

Beating the Worst Case

Practical Course – 6th Meeting

Jean-Pierre, Marcus

Sheet 3

Generate Graphs

Did you evaluate the algorithms/metrics on the new graphs?

What models are you using to generate graphs?

Did you find out, how we generated the graphs?

Real World Graphs

Do the previous results apply to the new graphs?

What sources for real world graphs are you using?

Was the GIRG library usable? Did you understand what the parameters do?

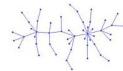
Models for Complex Networks

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert	Chung-Lu	Watts-Strogatz model	GRG	HRG 2010	GIRG 2019
heterogeneous degrees		✓	\checkmark			\checkmark	\checkmark
short distances / "small-world"	\checkmark	✓	✓	✓		\checkmark	\checkmark
high locality / clustering				✓	✓	\checkmark	✓

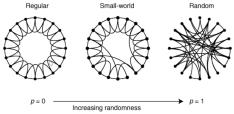
Erdős–Rényi model

Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree



Watts-Strogatz model



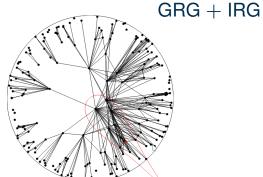
Chung-Lu / Configuration model / IRG

vertices with weights w_i (following power-law distribution);

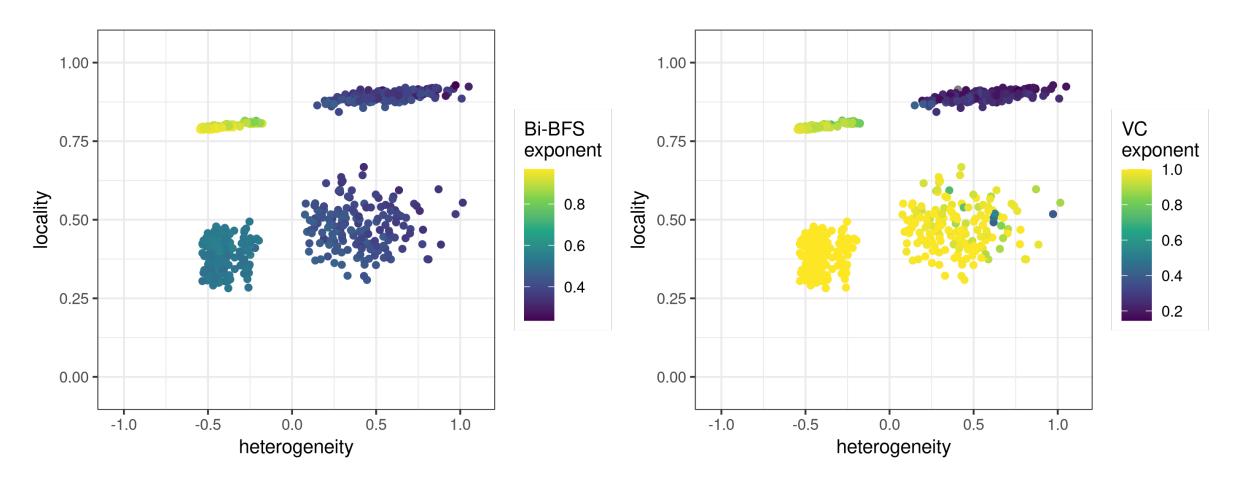
$$\Pr\left[\left\{e_i,e_j
ight\}\in E
ight]\sim rac{\stackrel{\smile}{w_i\cdot w_j}}{W}$$

Geometric Random Graph (Hyperbolic)

sample vertices uniformly in geometry, connect if distance below threshold

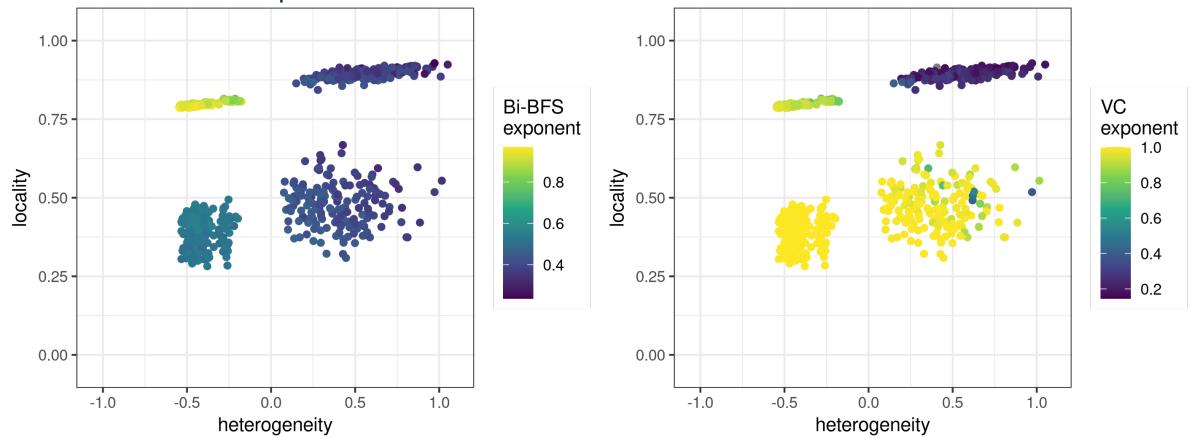


GIRG



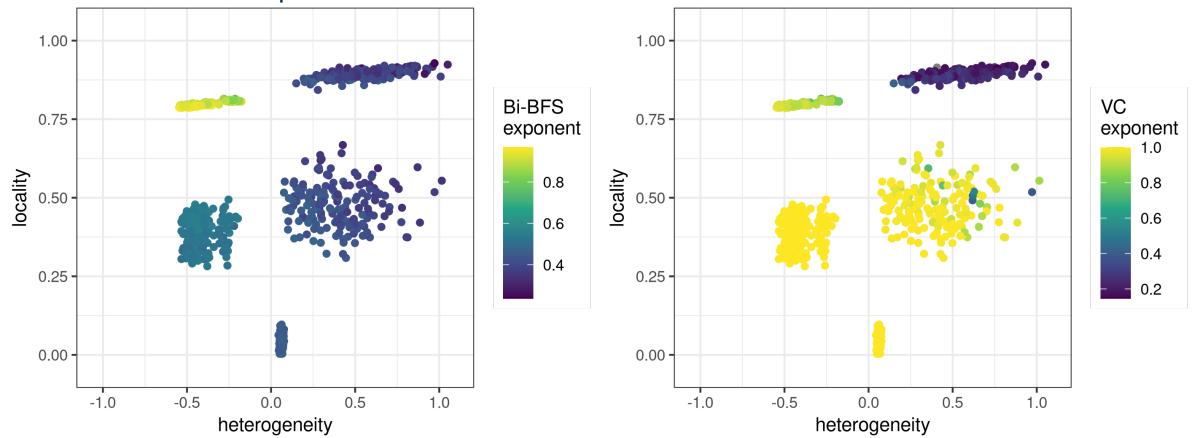
Where are:

Barabasi Albert Graphs?



