

Beating the Worst Case

Practical Course – 5th Meeting

Jean-Pierre, Marcus

Concepts .

- explain the performance of bi-BFS and VC with graph parameters
- degree distribution
- locality

Concepts ____

- explain the performance of bi-BFS and VC with graph parameters
- degree distribution
- locality

Task ₋

Determine suitable measures for heterogeneity and locality

- can they predict algorithm performance
- analyze 2 other metrics

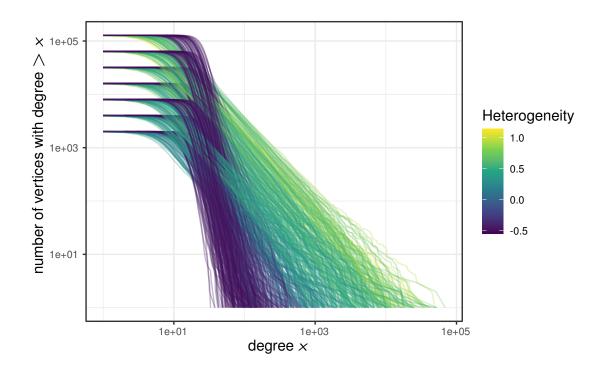
Concepts _____

- explain the performance of bi-BFS and VC with graph parameters
- degree distribution
- locality

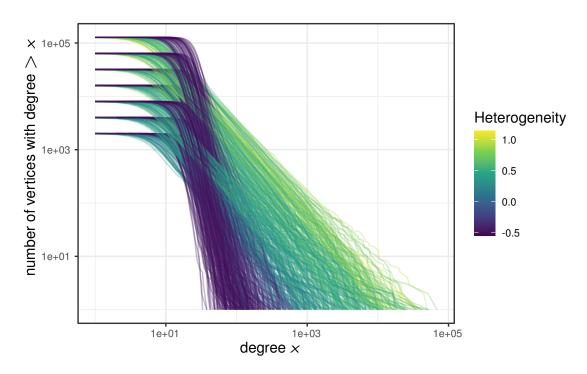
Task _

Determine suitable measures for heterogeneity and locality

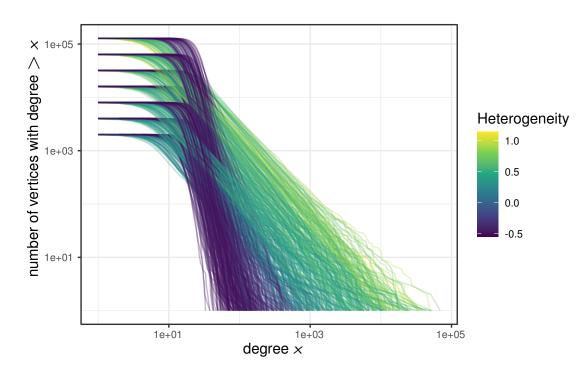
- can they predict algorithm performance
- analyze 2 other metrics


Methods / Tools _____

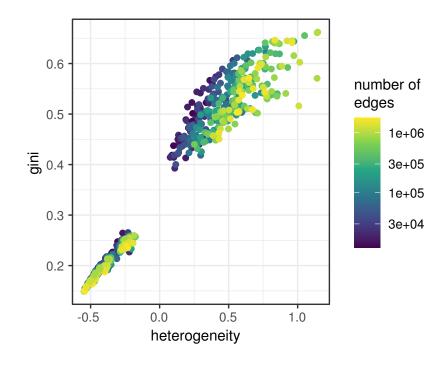
- did you change your experiment setup?
- did you establish a useful pipeline?


Presentations

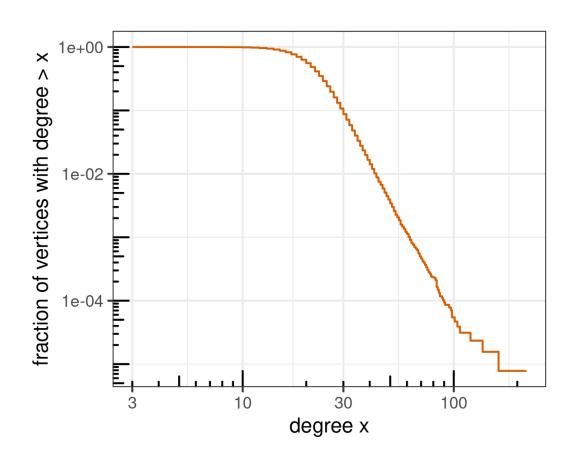
Heterogeneity


Heterogeneity

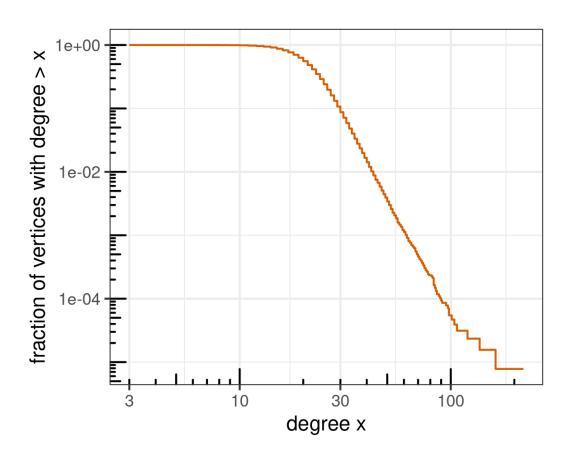
- Compute the standard deviation σ average μ of the degree distribution
- Coefficient of Variation: $\frac{\sigma}{\mu}$
- Heterogeneity: $\log(\frac{\sigma}{\mu})$



