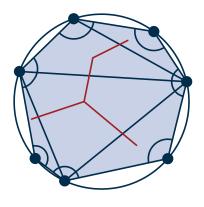


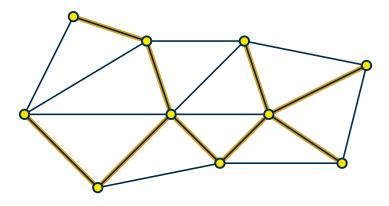
Computational Geometry

Exercise 6 Assignment 5, 6 and Greedy Routing in Hyperbolic Geometry

Jean-Pierre, Marcus, Wendy



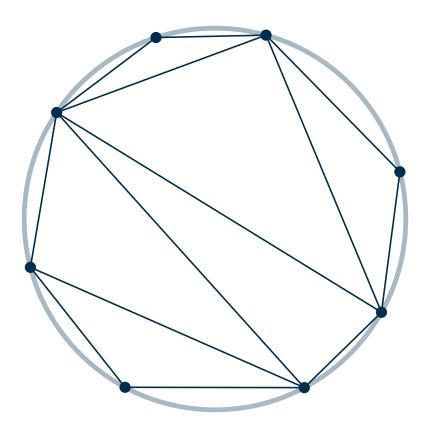
 Find optimal triangulation (smallest angle vector) $MST \subseteq Delaunay$



Prove that an MST is a subset of the Delaunay triangulation

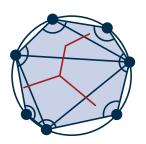
Foldability of Mountain/Valley Patterns

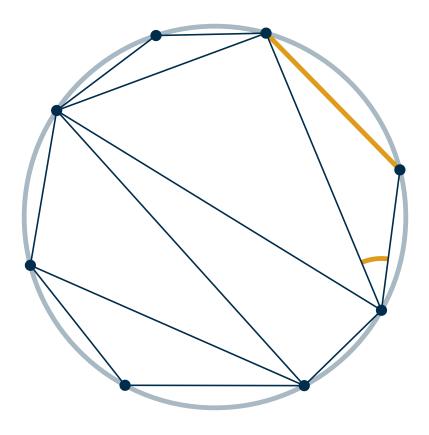
• test foldability in O(n)



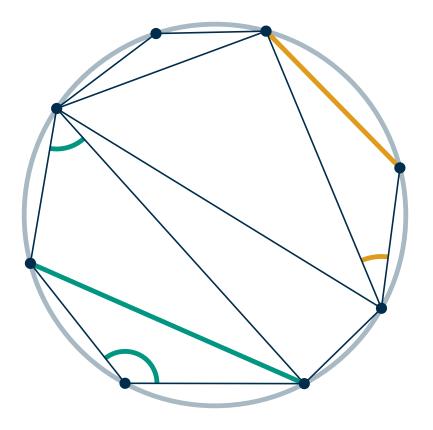
Vector of angles is optimized ⇔ Vector of lengths is optimized

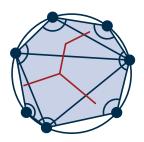
Every polygon edge has one opposite angle





- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle





- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length

Vector of angles is optimized ⇔ Vector of lengths is optimized

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant. Consider first entry where two length vectors differ

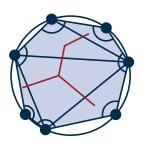
3

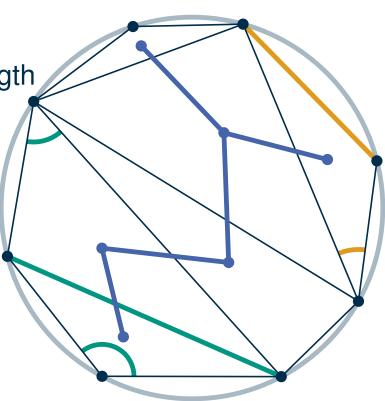
Vector of angles is optimized ⇔ Vector of lengths is optimized

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant. Consider first entry where two length vectors differ

Weak dual is path

• Triangluation has n - 2 triangles and n - 3 cords \Rightarrow Tree





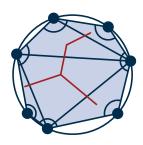
Vector of angles is optimized ⇔ Vector of lengths is optimized

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant.
 Consider first entry where two length vectors differ