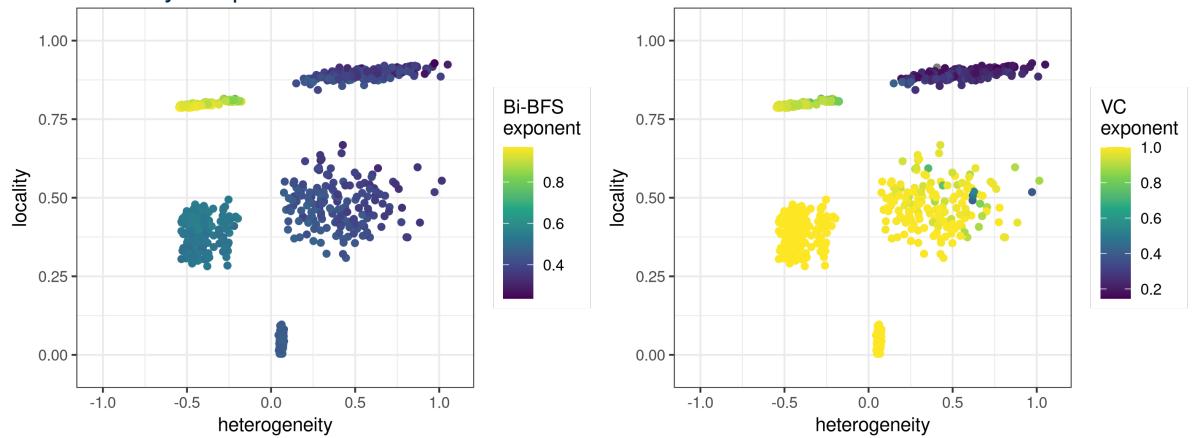
Where are:

Barabasi Albert Graphs?



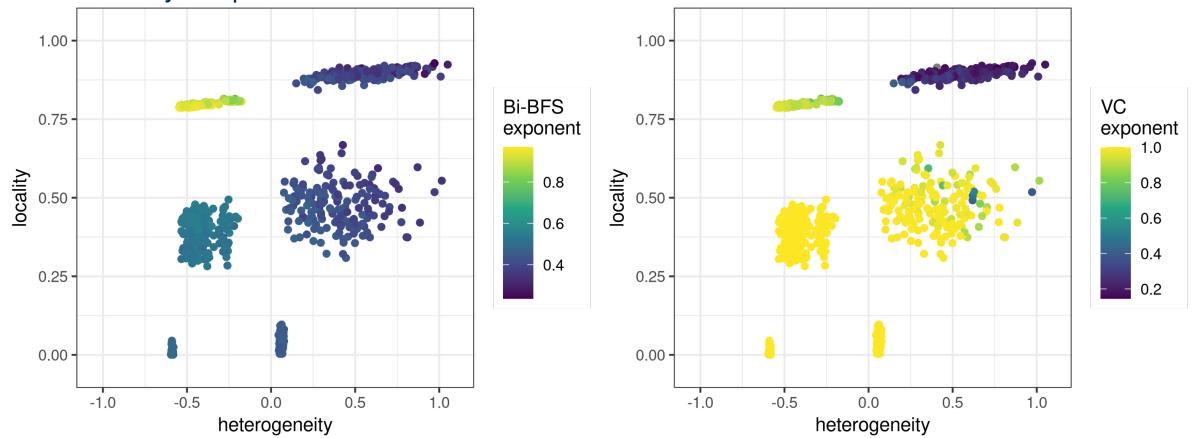
Where are:

Erdos Reny Graphs?



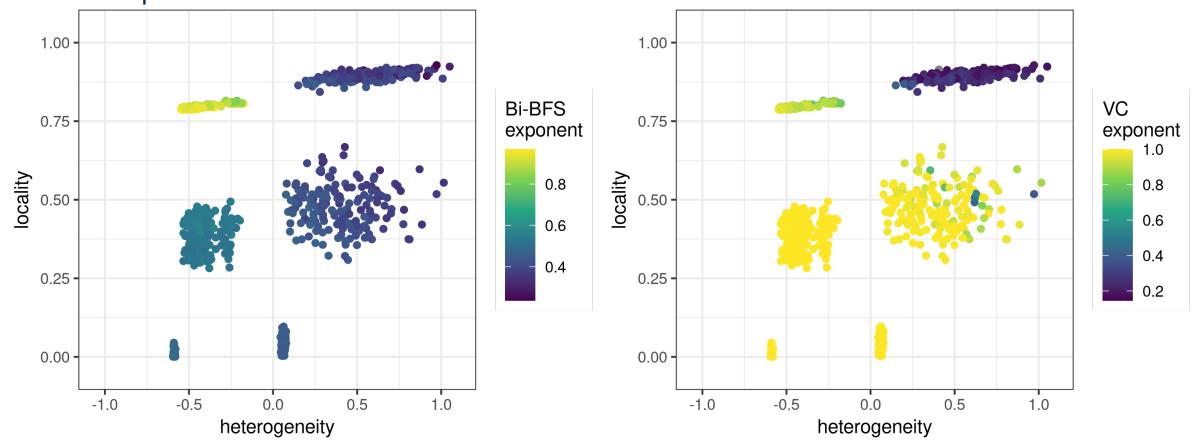
Where are:

Erdos Reny Graphs?



