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Computational Geometry
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Exercise 6 Assignment 5, 6 and Greedy Routing in Hyperbolic Geometry
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Assignment 5

Triangulation of Co-Circular Points

Foldability of Mountain/Valley Patterns

test foldability in O(n)

Find optimal triangulation
(smallest angle vector)

MST ⊆ Delaunay

Prove that an MST is a subset
of the Delaunay triangulation
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Triangulation of Co-Circular Points

Vector of angles is optimized ⇔ Vector of lengths is optimized
Every polygon edge has one opposite angle
Every internal edge has a small and large opposing angle
Generalized Thales: angle is only dependent on the edge length
The smaller angle is monotone in the internal edge length
Polygon edges are irrelevant.
Consider first entry where two length vectors differ
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Weak dual is path
Triangluation has n − 2 triangles and n − 3 cords ⇒ Tree



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Triangulation of Co-Circular Points

Vector of angles is optimized ⇔ Vector of lengths is optimized
Every polygon edge has one opposite angle
Every internal edge has a small and large opposing angle
Generalized Thales: angle is only dependent on the edge length
The smaller angle is monotone in the internal edge length
Polygon edges are irrelevant.
Consider first entry where two length vectors differ

Weak dual is path
Triangluation has n − 2 triangles and n − 3 cords ⇒ Tree
Vertex with degree 3 ⇒ find larger internal edges



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Triangulation of Co-Circular Points

Vector of angles is optimized ⇔ Vector of lengths is optimized
Every polygon edge has one opposite angle
Every internal edge has a small and large opposing angle
Generalized Thales: angle is only dependent on the edge length
The smaller angle is monotone in the internal edge length
Polygon edges are irrelevant.
Consider first entry where two length vectors differ

Weak dual is path
Triangluation has n − 2 triangles and n − 3 cords ⇒ Tree
Vertex with degree 3 ⇒ find larger internal edges



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Triangulation of Co-Circular Points

Vector of angles is optimized ⇔ Vector of lengths is optimized
Every polygon edge has one opposite angle
Every internal edge has a small and large opposing angle
Generalized Thales: angle is only dependent on the edge length
The smaller angle is monotone in the internal edge length
Polygon edges are irrelevant.
Consider first entry where two length vectors differ

Weak dual is path
Triangluation has n − 2 triangles and n − 3 cords ⇒ Tree
Vertex with degree 3 ⇒ find larger internal edges
If the starting points of the path are know, it is easy to extend it



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Triangulation of Co-Circular Points

Vector of angles is optimized ⇔ Vector of lengths is optimized
Every polygon edge has one opposite angle
Every internal edge has a small and large opposing angle
Generalized Thales: angle is only dependent on the edge length
The smaller angle is monotone in the internal edge length
Polygon edges are irrelevant.
Consider first entry where two length vectors differ

Weak dual is path
Triangluation has n − 2 triangles and n − 3 cords ⇒ Tree
Vertex with degree 3 ⇒ find larger internal edges
If the starting points of the path are know, it is easy to extend it

an ear is an internal edge, that touches two polygon edges
The starting points will be two out of the three largest ears
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MST ⊆ Delaunay

Let ab be an edge of the MST, consider the smallest circle
touching a and b

a b
Ta Tb
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a b
The circle is empty, otherwise we can find a smaller MST

assume s is in the circle and s ∈ Ta Ta Tb

s
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MST ⊆ Delaunay

Let ab be an edge of the MST, consider the smallest circle
touching a and b

a b
The circle is empty, otherwise we can find a smaller MST

assume s is in the circle and s ∈ Ta Ta Tb

s

connect sb and remove ab
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MST ⊆ Delaunay

Let ab be an edge of the MST, consider the smallest circle
touching a and b

a b
The circle is empty, otherwise we can find a smaller MST

assume s is in the circle and s ∈ Ta Ta Tbconnect sb and remove ab
Empty circle ⇒ ab is in delauney triangulation

blow up circle until third point is hit
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Your Submissions
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Your Submissions
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Assignment 6

Bend and Behold

Show that it is
NP-hard to decide,
whether a drawing
exists with few 3

2ı
angles
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Assignment 6

Bend and Behold Nice (h; b)-Decomposition

2‘R2‘L
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Show that it is
NP-hard to decide,
whether a drawing
exists with few 3

2ı
angles

Find B ⊆ S of size O(b)

Endpoints from elements in
B are close or few segments
inbetween

Discrete version B̃ (enpoints
are multiples of 2‘L−h)
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Assignment 6

Bend and Behold Nice (h; b)-Decomposition

2‘R2‘L
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{z

} |{
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Show that it is
NP-hard to decide,
whether a drawing
exists with few 3

2ı
angles

Find B ⊆ S of size O(b)

Endpoints from elements in
B are close or few segments
inbetween

Discrete version B̃ (enpoints
are multiples of 2‘L−h)Geometry

d

d

Draw line with distance d to other line
How many circles lie on 3 points?

For points A;B; C there is no point D in ABC+

with same distance to A and B
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Graph Embeddings

Many graphs have some form of hidden geometry

Finding this geometry, is useful for various scenarios
Embedding: Input is a Graph; output is a position for every vertex
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Graph Embeddings

Many graphs have some form of hidden geometry

Finding this geometry, is useful for various scenarios
We can draw the graph Road network

We can try to predict future edges Social network

Classify nodes by clustering them Bots in social interaction graph

Greedy Routing Internet graph

Natural Language processing Word graph

Many important questions
What is the right embedding space/dimension?

What problems can our embedding solve?
How can we measure the quality of an embedding?

obvious geometry
hidden geometry

Embedding: Input is a Graph; output is a position for every vertex
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Some Examples

Generated Graphs
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Some Examples

Generated Graphs Real World Graphs
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Some Examples

Generated Graphs Real World Graphs

SAT-Instances
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Some Examples

Music Artists
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Some Examples

Music Artists Wikipedia
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Some Examples

Internet GraphMusic Artists Wikipedia
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Greedy Routing

Greedy Routing
Given: 2d drawing of G, Goal: move from s to t
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Euclidean distance to t the most

unsuccessful, if we get stuck in a dead end
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Greedy Routing

Greedy Routing
Given: 2d drawing of G, Goal: move from s to t

successful, if we eventually reacht t

Greedy Embedding
2d drawing of a graph
for every pair of vertices, greedy
routing is successful

Strategy: at every step, select neighbour that minimizes the
Euclidean distance to t the most

unsuccessful, if we get stuck in a dead end

Does every graph have a greedy
embedding in the Euclidean plane?

How about the hyperbolic plane?

Can you find counterexamples?
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Greedy Routing

A greedy embedding is permissable if and only if for every t ̸= s,
there is a neighbor of s that is closer to t then s.
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Hyperbolic Embeddings for Near-Optimal Greedy Routing
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Greedy Routing

A greedy embedding is permissable if and only if for every t ̸= s,
there is a neighbor of s that is closer to t then s.

An embedding of a tree is permissible if and only if the perpendicular
bisector of every edge separates the tree into two components.

A 7 star does not have a 2d-Euclidean greedy embedding

Every tree has a 2d-hyperbolic greedy embedding

Hyperbolic Embeddings for Near-Optimal Greedy Routing

Is every graph embeddable
in hyperbolic space?