Weak dual is path

3

- Triangluation has n 2 triangles and n 3 cords \Rightarrow Tree
- Vertex with degree $3 \Rightarrow$ find larger internal edges

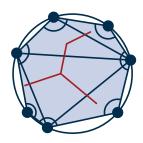


Vector of angles is optimized ⇔ Vector of lengths is optimized

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant.
 Consider first entry where two length vectors differ

Weak dual is path

- Triangluation has n 2 triangles and n 3 cords \Rightarrow Tree
- Vertex with degree $3 \Rightarrow$ find larger internal edges

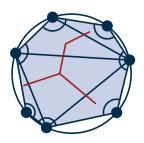


Vector of angles is optimized ⇔ Vector of lengths is optimized

- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant.
 Consider first entry where two length vectors differ

Weak dual is path

- Triangluation has n 2 triangles and n 3 cords \Rightarrow Tree
- Vertex with degree $3 \Rightarrow$ find larger internal edges
- If the starting points of the path are know, it is easy to extend it



Vector of angles is optimized ⇔ Vector of lengths is optimized

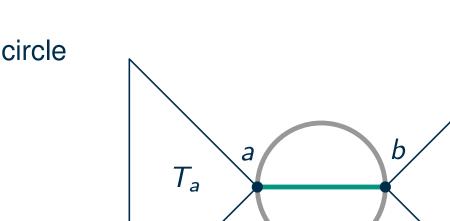
- Every polygon edge has one opposite angle
- Every internal edge has a small and large opposing angle
- Generalized Thales: angle is only dependent on the edge length
- The smaller angle is monotone in the internal edge length
- Polygon edges are irrelevant.
 Consider first entry where two length vectors differ

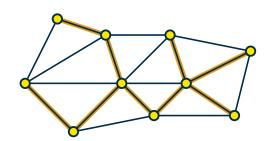
Weak dual is path

- Triangluation has n 2 triangles and n 3 cords \Rightarrow Tree
- Vertex with degree $3 \Rightarrow$ find larger internal edges
- If the starting points of the path are know, it is easy to extend it
- The starting points will be two out of the three largest ears
 - an *ear* is an internal edge, that touches two polygon edges

$MST \subseteq Delaunay$

Let *ab* be an edge of the MST, consider the smallest circle touching a and b

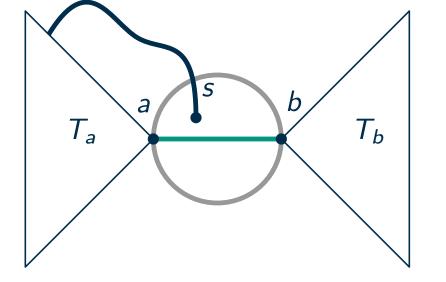


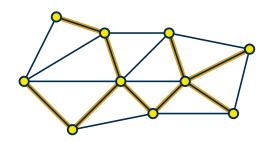


 T_b

$\mathsf{MST} \subseteq \mathsf{Delaunay}$

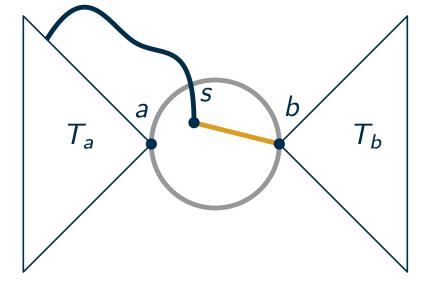
- Let *ab* be an edge of the MST, consider the smallest circle touching a and b
- The circle is empty, otherwise we can find a smaller MST
 - assume s is in the circle and $s \in T_a$

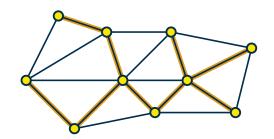




$\mathsf{MST} \subseteq \mathsf{Delaunay}$

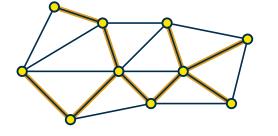
- Let *ab* be an edge of the MST, consider the smallest circle touching a and b
- The circle is empty, otherwise we can find a smaller MST
 - assume s is in the circle and $s \in T_a$
 - connect *sb* and remove *ab*