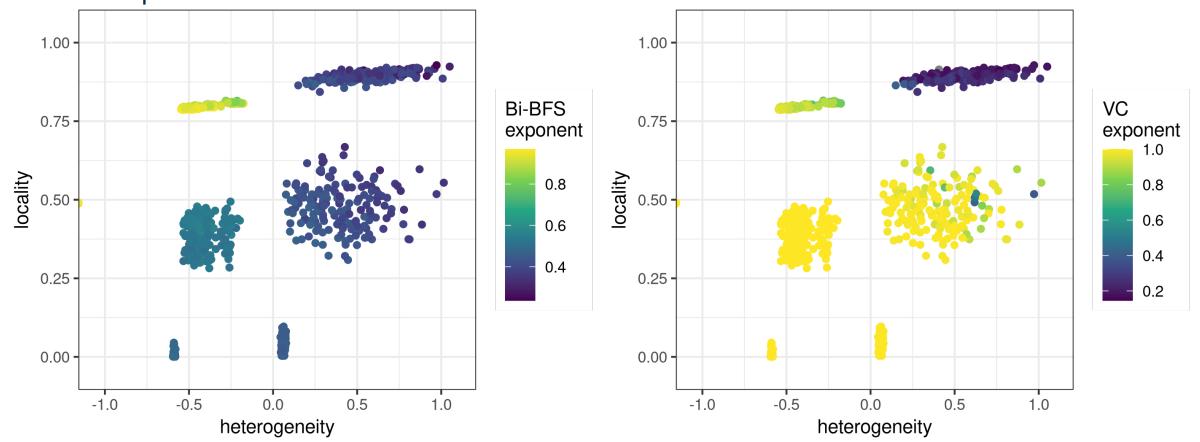
Where are:

Grid Graphs?



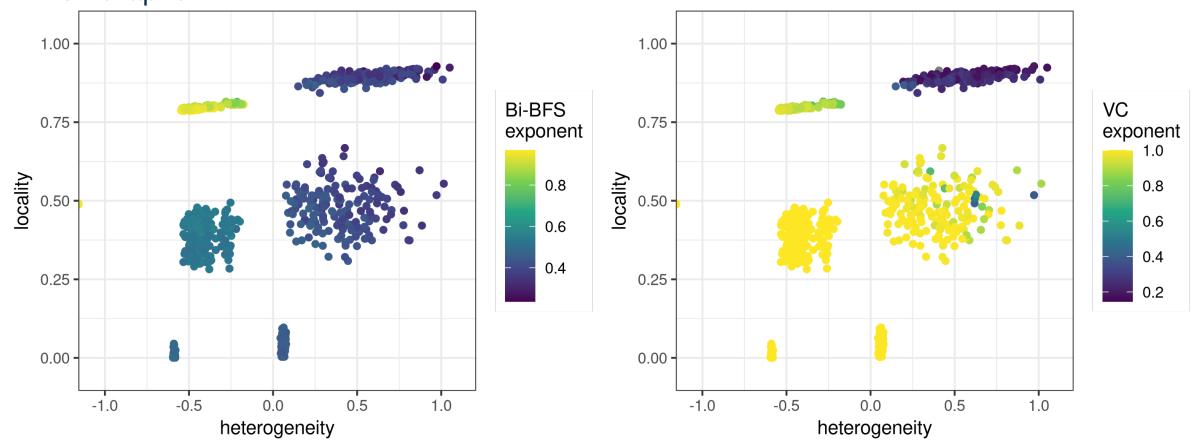
Where are:

Grid Graphs?



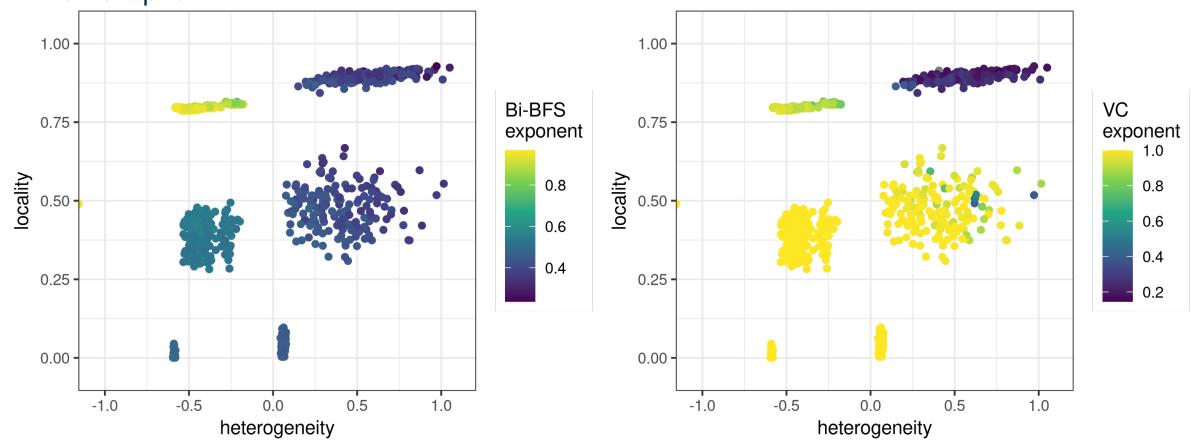
Where are:

Disk Graphs?



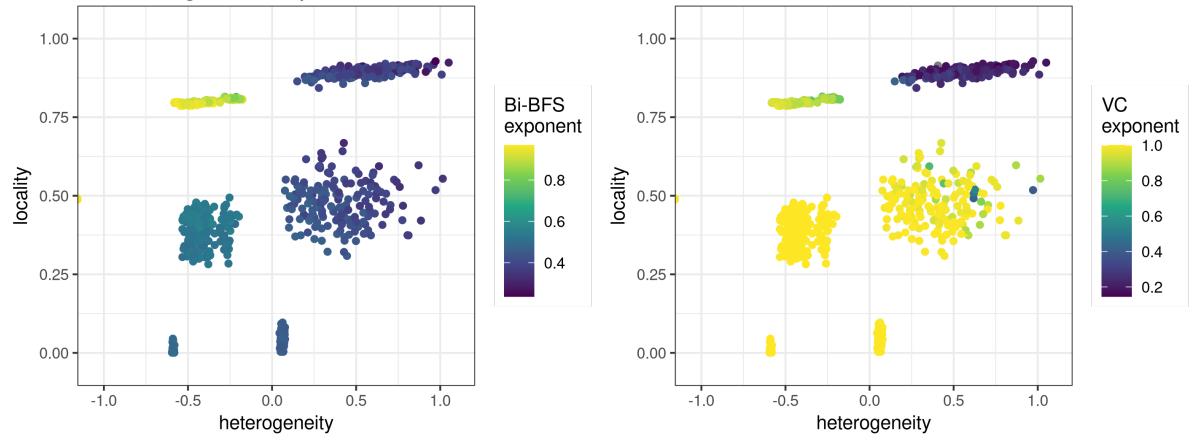
Where are:

Disk Graphs?



