AT

Computational Geometry

Exe Icise 5 Assignment 4, 5 and Voronoi diagrams of segments

Jean-Pierre, Marcus, Wendy

Mission Impossible + 1.5 Range Queries

=
N/

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line /
/l %\
N/

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ? \
= sort by distance to center] l%

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ? \

= sort by distance to center timestamp?

= data structure: persistent binary search tree] \l /

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ? \

= sort by distance to center timestamp?

= data structure: persistent binary search tree] \l /
ata =07

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ? \

= sort by distance to center timestamp? l A

® data structure: persistent binary search tree] \ /
— 0?

Events at o = 0:

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ? \

= sort by distance to center timestamp? l
m data structure: persistent binary search tree] \ /
— 07
Events at o = 0:
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?'/\‘._.
= sort by distance to center timestamp? l A

m data structure: persistent binary search tree] \ /
Events ata = 07 S

= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?/-—-

= sort by distance to center timestamp? l A

® data structure: persistent binary search tree] \

Events at o = 07 —

= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?/-—-

= sort by distance to center timestamp? l A

® data structure: persistent binary search tree] \

Events at o = 07 —

= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?'/\‘._.

= sort by distance to center timestamp? l
m data structure: persistent binary search tree] \ /
— 07
Events at o = 0:
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?'/\‘._.

= sort by distance to center timestamp? l
m data structure: persistent binary search tree] \ /
— 07
Events at o = 0:
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

Queries

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?'/\‘-—-
m data structure: persistent binary search tree \l /
— 0?
Events ata = 0

= start point: add wall query: O(log(n) + k)
preprocessing: O(nlog(n))

= sort by distance to center timestamp?]

= end point: remove wall

Queries
m ask for time = «
= output all walls currently in sweep line state

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line

= walls that intersect sweep line ?'/\‘-—-
m data structure: persistent binary search tree \l /
— 0?
Events ata = 0

= start point: add wall query: O(log(n) + k)
preprocessing: O(nlog(n))

= sort by distance to center timestamp?]

= end point: remove wall

Queries
m ask for time = «
= output all walls currently in sweep line state

Why O(log(n) + k)?

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line
= walls that intersect sweep line
= sort by distance to center timestamp?

® data structure: persistent binary search tree

_ "
Events at oo = 0

= start point: add wall _
But wait! What about space?
= end point: remove wall

Queries
= ask for time = «
= output all walls currently in sweep line state

Why O(log(n) + k)?

.
N

query: O(log(n) + k)
preprocessing: O(nlog(n))

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Rotating Sweep Line
= walls that intersect sweep line
= sort by distance to center timestamp?

® data structure: persistent binary search tree

Events
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

Queries .
= ask for time = o Why O(log(n) + k)? . - | ;
= output all walls currently in sweep line state 5 e

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Botatitt§ Sweep Line

points are above

= wailS that jnteraect sweep line

= sort by distance to center timestamp?

® data structure: persistent binary search tree

Events
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

Queries
= ask for time = « Why O(log(n) + k)?

= output all walls currently in sweep line state

X1 X2 y
[]

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Botatitt§ Sweep Line

points are above ,
= walS that jniersect sweep line

_x-coordinate
= sort by distanee-te-ceTiier timestamp?

® data structure: persistent binary search tree

Events
= start point: add wall query: O(log(n) + k)

= end point; remove wall preprocessing: O(nlog(n))

Queries
= ask for time = « Why O(log(n) + k)?

= output all walls currently in sweep line state

X1 X2 y
[]

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Botatitt§ Sweep Line

points are above

= wallS that intessect sweep line

_x-coordinate
= sort by distanee-te-ceTiier timestamp?

® data structure: persistent binary search tree

Events

point
= start point: addwa'H’ query: O(log(n) + k)
= end point-remevewal preprocessing: O(nlog(n))
Queries
= ask for time = « Why O(log(n) + k)? |

. . X1 X2 y
= output all walls currently in sweep line state :

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Botatitt§ Sweep Line

points are above

= wallS that intessect sweep line

_x-coordinate
= sort by distanee-te-ceTiier timestamp?

® data structure: persistent binary search tree

Events

point
= start point: addwa'H’ query: O(log(n) + k)
= end point-remevewal preprocessing: O(nlog(n))
Queries
= ask for time —er Why O(log(n) + k)? |

. . X1 X2 y
= output all walls currently in sweep line state :

AKIT

Mission Impossible + 1.5 Range Queries

Persistent Botatitt§ Sweep Line

points are above

= wallS that intessect sweep line

_x-coordinate
= sort by distanee-te-ceTiier timestamp?