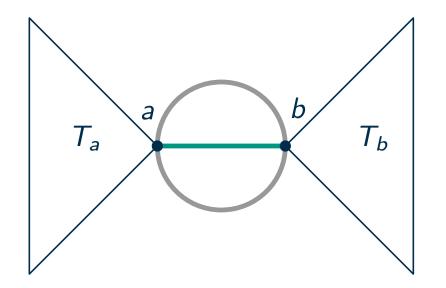




$MST \subseteq Delaunay$

- Let *ab* be an edge of the MST, consider the smallest circle touching a and b
- The circle is empty, otherwise we can find a smaller MST
 - assume s is in the circle and $s \in T_a$
 - connect sb and remove ab
- Empty circle \Rightarrow *ab* is in delauney triangulation
 - blow up circle until third point is hit



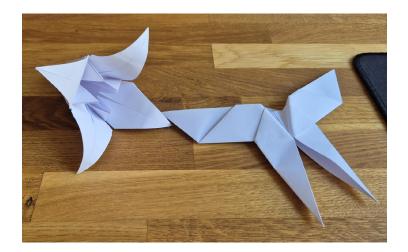


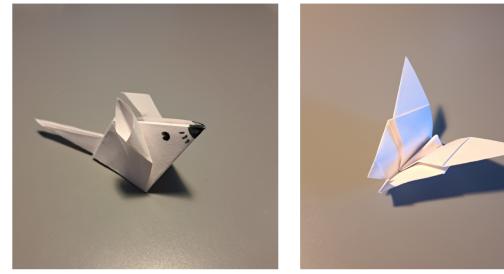
Your Submissions

μ.

Figure 4: Even the paper pelican can hold things in its beak.

Your Submissions





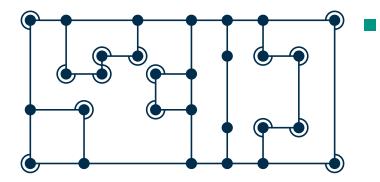
(a) Mouse

(b) Butterfly

Figure 3: Origami eines Otters



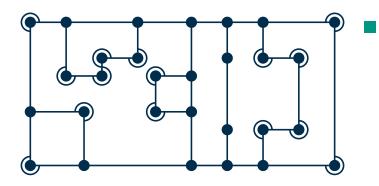
Bend and Behold



Show that it is NP-hard to decide, whether a drawing exists with few $\frac{3}{2}\pi$ angles

Assignment 6

Bend and Behold



Show that it is NP-hard to decide, whether a drawing exists with few $\frac{3}{2}\pi$ angles

 2^{ℓ_L}

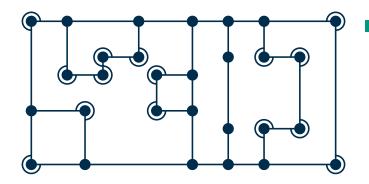
Nice (*h*, *b*)-Decomposition

 2^{ℓ_R}

- Find $B \subseteq S$ of size $\mathcal{O}(b)$
- Endpoints from elements in B are close or few segments inbetween
- *Discrete* version \tilde{B} (enpoints are multiples of $2^{\ell_L h}$)

Assignment 6

Bend and Behold

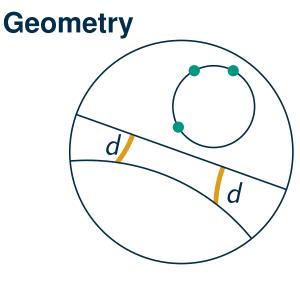


Show that it is NP-hard to decide, whether a drawing exists with few $\frac{3}{2}\pi$ angles

Nice (*h*, *b*)-Decomposition

 2^{ℓ_R}

- Find $B \subseteq S$ of size $\mathcal{O}(b)$
- Endpoints from elements in B are close or few segments inbetween
- *Discrete* version \tilde{B} (enpoints are multiples of $2^{\ell_L h}$)



- Draw line with distance d to other line
- How many circles lie on 3 points?
- For points A, B, C there is no point D in ABC⁺ with same distance to A and B

2lL

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios

Many graphs have some form of hidden geometry

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph

Road network

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph
 Road network obvious geometry

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph
 Road network obvious geometry
 - We can try to predict future edges Social network hidden geometry

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph
 Road network obvious geometry
 - We can try to predict future edges Social network hidden geometry
 - Classify nodes by clustering them Bots in social interaction graph