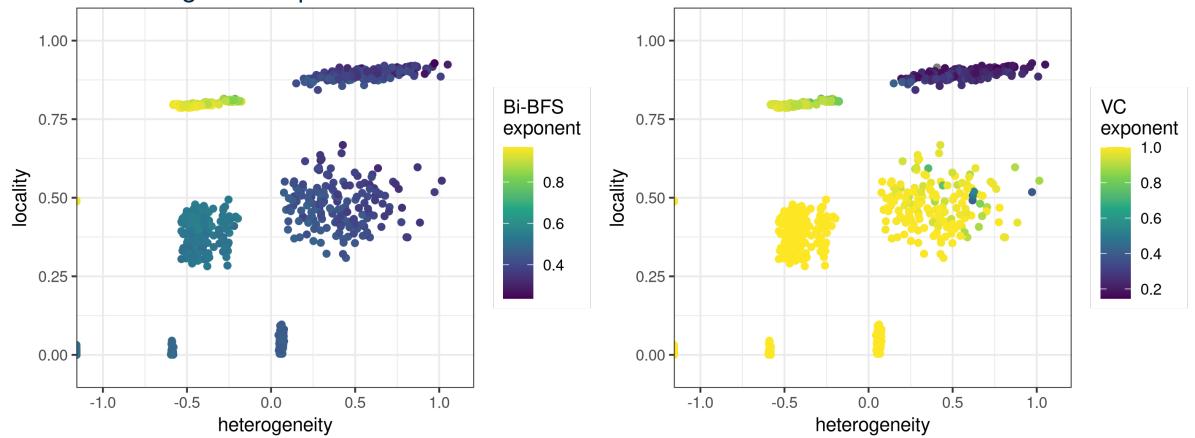
Where are:

Random Regular Graphs?



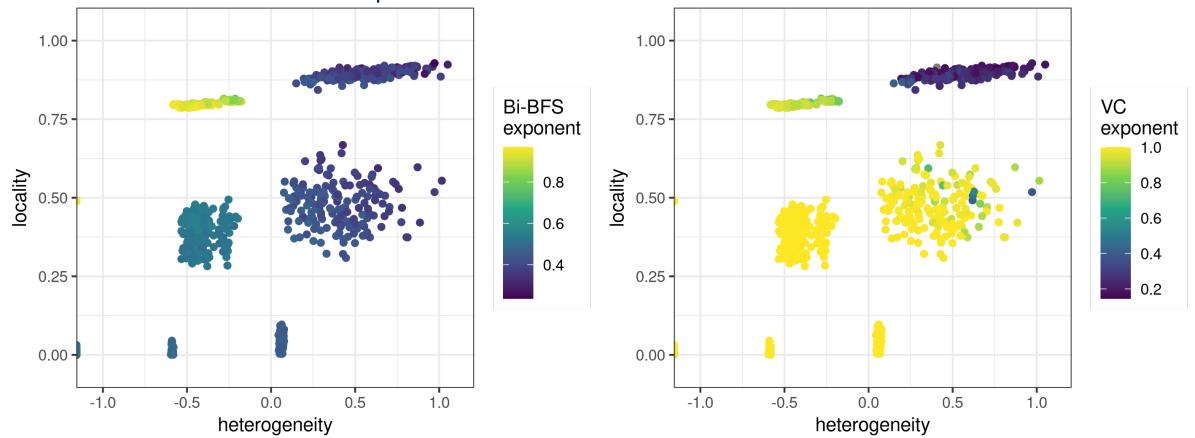
Where are:

Random Regular Graphs?



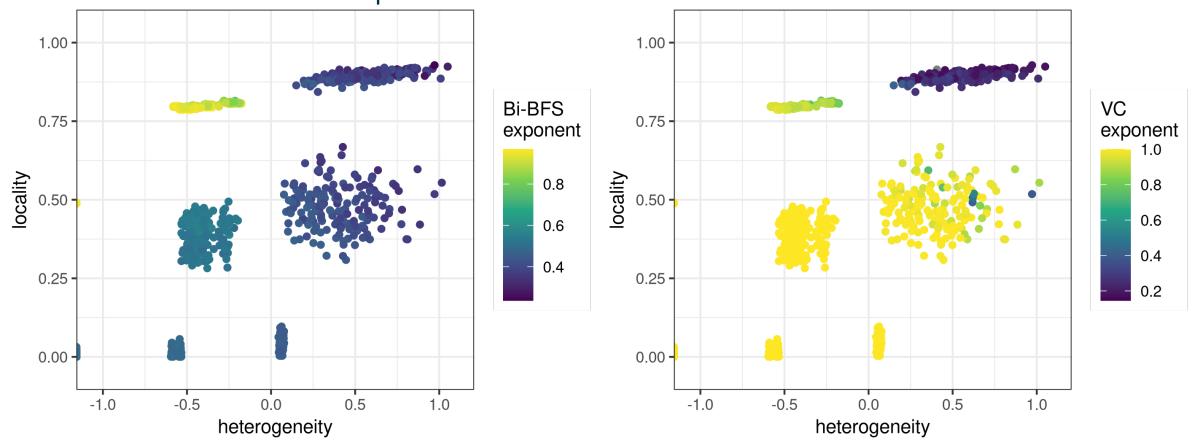
Where are:

Stochastic Block Model Graphs?