Heterogeneity

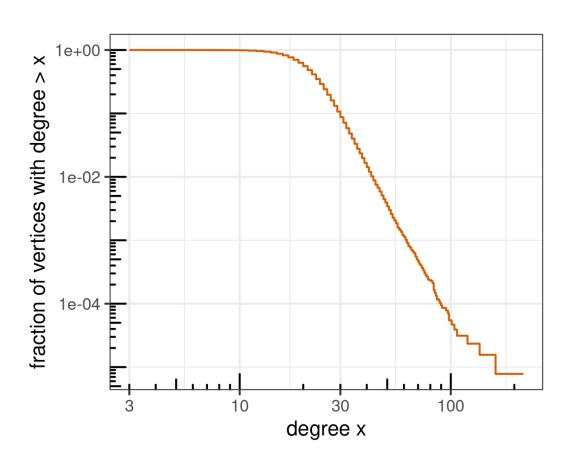


- Coefficient of Variation: $\frac{\sigma}{\mu}$
- Heterogeneity: $\log(\frac{\sigma}{\mu})$

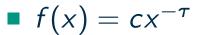


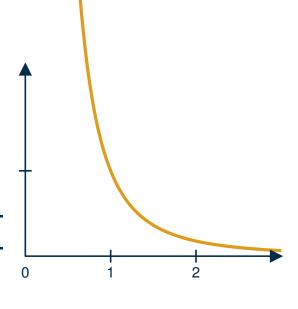
- strong correlation with gini coefficent
- slight dependence on graph size

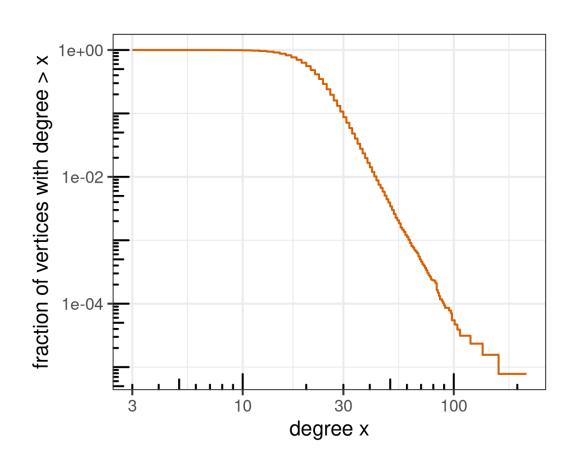


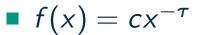


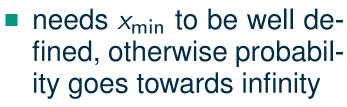
Power-Law Distribution

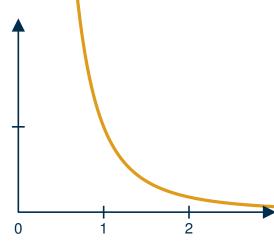

$$f(x) = cx^{-\tau}$$



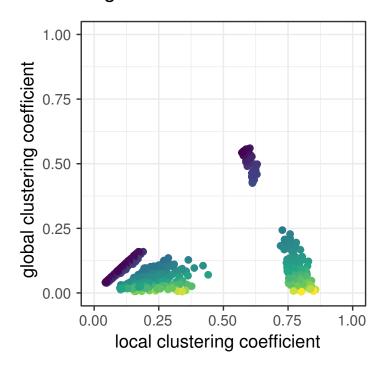

Power-Law Distribution

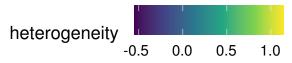

• needs x_{min} to be well defined, otherwise probability goes towards infinity



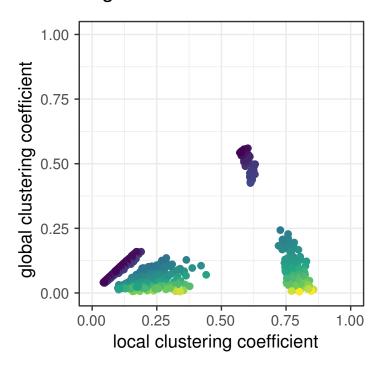


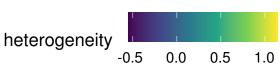
Power-Law Distribution

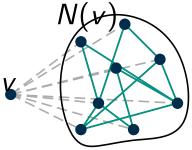




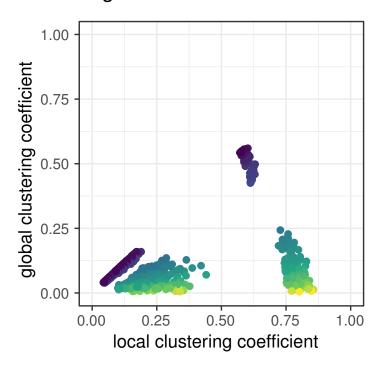
- Distribution follows a power law: it follows f(x) for $x > x_{min}$
 - $x \le x_{\min}$ are irelevant

