
Computational Geometry
Summer Term 2025
scale.iti.kit.edu

Exercise Sheet 3
Submission due by 2025-06-19

Problem 1: Pizza-Guillotine 𝟓 + 𝟓 + 𝟓 = 𝟏𝟓 points

Many students complain that the local pizzeria delivers their baked goods uncut. To improve
customer satisfaction, the pizza-cutting process is to be automated. A first prototype is a pizza
guillotine. It contains an infinitely long blade that can in principle be freely translated and rotated
in the plane, and then brought down onto the pizza. However, since the prototype is still in its
early stages, the blade’s orientation can only be changed using the Reset command, which sets
the blade to a randomly chosen translation and orientation.

Part (a) To still be able to work with the prototype, the pizzeria agreed upon the following
approach: First, it is tested whether the current blade orientation is unsuitable. If it is, a Reset
is performed and the process is repeated. Otherwise, the cut is made. Since this process may be
performed frequently, the test must be fast!

Unfortunately, it can happen that the blade, in its current orientation, is poorly positioned or
even misses the pizza entirely. In this case, a new orientation must be tried via Reset. A pizza is
represented as a convex polygon with 𝑛 points. Provide an algorithm that, after(𝑛) preprocessing
time, can determine in (log 𝑛) time for a given blade orientation which points on the edge of the
pizza the blade intersects.

Part (b) To save even more time, the oven and blade are to be combined so that the pizza is baked
while it is being cut! For cost reasons, however, only one side of the blade can be equipped with
the oven functionality.

1 please turn over

https://scale.iti.kit.edu/teaching/2025ws/comput_geom/

There are 𝑛 ingredients on the pizza, represented by the points 𝑝1, … , 𝑝𝑛. In order to ensure, that
they are not exposed to the heat multiple times, for each potential cut it must be determined which
𝑘 ingredients lie on the oven side of the blade.

p5

p6

p9p1

p2
p3 p4

p7 p8

Provide an algorithm that, using the algorithm from part (a), can determine the 𝑘 ingredients on
the oven side of the blade in (log 𝑛 + 𝑘). The algorithm can use (𝑛) preprocessing time.

Note: You may assume that the input is given as the nested convex hull of the points 𝑝1, … , 𝑝𝑛. This
nested convex hull is obtained by first computing the convex hull of all points, and then iteratively
computing the convex hull of points not included in any previously computed convex hull.

Part (c) One final issue in this (otherwise optimal) approach is the lifespan of the blade, which
is heavily affected by the acidity of the tomato sauce. Now it should be taken into account that
the sauce is “distributed” on the pizza by a robot, which pours it in the form of a polygonal chain
consisting of 𝑛 points. If the blade intersects the sauce too much, a new orientation must be tried
via Reset.

Provide an algorithm that, using the algorithm from part (a), can determine the 𝑘 intersection
points of the blade with the polygonal chain in ((𝑘 + 1) log(𝑛/(𝑘 + 1))) time. The algorithm can
use (𝑛 log 𝑛) preprocessing time.

2

Problem 2: Half 2D RangeQueries 𝟓 points

Given are points 𝑝1, … , 𝑝𝑛 ∈ ℝ
2 sorted by their 𝑥-coordinates. A data structure to efficiently answer

half-range queries divides the plane into cells. From each point 𝑝𝑖, a vertical ray is shot upward,
and then horizontal line segments are inserted from 𝑝𝑖 to the nearest rays on both sides whose
starting points have smaller y-coordinates than 𝑝𝑖 itself.

p1

p2

p3
p4

p5

p6
p7

p8

p9

x

y

Provide an algorithm that constructs the geometric graph representing this data structure in (𝑛)
time. Prove that your algorithm does not exceed this time complexity.

Problem 3: Range-Tree Implementation 𝟓 bonus points

In this optional exercise, you have the opportunity to implement a range tree as seen in the lecture.
The points you collect in this exercise do not count towards the total points of this sheet, but can be
used to compensate for missing points on this or another sheet.

Implement a 2D range tree using a programming language of your choice. The construction time
should be in (𝑛 log2 𝑛), and the query time should be in (log2(𝑛) + 𝑘) per query. You should
need no optimizations to solve our test cases, but you can implement optimizations (from the
lecture or other sources) if you like.

Briefly explain in your submission how you implemented the range tree, e.g. which internal
data structures are you using and which optimizations have you implemented. Further, put your
solutions in the .pdf document using the format that is explained below, and submit your code as
a separate file.

You can find our test cases as a .zip file on our website. It contains two folders: sample contains
test cases with solutions and test only contains test cases. Submit your solutions for the test cases
in the test folder.

Input format: The first line consists of two numbers, 𝑛 and 𝑞, the number of points and the
number of queries. In each of the next 𝑛 lines, the 𝑥-coordinate and the 𝑦-coordinate of a point
are given. Both are integers. Note that there might be multiple points with the same coordinates.

3 please turn over

The next 𝑞 lines consist of four integers min𝑥 , max𝑥 , min𝑦 , max𝑦 each describing a rectangular
query.

Output format: For each query, we are looking for all points (𝑥, 𝑦) with min𝑥 ≤ 𝑥 ≤ max𝑥 and
min𝑦 ≤ 𝑦 ≤ max𝑦 . Since this set can be very large, we compress the solution in the following way:
Let 𝑃𝑖 be the set of points within the given rectangle of query 𝑖. Compute three numbers for query
𝑖: |𝑃𝑖|, the size of the solution, 𝑥𝑖 = (∑

(𝑥,𝑦)∈𝑃𝑖
𝑥) mod (10

9
+7), the sum over all 𝑥-coordinates in 𝑃𝑖

modulo 109 + 7, and 𝑦𝑖 = (∑
(𝑥,𝑦)∈𝑃𝑖

𝑦) mod (10
9
+ 7), the sum over all 𝑦-coordinates in 𝑃𝑖 modulo

10
9
+ 7.

The output for a test case only consists of three numbers: The sum over all |𝑃𝑖| (modulo 10
9
+ 7),

the sum over all 𝑥𝑖 (modulo 109 + 7), and the sum over all 𝑦𝑖 (modulo 109 + 7). We use the modulo
to avoid any overflows (do not apply it too late in your calculations).

4

	Pizza-Guillotine 5 + 5 + 5 = 15 points
	
	
	

	Half 2D Range Queries 5 points
	Range-Tree Implementation 5 bonus points