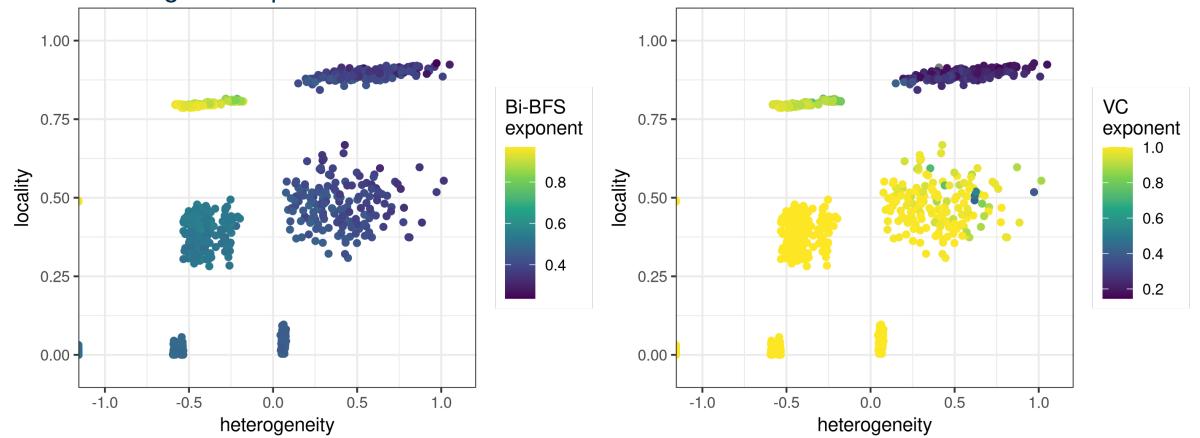
Where are:

Stochastic Block Model Graphs?



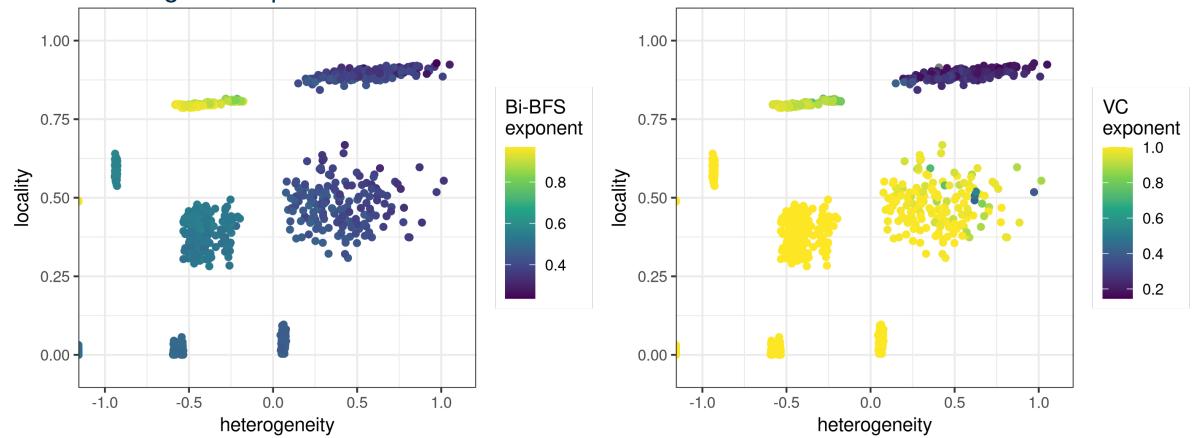
Where are:

Watts Strogatz Graphs?



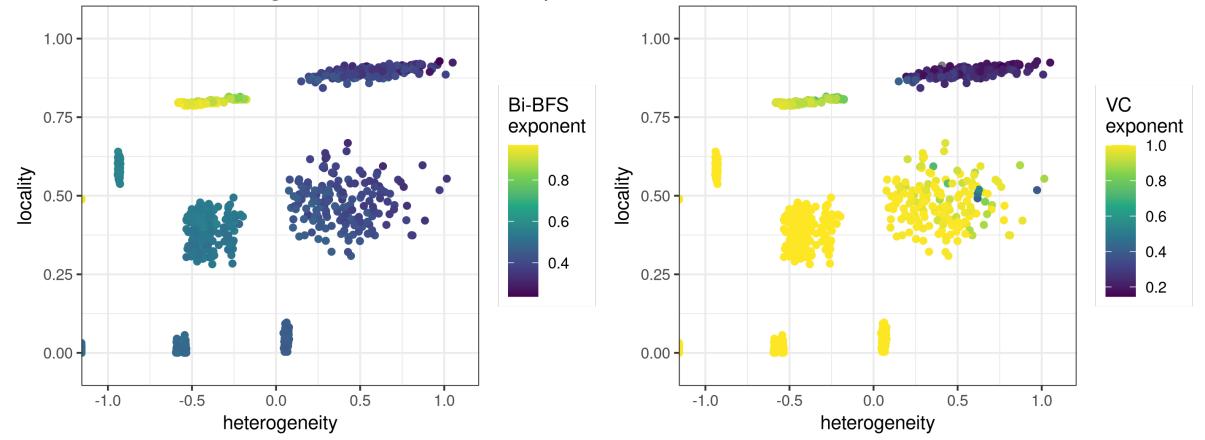
Where are:

Watts Strogatz Graphs?



Where are:

Geometric Inhomogeneous Random Graphs?



Where are:

Depends on the parameters! Geometric Inhomogeneous Random Graphs? 1.00 1.00 VC **Bi-BFS** 0.75 0.75 exponent exponent 1.0 locality locality 8.0 0.8 0.50 -0.50 -0.6 0.6 0.4 0.4 0.25 0.25 0.2 0.00 -0.00 --0.5 0.0 1.0 -0.5 0.0 0.5 -1.0 0.5 -1.0 1.0 heterogeneity heterogeneity

Geometric inhomogeneous random graph (GIRG)

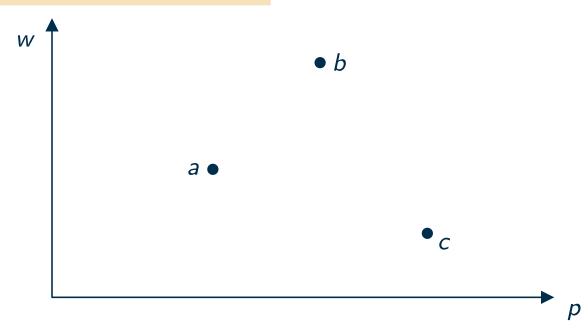
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)

Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

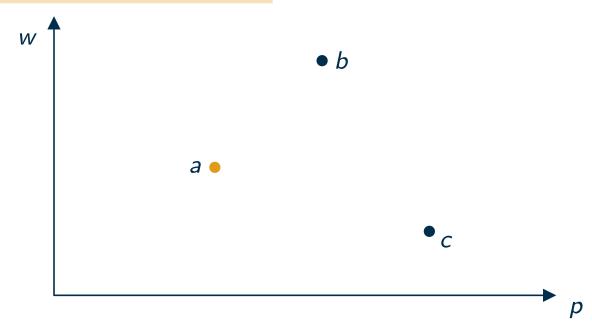
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