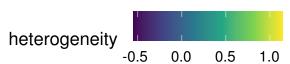

Clustering Coefficient Correlations

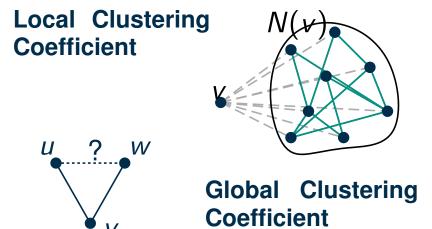




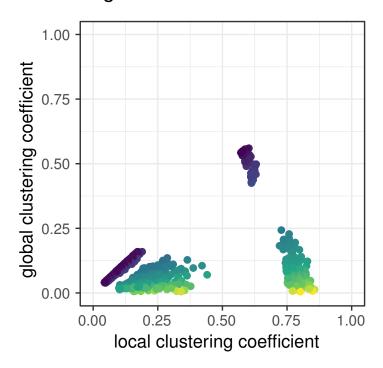
Clustering Coefficient Correlations

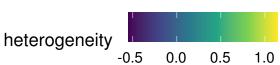



Local Clustering Coefficient



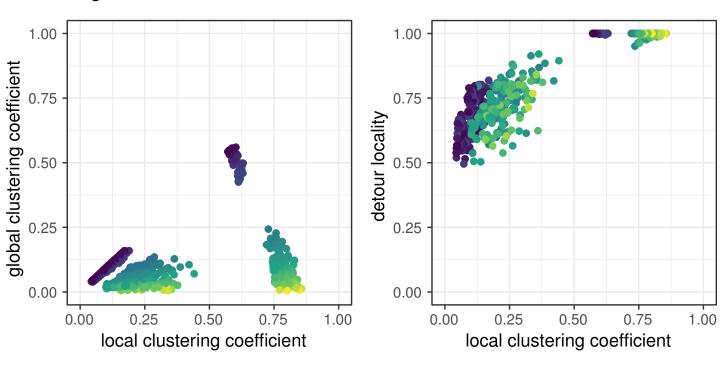
Clustering Coefficient Correlations



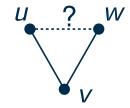


Clustering Coefficient Correlations

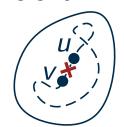
Coefficient

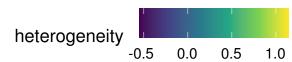

Global Clustering
Coefficient

Coefficient

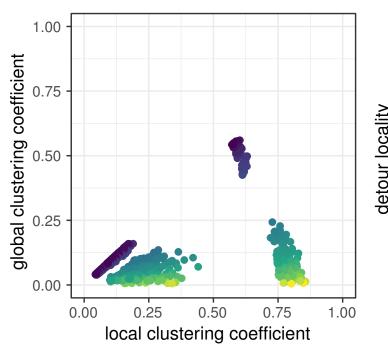

 global clustering coefficent does not work on heterogeneous graphs

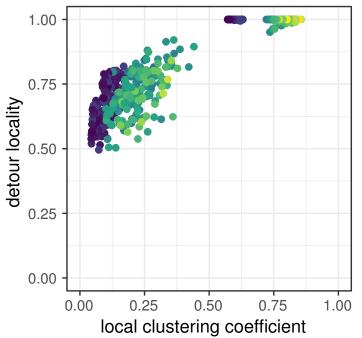
Clustering Coefficient Correlations



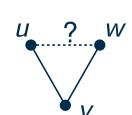

Local Clustering Coefficient

