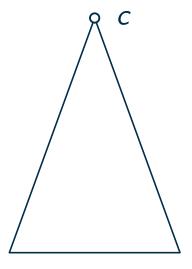


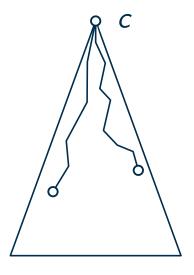


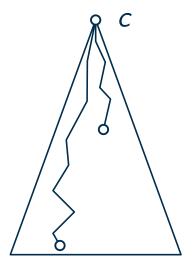
Idea: only run BFS from peripheral vertices

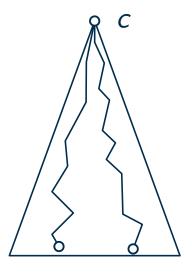
iFUB algorithm

(iterative fringe upper bound, [Crescenzi et al. 2013])

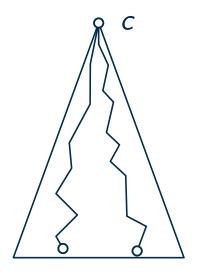








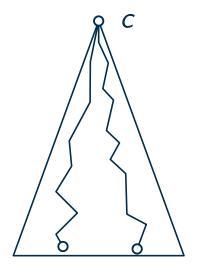
select central vertex c



select central vertex c

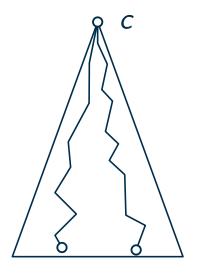
Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

■ plan: run BFS until we find w



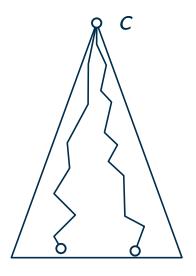
select central vertex c

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c



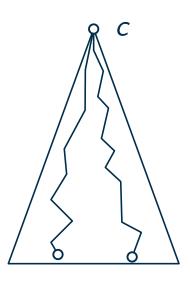
select central vertex c

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :



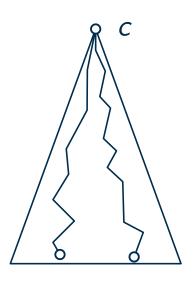
select central vertex c

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter



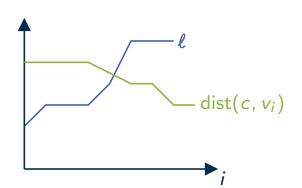
select central vertex c

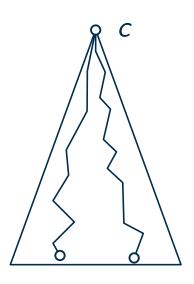
- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$



select central vertex c

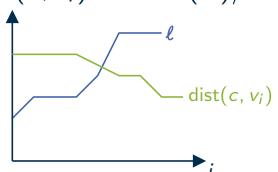
- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$

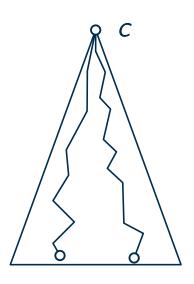




select central vertex c

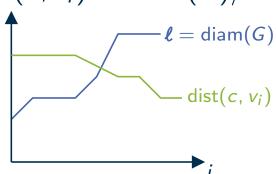
- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$

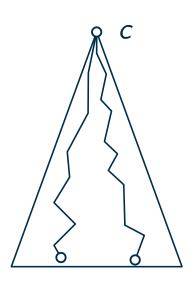




select central vertex c

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$

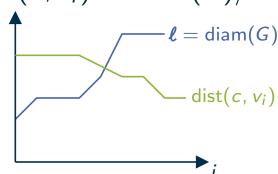


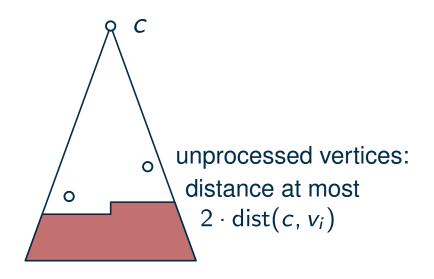


select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$

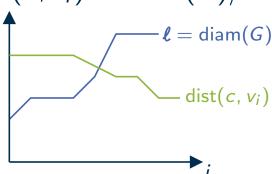


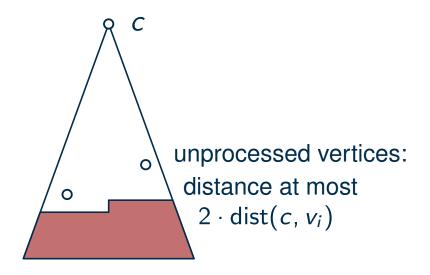


select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - max{ecc(v_1), . . . , ecc(v_i)} gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$