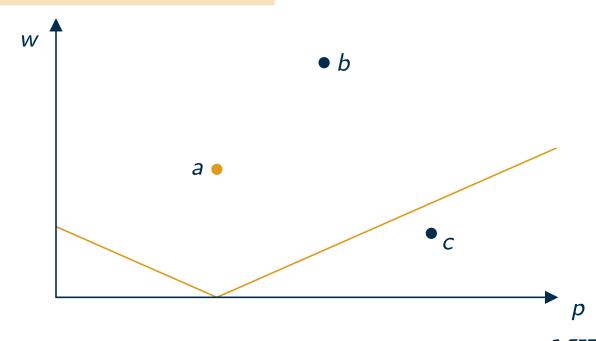
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



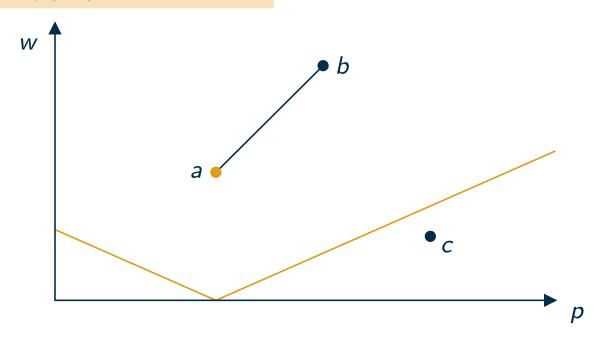
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



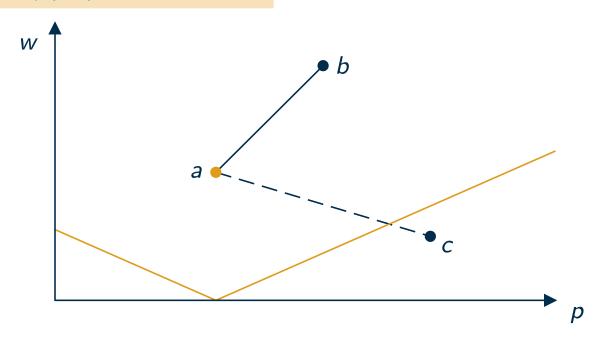
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



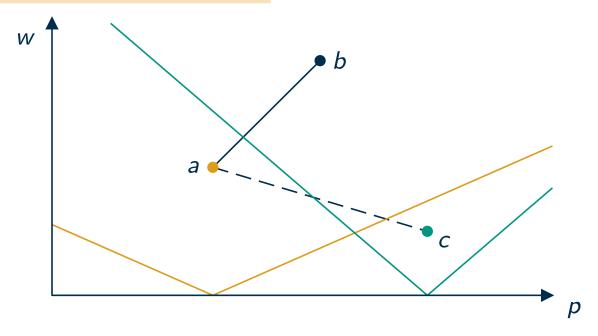
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



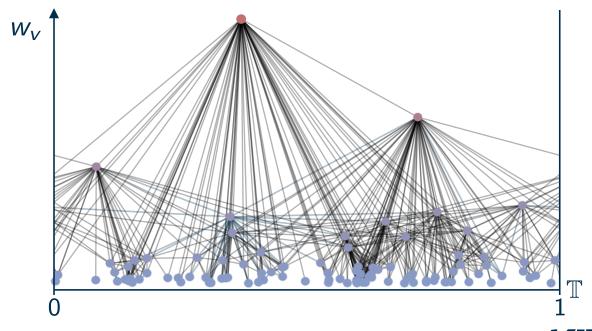
Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$



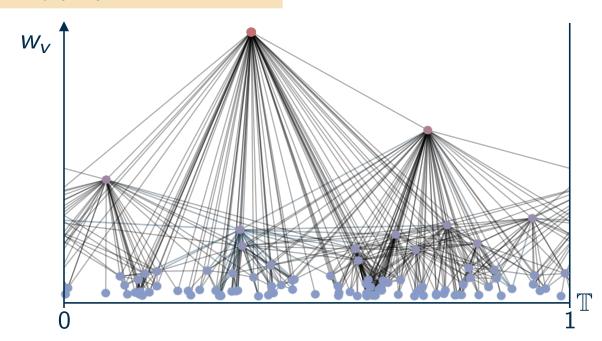
Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \leq c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

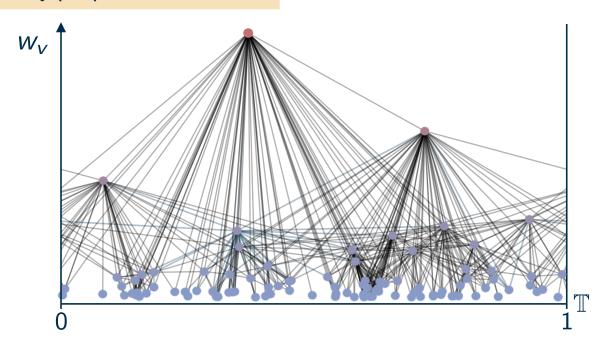
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

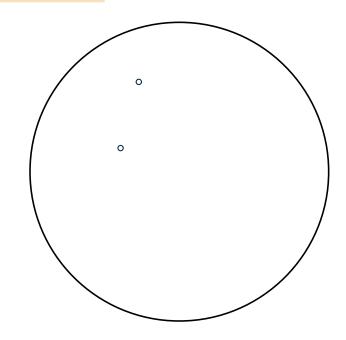
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

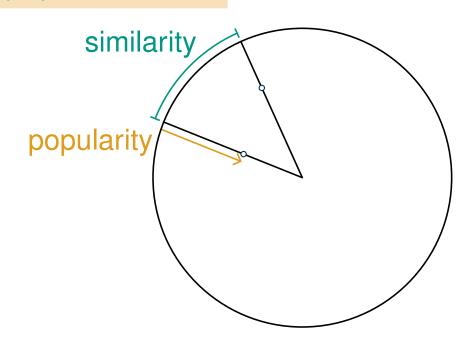
Popularity – Similarity

Popularity versus similarity in growing networks

[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

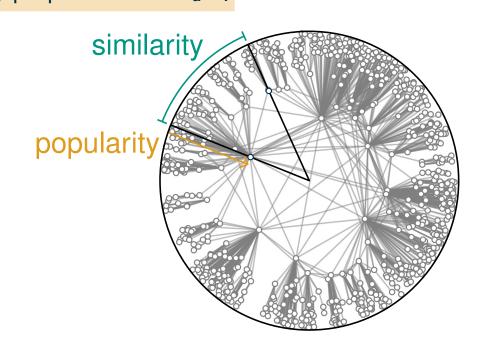
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