Global Clustering Coefficient

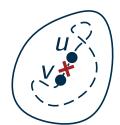


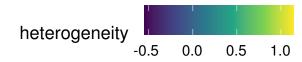


 global clustering coefficent does not work on heterogeneous graphs



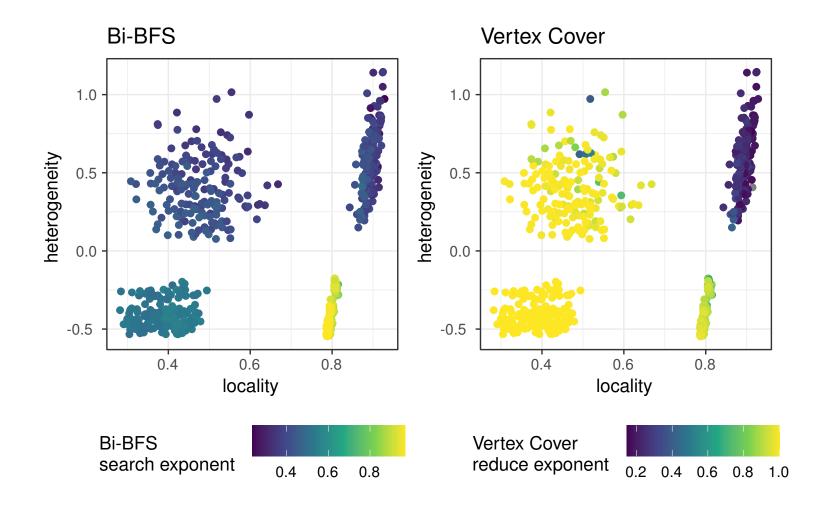
Clustering Coefficient Correlations



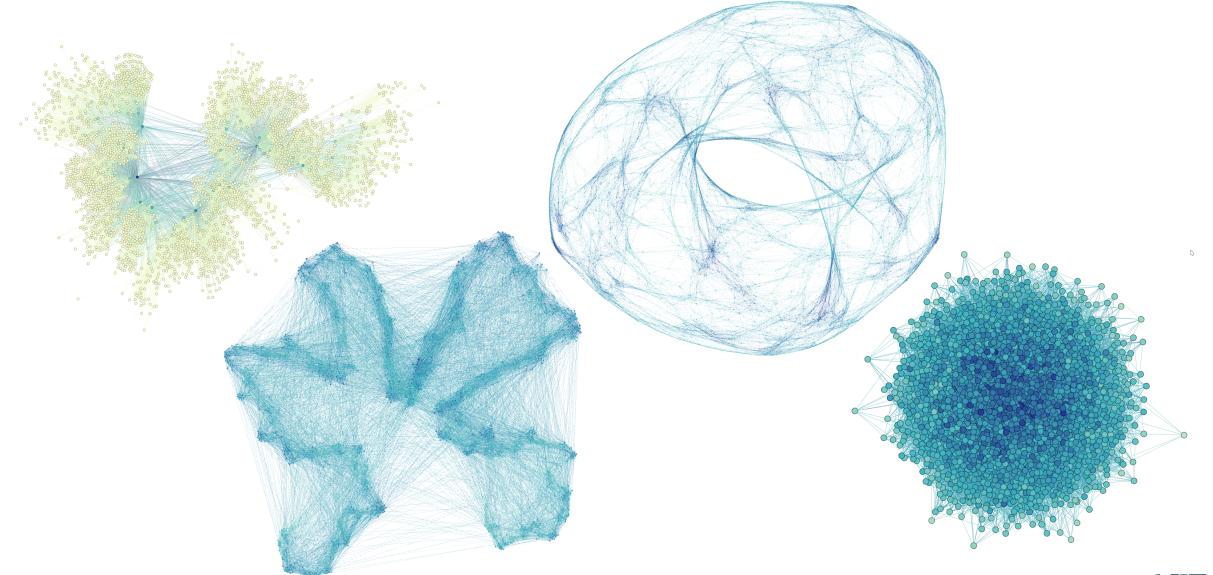

Local Clustering Coefficient

Global Clustering Coefficient

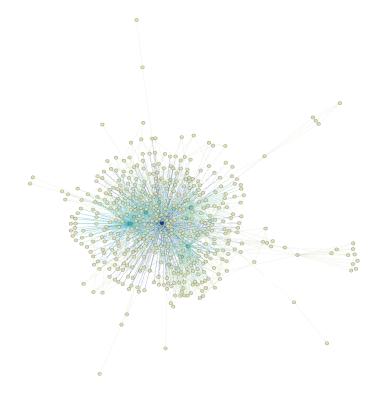
Detour Locality



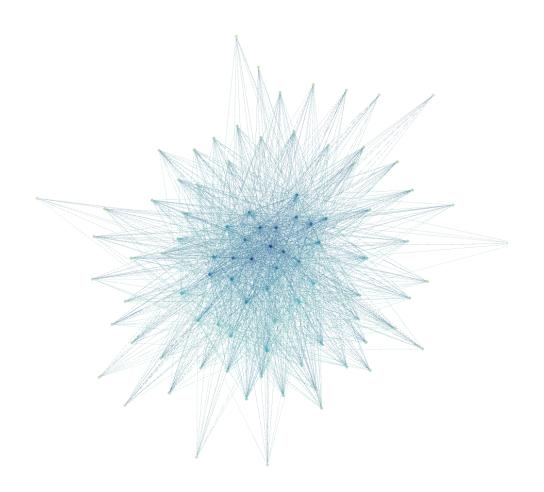
- global clustering coefficent does not work on heterogeneous graphs
- Locality = $\frac{1}{2}$ (local + detour)



Heterogeneity + Locality

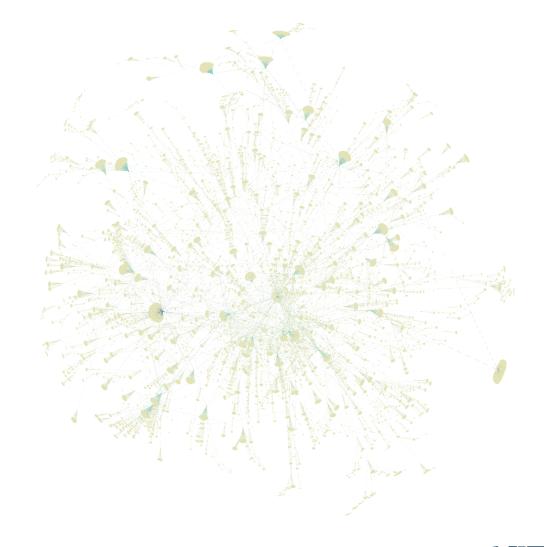


Network Science

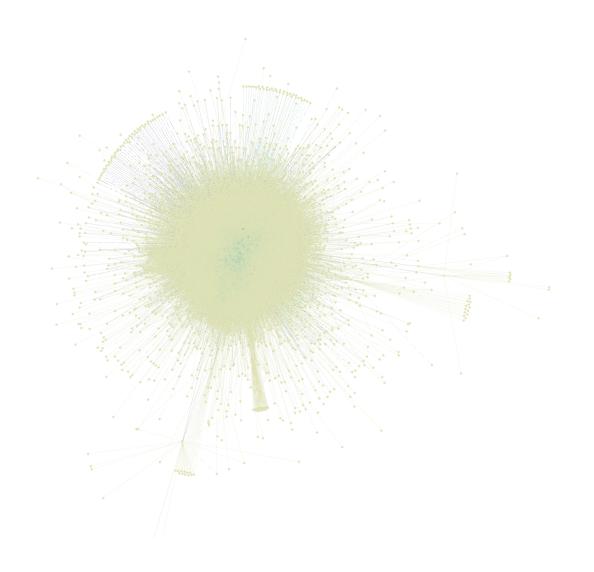


■ bio-celegans

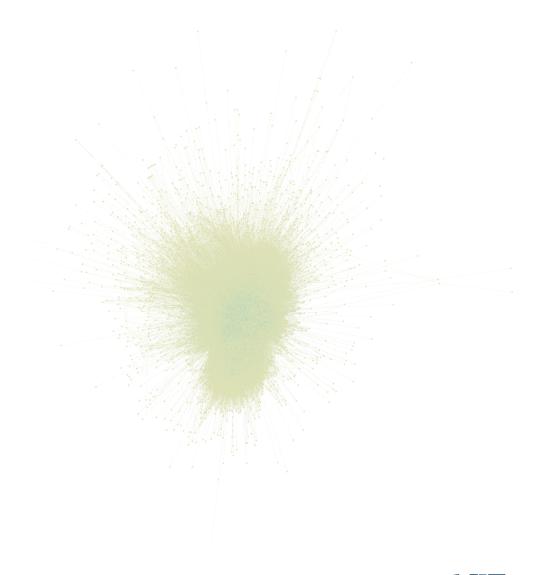
- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1



- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1
- opsahl-powergrid

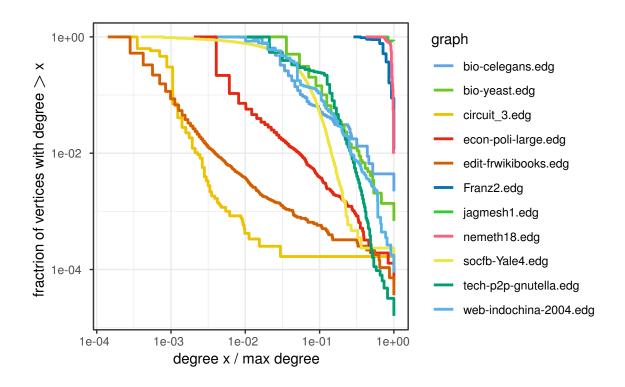


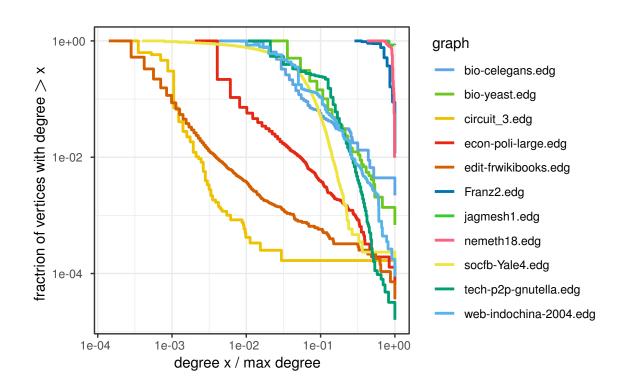
- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1
- opsahl-powergrid
- econ-poli-large

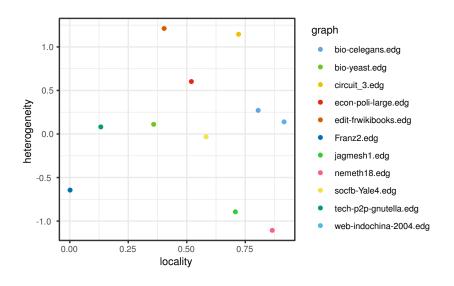


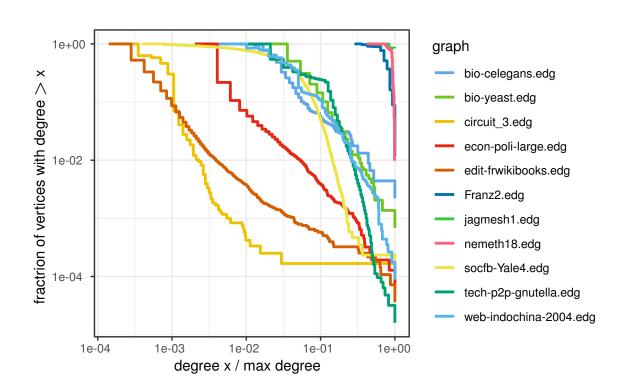
- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1
- opsahl-powergrid
- econ-poli-large
- bio-grid-yeast

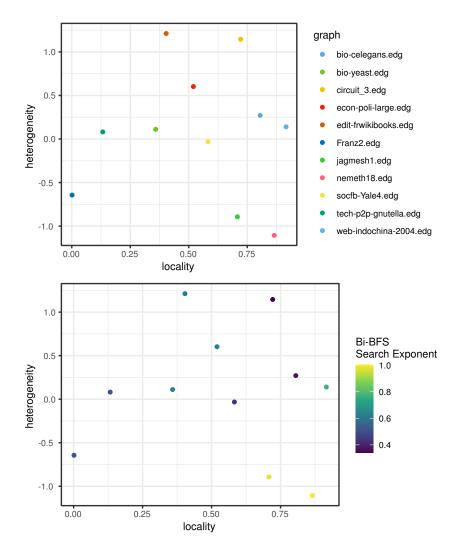
- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1
- opsahl-powergrid
- econ-poli-large
- bio-grid-yeast
- socfb-Yale4




- bio-celegans
- bn-macaque-rhesus_cerebral-cortex_1
- opsahl-powergrid
- econ-poli-large
- bio-grid-yeast
- socfb-Yale4
- bio-yeast-protein-inter







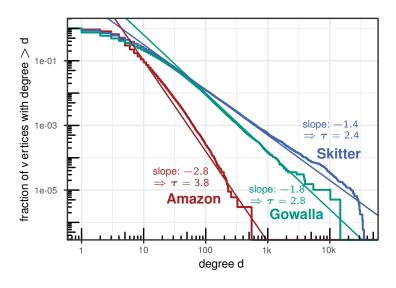
Keyword: complex network, scale-free network

Keyword: complex network, scale-free network

Three Characteristics:

Keyword: complex network, scale-free network

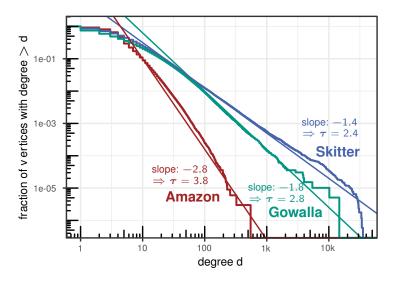
Three Characteristics:


heterogeneous degree distribution

Keyword: complex network, scale-free network

Three Characteristics:

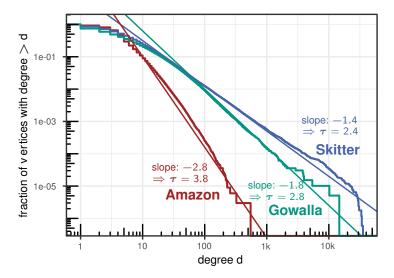
heterogeneous degree distribution



Keyword: complex network, scale-free network

Three Characteristics:

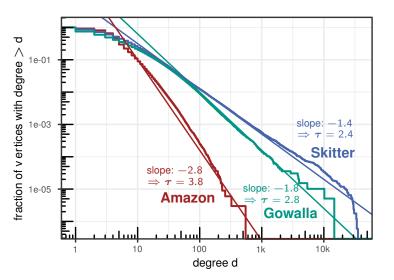
- heterogeneous degree distribution
- short distances / "small-world"



Keyword: complex network, scale-free network

Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"

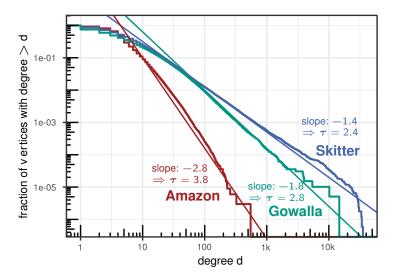

six-degrees of ...

Keyword: complex network, scale-free network

Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"

six-degrees of ...


... Separation

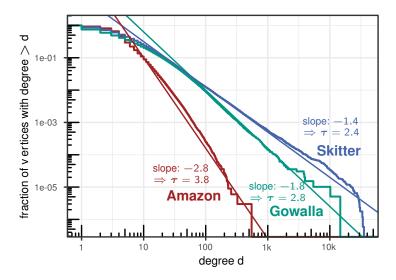
Keyword: complex network, scale-free network

Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"

six-degrees of ...

... Separation


... Wikipedia

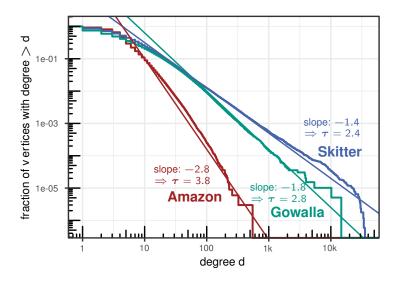
Keyword: complex network, scale-free network

Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"

six-degrees of ...

... Separation


... Wikipedia

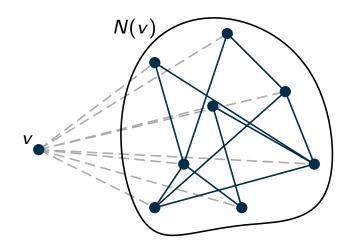
Keyword: complex network, scale-free network

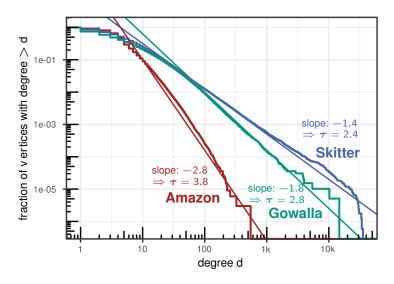
Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"
- high locality / clustering

six-degrees of ...

... Separation


... Wikipedia



Keyword: complex network, scale-free network

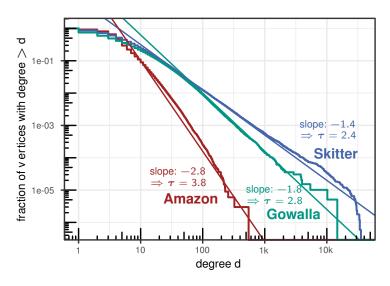
Three Characteristics:

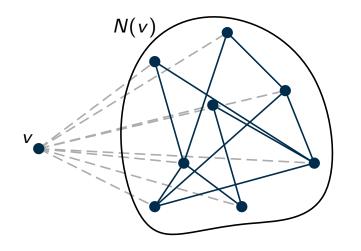
- heterogeneous degree distribution
- short distances / "small-world"
- high locality / clustering

six-degrees of ...

... Separation

... Wikipedia




Keyword: complex network, scale-free network

Three Characteristics:

- heterogeneous degree distribution
- short distances / "small-world"
- high locality / clustering

goal: explain / model

six-degrees of ...

... Separation

... Wikipedia

Goal: model and explain characteristics

Three characteristics:

1959 1923 / 1999 2002 1998 2010 2019

- heterogeneous degrees
- short distances / "small-world"
- high locality / clustering

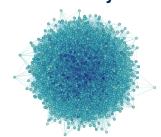
Goal: model and explain characteristics

Three characteristics:

1959 1923 / 1999 2002 1998 2010 2019

- heterogeneous degrees
- short distances / "small-world"
- high locality / clustering

Erdős-Rényi model



Goal: model and explain characteristics

Three characteristics:	ER 1959	1923 / 1999	2002	1998	2010	2019
heterogeneous degrees						
short distances / "small-	world" ✓					
high locality / clustering						

Erdős–Rényi model

12

Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1999	2002	1998	2010	2019
heterogeneous degrees						
short distances / "small-world"	· 🗸					
high locality / clustering						

Erdős–Rényi model

Goal: model and explain characteristics

Three characteristics:

Pref. Attach. / Barabási-Albert

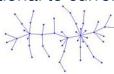
2002

1998


2010

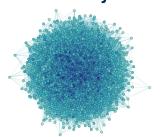
2019

- heterogeneous degrees
- short distances / "small-world"
- high locality / clustering


Preferential Attachment

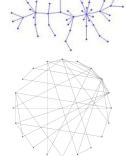
iteratively add vertices, choose edges with probability proportional to current degree