Many graphs have some form of hidden geometry

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph
 Road network obvious geometry
 - We can try to predict future edges Social network hidden geometry
 - Classify nodes by clustering them Bots in social interaction graph
 - Greedy Routing

Internet graph

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - Road network obvious geometry We can draw the graph
 - Social network We can try to predict future edges
 - Classify nodes by clustering them
 - Greedy Routing
 - Natural Language processing

- hidden geometry
- Bots in social interaction graph
 - Internet graph
 - Word graph

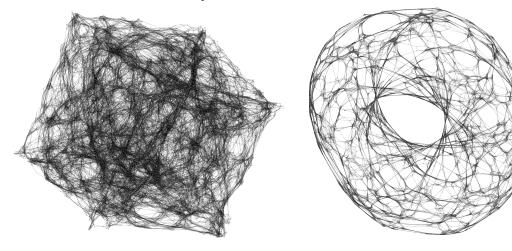
Many graphs have some form of hidden geometry

- Embedding: Input is a Graph; output is a position for every vertex
- Finding this geometry, is useful for various scenarios
 - We can draw the graph
 Road network **obvious geometry**
 - We can try to predict future edges Social network hidden geometry
 - Classify nodes by clustering them Bots in social interaction graph
 - Greedy Routing
 - Natural Language processing
- Internet graph
- Word graph

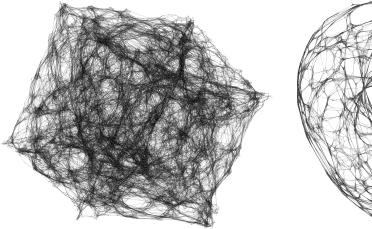
Many important questions

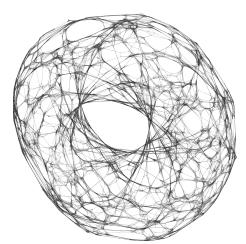
- What is the right embedding space/dimension?
- How can we measure the quality of an embedding?
- What problems can our embedding solve?