[Bringmann, Keusch, Lengler, 2019]

Geometric inhomogeneous random graphs

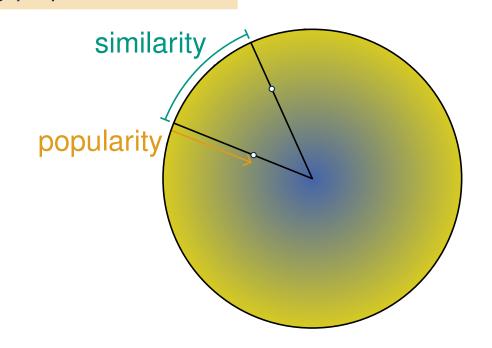
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

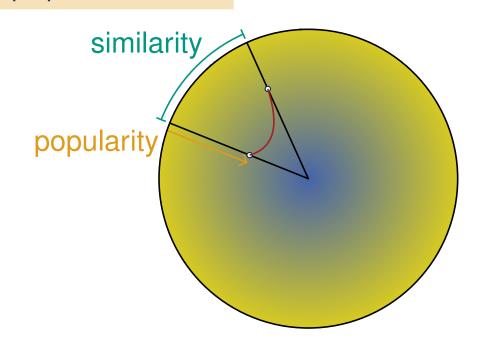
Popularity – Similarity

Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

Hyperbolic geometry of complex networks [Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá 2010]

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks

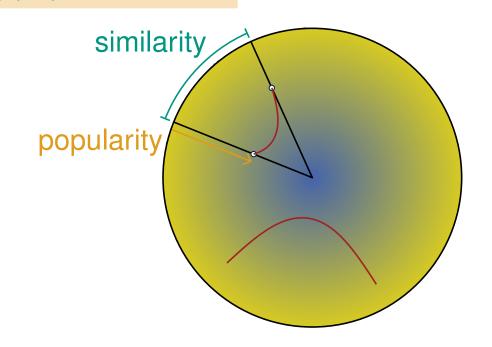
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

Hyperbolic geometry of complex networks [Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá 2010]

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]



Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $\operatorname{dist}(u, v)^d \leq c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

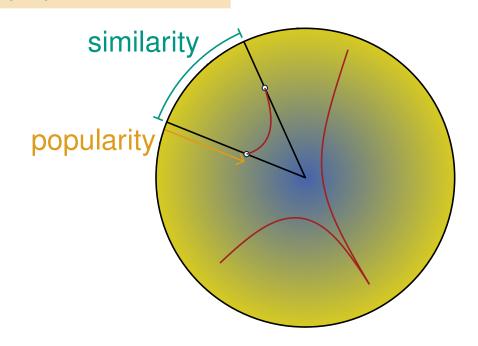
Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

Hyperbolic geometry of complex networks [Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá 2010]

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG

Geometric inhomogeneous random graphs



Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection

connection probability proportional to $w_u w_v$

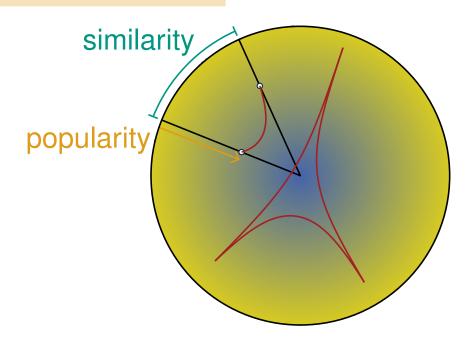
Popularity – Similarity

Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

Hyperbolic geometry of complex networks [Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá 2010]

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graphs

[Bringmann, Keusch, Lengler, 2019]

Geometric inhomogeneous random graph (GIRG)

- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

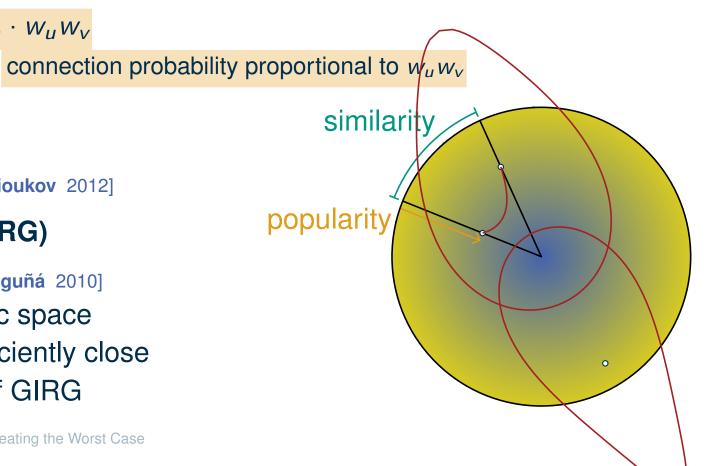
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

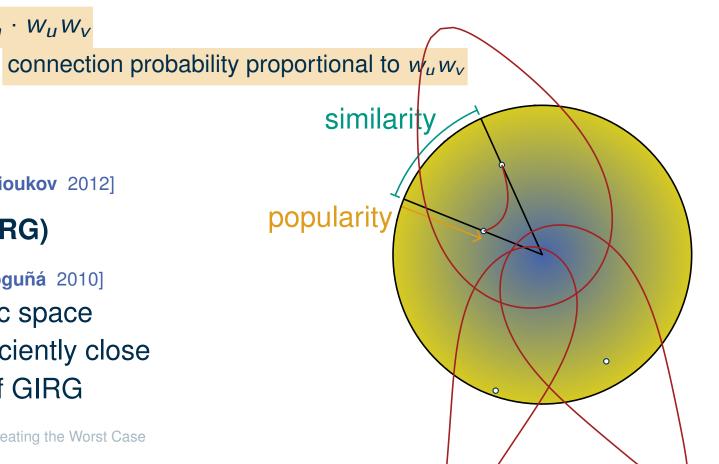
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connecti

Popularity – Similarity

Popularity versus similarity in growing networks
[Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graph (GIRG)

Geometric inhomogeneous random graphs [Bringmann, Keusch, Lengler, 2019]