12



Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1999	2002	1998	2010	2019
heterogeneous degrees		✓				
short distances / "small-world"	· 🗸	\checkmark				
high locality / clustering						

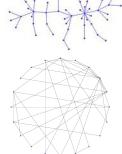

Erdős-Rényi model

12

Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Goal: model and explain characteristics


Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chun 999	g-Lu 2002	1998	2010	2019
heterogeneous degrees		\checkmark					
short distances / "small-world"	· 🗸	✓					
high locality / clustering							

Erdős-Rényi model

Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Goal: model and explain characteristics

ľ	Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 19	Chun	g-Lu 2002	1998	2010	2019
	heterogeneous degrees		\checkmark					
	short distances / "small-world"	\	\checkmark					
	high locality / clustering							

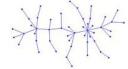
Erdős–Rényi model

Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Chung-Lu / Configuration model

Goal: model and explain characteristics


Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chun 999	g-Lu 2002	1998	2010	2019
heterogeneous degrees		\checkmark					
short distances / "small-world"	· 🗸	✓					
high locality / clustering							

Erdős-Rényi model

Preferential Attachment

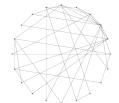
iteratively add vertices, choose edges with probability proportional to current degree

Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-	-Lu 2002	1998	2010	2019
heterogeneous degrees		✓	✓				
short distances / "small-world"	· 🗸	✓	✓				
high locality / clustering							


Erdős-Rényi model

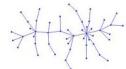
Preferential Attachment

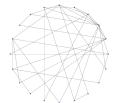
iteratively add vertices, choose edges with probability proportional to current degree

Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics


Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	2010	2019
heterogeneous degrees		\checkmark	\checkmark			
short distances / "small-world"	\	\checkmark	✓			
high locality / clustering						


Erdős-Rényi model

Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

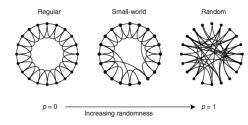
Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 19	Chung-Lu 999 2002	Watts-Strogatz model	2010	2019
heterogeneous degrees		\checkmark	✓			
short distances / "small-world"	\	✓	✓			
high locality / clustering						

Erdős-Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model

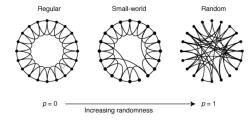
Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j
ight\}\in E
ight]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

TI	hree characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	2010	2019
	heterogeneous degrees		✓	✓			
	short distances / "small-world"	· 🗸	✓	✓	\checkmark		
	high locality / clustering				✓		

Erdős-Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

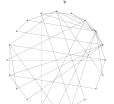
Watts-Strogatz model

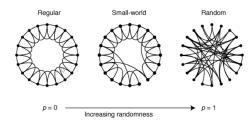
Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	2010	2019
heterogeneous degrees		\checkmark	\checkmark				
short distances / "small-world"	\checkmark	✓	✓	\checkmark			
high locality / clustering				✓			


Erdős-Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model

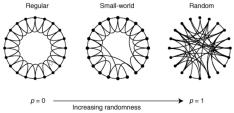
Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

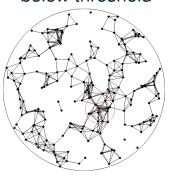
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	2010	2019
heterogeneous degrees		\checkmark	\checkmark				
short distances / "small-world"	' ✓	\checkmark	\checkmark	\checkmark			
high locality / clustering				\checkmark			

Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model



Chung-Lu / Configuration model

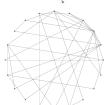
vertices with weights w; (following power-law distribution);

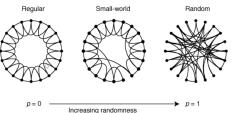
$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Geometric Random Graph

Goal: model and explain characteristics

•	Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	2010	2019
	heterogeneous degrees		✓	✓				
	short distances / "small-world"	\	\checkmark	✓	\checkmark			
	high locality / clustering				✓	✓		


Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model



Chung-Lu / Configuration model

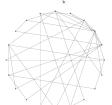
vertices with weights w; (following power-law distribution);

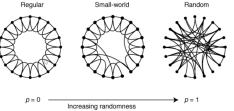
$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Geometric Random Graph

Goal: model and explain characteristics

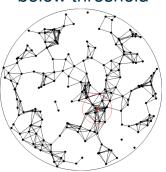
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	2019
heterogeneous degrees		\checkmark	\checkmark				
short distances / "small-world"	\checkmark	✓	✓	✓			
high locality / clustering				✓	✓		


Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model



Chung-Lu / Configuration model

vertices with weights w; (following power-law distribution);

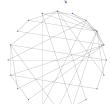
$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Geometric Random Graph

Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	2019
heterogeneous degrees		\checkmark	\checkmark				
short distances / "small-world"	\	✓	✓	✓			
high locality / clustering				✓	✓		

Erdős–Rényi model

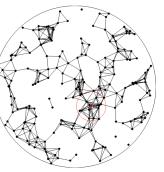


12


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model


Increasing randomness

Chung-Lu / Configuration model

vertices with weights w; (following power-law distribution);

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

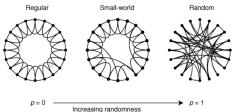
Geometric Random Graph (Hyperbolic)

Goal: model and explain characteristics

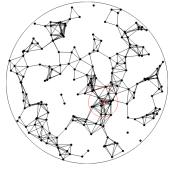
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	2019
heterogeneous degrees		\checkmark	\checkmark				
short distances / "small-world"	· 🗸	✓	\checkmark	\checkmark			
high locality / clustering				✓	\checkmark		

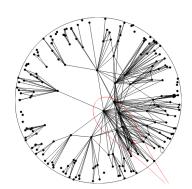
Erdős–Rényi model

12


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree


Watts-Strogatz model



Increasing randomness

Geometric Random Graph (Hyperbolic)