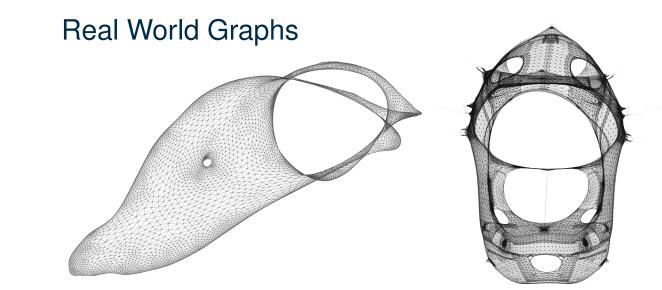
Generated Graphs



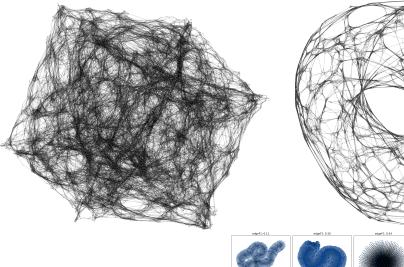
Generated Graphs

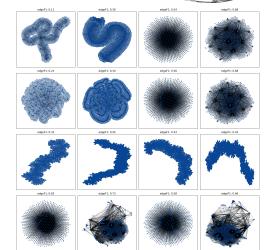






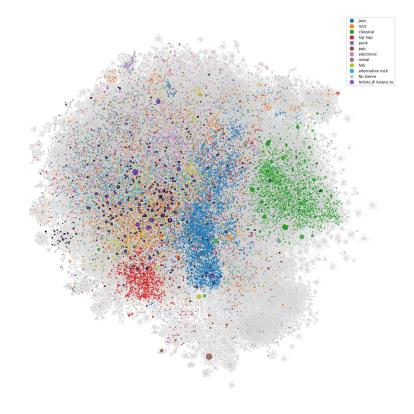
Generated Graphs

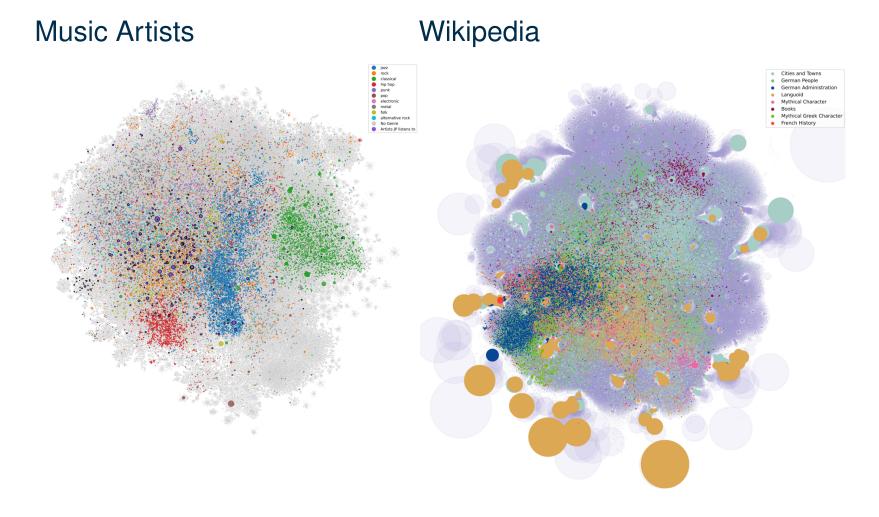


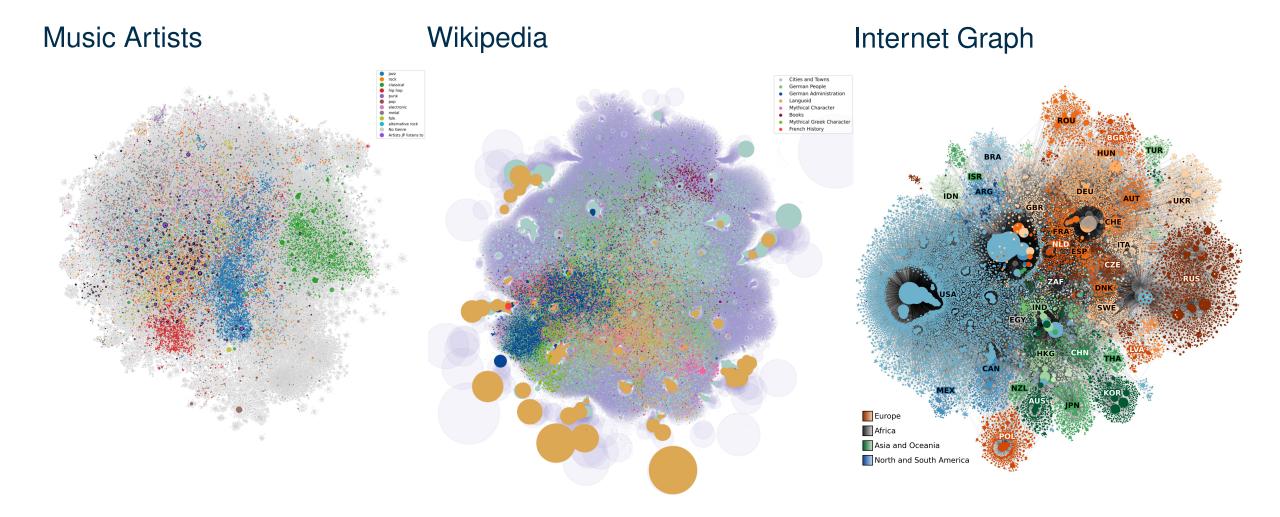


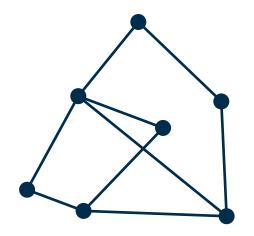
Real World Graphs SAT-Instances

Music Artists



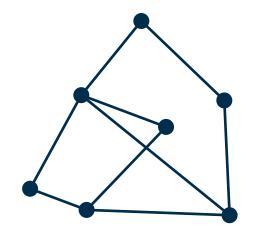






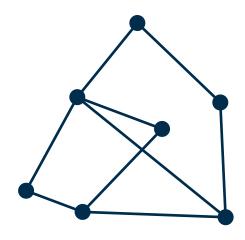
Greedy Routing

• **Given**: 2*d* drawing of *G*, **Goal**: move from *s* to *t*



Greedy Routing

- Given: 2*d* drawing of *G*, Goal: move from *s* to *t*
- Strategy: at every step, select neighbour that minimizes the Euclidean distance to t the most
- successful, if we eventually reacht t
- unsuccessful, if we get stuck in a dead end