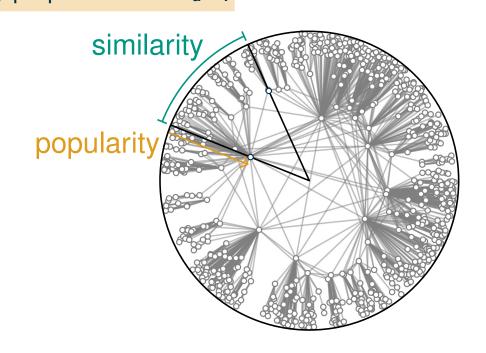
- weights w_1, \ldots, w_n (typically power-law distributed)
- random positions for the vertices (*d*-dimensional ground space)
- edge $\{u, v\}$ if $dist(u, v)^d \le c_n \cdot w_u w_v$ connect if sufficiently close connection probability proportional to $w_u w_v$

Popularity – Similarity

Popularity versus similarity in growing networks [Papadopoulos, Kitsak, Serrano, Boguñá, Krioukov 2012]

Hyperbolic random graphs (HRG)

- random positions in hyperbolic space
- connect vertices that are sufficiently close
- more or less a special case of GIRG



Geometric inhomogeneous random graphs – Details

Weights and positions

- random weights in $[1, \infty)$ with PDF $f(x) = cx^{-\tau}$ or deterministic power-law weights
- typical ground space: d-dimensional torus $[0, 1]^d$ with max-norm

Geometric inhomogeneous random graphs - Details

Weights and positions

- random weights in $[1, \infty)$ with PDF $f(x) = cx^{-\tau}$ or deterministic power-law weights
- typical ground space: d-dimensional torus $[0, 1]^d$ with max-norm

Threshold case (temperature = 0)

- $\{u, v\} \in E \text{ if } \operatorname{dist}(u, v)^d \leq a \frac{w_u w_v}{n}$
- it follows: $\Pr\left[\{u,v\} \in E \mid w_u,w_v\right] = \Pr\left[\operatorname{dist}(u,v) \leq \sqrt[d]{a\frac{w_uw_v}{n}}\right] \in \Theta\left(\frac{w_uw_v}{n}\right)$
- thus: $E[deg(v)] \in \Theta(w_v)$ (formal argument works as for IRGs)

Geometric inhomogeneous random graphs - Details

Weights and positions

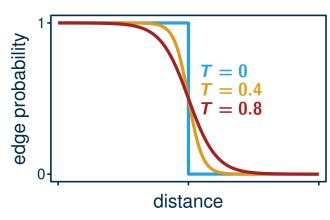
- random weights in $[1, \infty)$ with PDF $f(x) = cx^{-\tau}$ or deterministic power-law weights
- typical ground space: d-dimensional torus $[0, 1]^d$ with max-norm

Threshold case (temperature = 0)

- $\{u, v\} \in E \text{ if } \operatorname{dist}(u, v)^d \leq a \frac{w_u w_v}{n}$
- it follows: $\Pr\left[\{u,v\} \in E \mid w_u,w_v\right] = \Pr\left[\operatorname{dist}(u,v) \leq \sqrt[d]{a\frac{w_uw_v}{n}}\right] \in \Theta\left(\frac{w_uw_v}{n}\right)$
- thus: $\mathsf{E} [\mathsf{deg}(v)] \in \Theta(w_v)$ (formal argument works as for IRGs)

Temperature > 0

- lacksquare additional parameter $T\in(0,1)$
- $= \text{connection probability } p_{uv} = \min \left\{ 1, \left(\frac{1}{\operatorname{dist}(u,v)^d} \cdot a \frac{w_u w_v}{n} \right)^{1/T} \right\}$
- lacktriangle interpolate between high locality (T=0) and low locality (T o 1)



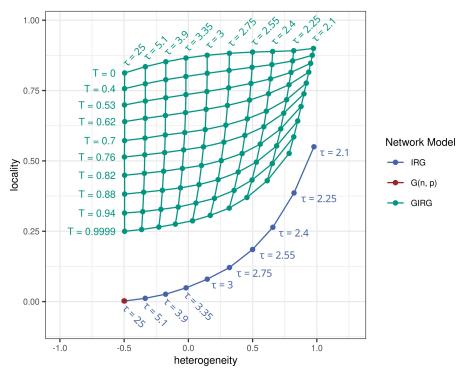
Two parameters

Two parameters

- lacktriangle power-law exponent au
- temperature T

Two parameters

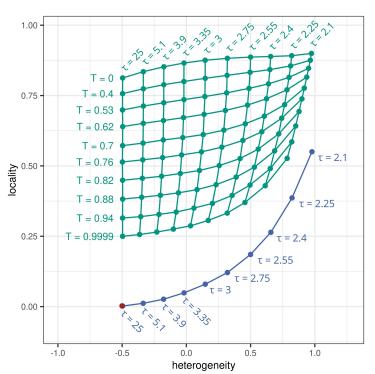
- lacktriangle power-law exponent au
- temperature T

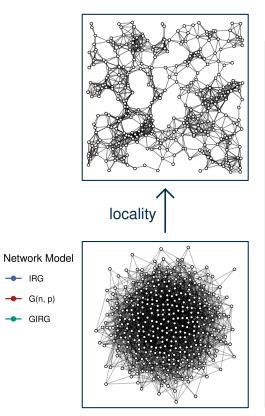


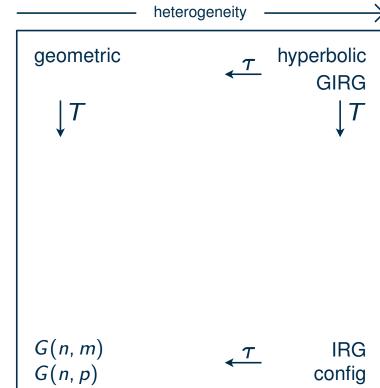
On the external validity of average-case analyses of graph algorithms [B., Fischbeck 2022]

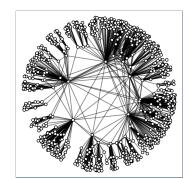
Two parameters

- lacktriangle power-law exponent au
- temperature T









On the external validity of average-case analyses of graph algorithms [B., Fischbeck 2022]

What's next?

Next Week

- present you work on sheet 3
- 5 minutes with slides

Sheet 4

- examine an additional algorithm
- optimize your code and workflow

Afterwards: Project

- Goal: investigate and answer research question
- presentation and written report