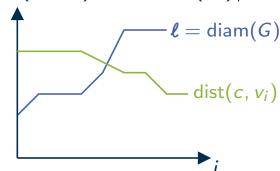


 $\Rightarrow 2 \cdot \operatorname{dist}(c, v_i) \leq \ell$ already implies $\ell = \operatorname{diam}(G)$

select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

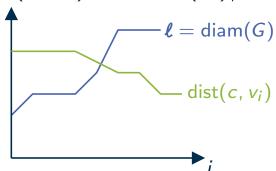
- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$



select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$



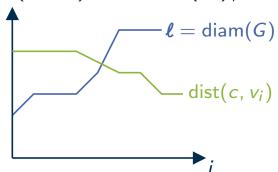
Question: How to choose *c*?

heterogeneous graph: maximum degree

select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$

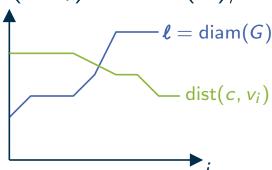


- heterogeneous graph: maximum degree
- otherwise: 2-sweep

select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}\$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = diam(G)$

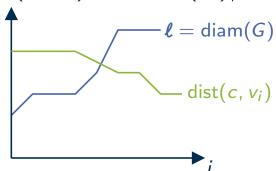


- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w

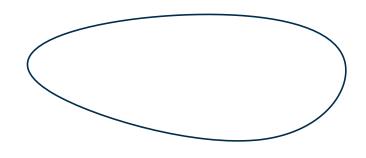
select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - max{ecc(v_1), . . . , ecc(v_i)} gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$



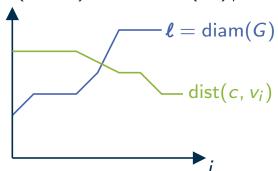
- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w



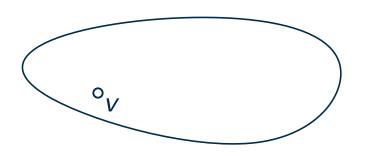
select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}\$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$



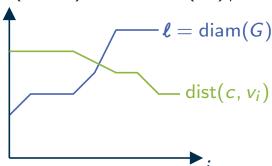
- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w



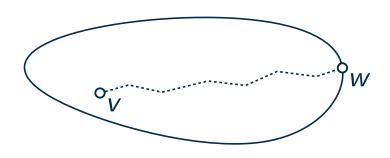
select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}\$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$



- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w

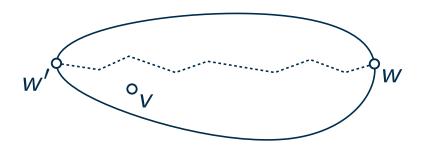


select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - max{ecc(v_1), . . . , ecc(v_i)} gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$

- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w

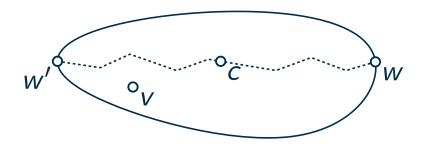


select central vertex c

Observation: there is a diametrical vertex w with distance at least diam(G)/2 from c.

- plan: run BFS until we find w
- let v_1, \ldots, v_n be vertices in descending distance from c
- after running BFS from v_i :
 - $\max\{\operatorname{ecc}(v_1), \ldots, \operatorname{ecc}(v_i)\}$ gives lower bound ℓ on diameter
 - assume $2 \cdot \operatorname{dist}(c, v_i) < \ell$, then $\operatorname{dist}(c, v_i) < \operatorname{diam}(G)/2$
 - w already found, $\ell = \text{diam}(G)$

- heterogeneous graph: maximum degree
- otherwise: 2-sweep
 - choose v arbitrarily,
 w most distant from v,
 w' most distant from w
 - choose c in middle of shortest path between w and w'



Exercise Sheet 4 & Project

Exercise Sheet 3

- Optimize / clean up code and workflow
- Study the performance of iFUB on realistic inputs
- Time frame: only *one* week

Exercise Sheet 4 & Project

Exercise Sheet 3

- Optimize / clean up code and workflow
- Study the performance of iFUB on realistic inputs
- Time frame: only *one* week

Presentations?

- no fancy slides required, just briefly prepare to answer:
 - 1. What are your findings about iFUB?
 - 2. How does your pipeline look like?

Exercise Sheet 4 & Project

Exercise Sheet 3

- Optimize / clean up code and workflow
- Study the performance of iFUB on realistic inputs
- Time frame: only *one* week

Presentations?

- no fancy slides required, just briefly prepare to answer:
 - 1. What are your findings about iFUB?
 - 2. How does your pipeline look like?

Afterwards: Project (6 weeks)

- Goal: investigate and answer a research question
- Inspiration:
 - On the External Validity of Average-Case Analyses of Graph Algorithms [B., F. 2022]
 - Deterministic Performance Guarantees for Bidirectional BFS on Real-World Networks
 [B., W. 2022]
 - Understand / improve algorithms (e.g., diameter, hard problems, ...)