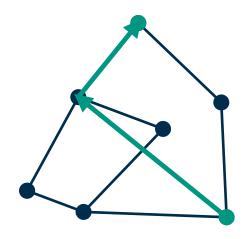


Greedy Routing

- **Given**: 2*d* drawing of *G*, **Goal**: move from *s* to *t*
- Strategy: at every step, select neighbour that minimizes the Euclidean distance to t the most
- successful, if we eventually reacht t
- unsuccessful, if we get stuck in a dead end

Greedy Embedding

- 2d drawing of a graph
- for every pair of vertices, greedy routing is successful

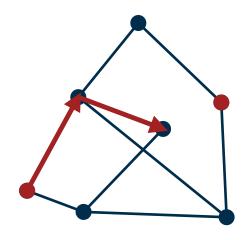


Greedy Routing

- **Given**: 2*d* drawing of *G*, **Goal**: move from *s* to *t*
- Strategy: at every step, select neighbour that minimizes the Euclidean distance to t the most
- successful, if we eventually reacht t
- unsuccessful, if we get stuck in a dead end

Greedy Embedding

- 2d drawing of a graph
- for every pair of vertices, greedy routing is successful

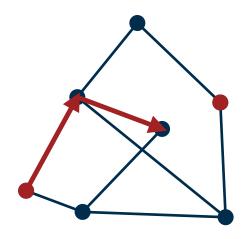


Greedy Routing

- **Given**: 2*d* drawing of *G*, **Goal**: move from *s* to *t*
- Strategy: at every step, select neighbour that minimizes the Euclidean distance to t the most
- successful, if we eventually reacht t
- unsuccessful, if we get stuck in a dead end

Greedy Embedding

- 2d drawing of a graph
- for every pair of vertices, greedy routing is successful



Greedy Routing

- **Given**: 2*d* drawing of *G*, **Goal**: move from *s* to *t*
- Strategy: at every step, select neighbour that minimizes the Euclidean distance to t the most
- successful, if we eventually reacht t
- unsuccessful, if we get stuck in a dead end

Greedy Embedding

- 2d drawing of a graph
- for every pair of vertices, greedy routing is successful

Does every graph have a greedy embedding in the Euclidean plane?

How about the hyperbolic plane?

Can you find counterexamples?

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

An embedding of a tree is permissible if and only if the perpendicular bisector of every edge separates the tree into two components.

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

An embedding of a tree is permissible if and only if the perpendicular bisector of every edge separates the tree into two components.

A 7 star does not have a 2*d*-Euclidean greedy embedding

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

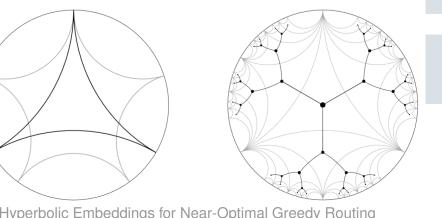
An embedding of a tree is permissible if and only if the perpendicular bisector of every edge separates the tree into two components.

A 7 star does not have a 2*d*-Euclidean greedy embedding

Every tree has a 2*d*-hyperbolic greedy embedding

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

An embedding of a tree is permissible if and only if the perpendicular bisector of every edge separates the tree into two components.



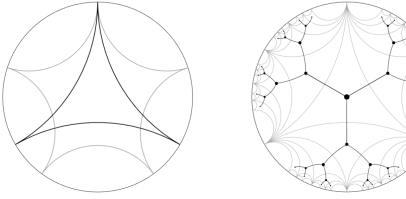
A 7 star does not have a 2d-Euclidean greedy embedding

Every tree has a 2*d*-hyperbolic greedy embedding

Hyperbolic Embeddings for Near-Optimal Greedy Routing

A greedy embedding is permissable if and only if for every $t \neq s$, there is a neighbor of *s* that is closer to *t* then *s*.

An embedding of a tree is permissible if and only if the perpendicular bisector of every edge separates the tree into two components.



Every tree has a 2*d*-hyperbolic greedy embedding

A 7 star does not have a 2d-Euclidean greedy embedding

Is every graph embeddable in hyperbolic space?

Hyperbolic Embeddings for Near-Optimal Greedy Routing

12