® data structure: persistent binary search tree

Events

point
= start point: addwa'H’ query: O(log(n) + k)
= end point-remevewal preprocessing: O(nlog(n))
Queries
= ask for time —er Why O(log(n) + k)? |

X1 X2 Y
B °

find x1, output all between x; and x

AKIT

Voronol Diagram

Size of Voronoi Diagram

® add vertex to collect loose edges

AKIT

Voronol Diagram

Size of Voronoi Diagram

® add vertex to collect loose edges
m nfaces

AKIT

Voronol Diagram

Size of Voronoi Diagram

® add vertex to collect loose edges
m nfaces
= v + 1 vertices, with degree > 3

AKIT

Voronol Diagram

Size of Voronoi Diagram

® add vertex to collect loose edges
m nfaces
|
[

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)

AKIT

Voronol Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram 2(nlog(n)) lower bound

\ /

add vertex to collect loose edges
n faces

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

add vertex to collect loose edges
n faces

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges m closest point is in neighbor);;ell
n faces
v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges m closest point is in neighbor);;ell
n faces
v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges m closest point is in neighbor);;ell
n faces
v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges m closest point is in neighbor);;ell
n faces
v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges ® closest point is in neighbor cell
n faces = mid point lies on edge of cell

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1)
use Euler’s formula

AKIT

Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges ® closest point is in neighbor cell
n faces = mid point lies on edge of cell

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1) ——
use Euler’s formula Running time*?

AKIT

m for each point: try all neighbors in VD

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

AKIT

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector

AKIT

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector
= weak dual graph is a path in optimal triangulation

AKIT

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector
= weak dual graph is a path in optimal triangulation
= algorithm try to maximize leaves of path

AKIT

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector
= weak dual graph is a path in optimal triangulation
= algorithm try to maximize leaves of path

MST C Delaunay

AKIT

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector
= weak dual graph is a path in optimal triangulation
= algorithm try to maximize leaves of path

MST C Delaunay

AKIT

Assignment 5

Triangulation of Concentric Points MST C Delaunay

find optimal triangulation
(smallest angle vector)

® maximum angle vector < maximum length vector
= weak dual graph is a path in optimal triangulation
= algorithm try to maximize leaves of path

Foldability of Mountain/Valley Patterns

A A
v v

= test foldability in O(n)
AKIT

Assignment 5

Triangulation of Concentric Points MST C Delaunay

find optimal triangulation
(smallest angle vector)
® maximum angle vector < maximum length vector

= weak dual graph is a path in optimal triangulation
= algorithm try to maximize leaves of path

Creative Outlet

1
-
B
|
N |
“{i‘ B
=
S
S5 A

Foldability of Mountain/Valley Patterns

A A
\' \'

= test foldability in O(n)

Blocking Doors

m doors are weird and can block each other

AKIT

Blocking Doors

m doors are weird and can block each other

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

-

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

m Show that BLOCKINGDOORS is NP-hard.
LBuiId gadgets!]

-

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

m Show that BLOCKINGDOORS is NP-hard.

LBuiId gadgets!]

AKIT

Blocking Doors

m doors are weird and can block each other

~

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

m Show that BLOCKINGDOORS is NP-hard.
LBuiId gadgets!]

= |s it NP-complete?

: i ! = Complexity if the side of the hinge is given for each door?

AKIT

Blocking Doors

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
-each other?

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

AKIT

Blocking Doors

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
-each other?

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

AKIT

Blocking Doors

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
-each other?

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables Transport

true false

AKIT

Blocking Doors

Problem: BLOCKINGDOORS

¥each other?

Given: Set of rectangular rooms with a set of doors

(BA Oguz)

Is is possible to assign every door a hinge and an opening direction such that no doors block

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-

EAR 3-SAT.

Variables

true false

Transport + Split

=

AKIT

Blocking Doors

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
-each other?

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables Transport + Split Clauses

i B

true false

AKIT

Blocking Doors

Problem: BLOCKINGDOORS (BA Oguz)
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
-each other?

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables Transport + Split Clauses

i 5

true false

AKIT

Blocking Doors

Problem: BLOCKINGDOORS

¥each other?

Given: Set of rectangular rooms with a set of doors

(BA Oguz)

Is is possible to assign every door a hinge and an opening direction such that no doors block

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-

EAR 3-SAT.

Variables

true false

Transport + Split

Clauses

Vv
/]

=

AKIT

Blocking Doors

Problem: BLOCKINGDOORS

¥each other?

Given: Set of rectangular rooms with a set of doors

(BA Oguz)

Is is possible to assign every door a hinge and an opening direction such that no doors block

= Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-

EAR 3-SAT.

Variables

true false

Transport + Split

Clauses

o

=

AKIT