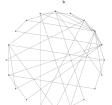
sample vertices uniformly in geometry, connect if distance below threshold

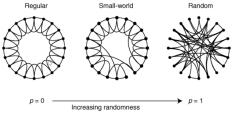
power-law distribution);

 $\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim \frac{w_i\cdot w_j}{W}$

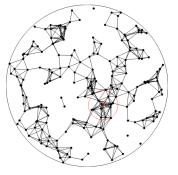
Goal: model and explain characteristics

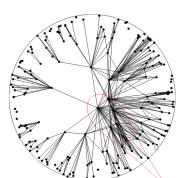
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	2019
heterogeneous degrees		\checkmark	\checkmark			\checkmark	
short distances / "small-world"	\	✓	\checkmark	✓		\checkmark	
high locality / clustering				✓	✓	\checkmark	


Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree


Watts-Strogatz model



Chung-Lu / Configuration model vertices with weights w; (following power-law distribution);

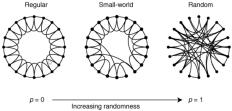
$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Geometric Random Graph (Hyperbolic)

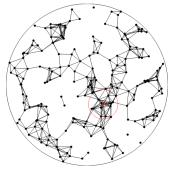
Goal: model and explain characteristics

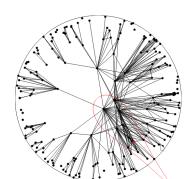
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	GIRG 2019
heterogeneous degrees		\checkmark	\checkmark			\checkmark	
short distances / "small-world"	\	✓	✓	✓		\checkmark	
high locality / clustering				\checkmark	✓	\checkmark	

Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree


Watts-Strogatz model



sample vertices uniformly in geometry, connect if distance

Geometric Random Graph (Hyperbolic)

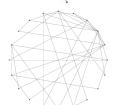
below threshold

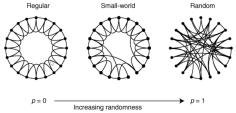
Chung-Lu / Configuration model

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

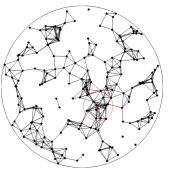
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	GIRG 2019
heterogeneous degrees		\checkmark	\checkmark			\checkmark	
short distances / "small-world"	\checkmark	\checkmark	✓	✓		\checkmark	
high locality / clustering				✓	✓	✓	

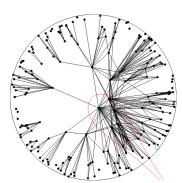

Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model




Chung-Lu / Configuration model / IRG

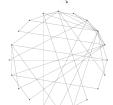
vertices with weights w; (following power-law distribution);

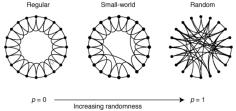
$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{\widetilde{w_i\cdot w_j}}{W}$$

Geometric Random Graph (Hyperbolic)

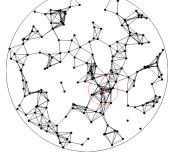
Goal: model and explain characteristics

Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	GIRG 2019
heterogeneous degrees		\checkmark	\checkmark			\checkmark	
short distances / "small-world"	· 🗸	\checkmark	\checkmark	\checkmark		\checkmark	
high locality / clustering				✓	✓	✓	

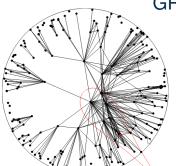

Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree



Watts-Strogatz model



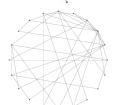
Geometric Random Graph (Hyperbolic)

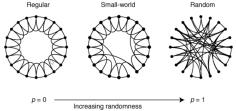
sample vertices uniformly in geometry, connect if distance below threshold

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Goal: model and explain characteristics

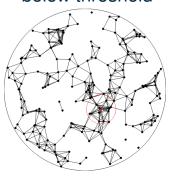
Three characteristics:	ER 1959	Pref. Attach. / Barabási-Albert 1923 / 1	Chung-Lu 999 2002	Watts-Strogatz model	GRG	HRG 2010	GIRG 2019
heterogeneous degrees		\checkmark	\checkmark			\checkmark	\checkmark
short distances / "small-world"	\checkmark	\checkmark	✓	✓		\checkmark	✓
high locality / clustering				✓	✓	\checkmark	\checkmark


Erdős–Rényi model


Preferential Attachment

iteratively add vertices, choose edges with probability proportional to current degree

Watts-Strogatz model


Chung-Lu / Configuration model / IRG

vertices with weights w; (following power-law distribution);

$$\Pr\left[\left\{e_i,e_j\right\}\in E\right]\sim rac{w_i\cdot w_j}{W}$$

Geometric Random Graph (Hyperbolic)

sample vertices uniformly in geometry, connect if distance below threshold

GIRG

Generated Graphs

Generated Graphs

- select multiple random models to generate graphs
- can you determine, how we generated the initial test set?

Generated Graphs

- select multiple random models to generate graphs
- can you determine, how we generated the initial test set?

Generated Graphs

- select multiple random models to generate graphs
- can you determine, how we generated the initial test set?

- select several real-world graphs
- do the real-world graphs behave similar to the generated graphs?

Generated Graphs

- select multiple random models to generate graphs
- can you determine, how we generated the initial test set?

- select several real-world graphs
- do the real-world graphs behave similar to the generated graphs?

Generated Graphs

- select multiple random models to generate graphs
- can you determine, how we generated the initial test set?

- select several real-world graphs
- do the real-world graphs behave similar to the generated graphs?

- How fast are Bi-BFS and VC on the new graphs?
- What is the heterogeneity and locality of the new graphs?
- How do graphs with high heterogeneity and low locality look like?

