

Computational Geometry

Exercise 5 Assignment 4, 5 and Voronoi diagrams of segments

Jean-Pierre, Marcus, Wendy

Persistent Rotating Sweep Line

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

data structure: persistent binary search tree

at
$$\alpha = 0$$
?

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

at
$$\alpha = 0$$
?

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

at $\alpha = 0$?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

at $\alpha = 0$?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

at $\alpha = 0$?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp?

at $\alpha = 0$?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center

timestamp? data structure: persistent binary search tree

- **Events**
- start point: add wall
- end point: remove wall

Queries

at
$$\alpha = 0$$
?

preprocessing: $O(n \log(n))$

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center
- data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Queries

- ask for time = α
- output all walls currently in sweep line state

at $\alpha = 0$?

timestamp?

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center
- data structure: persistent binary search tree

Events

start point: add wall

• ask for time = α

end point: remove wall

Queries

Why $O(\log(n) + k)$?

output all walls currently in sweep line state

timestamp?

preprocessing: $O(\log(n) + \kappa)$

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center
- data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Queries

• ask for time $= \alpha$

output all walls currently in sweep line state

Why $O(\log(n) + k)$?

at $\alpha = 0$?

timestamp?

Persistent Rotating Sweep Line

- walls that intersect sweep line
- sort by distance to center
- data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Queries

Why $O(\log(n) + k)$?

timestamp?

- ask for time = α
- output all walls currently in sweep line state

Persistent Rotating Sweep Line

points are above
 walls that intersect sweep line

sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Queries

Why $O(\log(n) + k)$?

- ask for time $= \alpha$
- output all walls currently in sweep line state

Persistent Rotating Sweep Line

- points are above walls that intersect sweep line x-coordinate
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

- start point: add wall
- end point: remove wall

Queries

Why $O(\log(n) + k)$?

- ask for time $= \alpha$
- output all walls currently in sweep line state

Persistent Rotating Sweep Line

- points are above waits that intersect sweep line x-coordinate
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

point

- start point: add wall
- end point: remove wall

Queries

Why $O(\log(n) + k)$?

- ask for time = α
- output all walls currently in sweep line state

Persistent Rotating Sweep Line

- walls that intersect sweep line points x-coordinate
- sort by distance to center

- timestamp?
- data structure: persistent binary search tree

Events

point start point: add wall

end point: remove wall

Queries

ask for time =

Why $O(\log(n) + k)$?

output all walls currently in sweep line state

Persistent Rotating Sweep Line

- points are above waits that intersect sweep line x-coordinate
- sort by distance to center

timestamp?

data structure: persistent binary search tree

Events

point

- start point: add wall
- end point: remove wall

Queries

• ask for time =

output all walls currently in sweep line state find x₁, output all between x₁ and x₂

Size of Voronoi Diagram

add vertex to collect loose edges

- add vertex to collect loose edges
- n faces

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

add vertex to collect loose edges

- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

why?
closest point is in neighbor cell
mid point lies on edge of cell

Size of Voronoi Diagram

$\Omega(n \log(n))$ lower bound Find closest point

why?

- add vertex to collect loose edges
- n faces
- v + 1 vertices, with degree ≥ 3
- m edges with $2m \ge 3(v+1)$
- use Euler's formula

- closest point is in neighbor cell
- mid point lies on edge of cell
- for each point: try all neighbors in VD

Running time?

Assignment 5

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

■ maximum angle vector ⇔ maximum length vector

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

 $\blacksquare maximum angle vector \Leftrightarrow maximum length vector$

weak dual graph is a path in optimal triangulation

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

- $\blacksquare maximum angle vector \Leftrightarrow maximum length vector$
- weak dual graph is a path in optimal triangulation
- algorithmtry to maximize leaves of path

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

- maximum angle vector ⇔ maximum length vector
- weak dual graph is a path in optimal triangulation
- algorithm
 try to maximize leaves of path

$\mathsf{MST} \subseteq \mathbf{Delaunay}$

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

- maximum angle vector ⇔ maximum length vector
- weak dual graph is a path in optimal triangulation
- algorithm
 try to maximize leaves of path

$\mathsf{MST} \subseteq \mathbf{Delaunay}$

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

- maximum angle vector maximum length vector
- weak dual graph is a path in optimal triangulation
- algorithm
 try to maximize leaves of path

Foldability of Mountain/Valley Patterns

• test foldability in O(n)

$\mathsf{MST} \subseteq \mathsf{Delaunay}$

Triangulation of Concentric Points

find optimal triangulation (smallest angle vector)

- maximum angle vector ⇔ maximum length vector
- weak dual graph is a path in optimal triangulation
- algorithm
 try to maximize leaves of path

Foldability of Mountain/Valley Patterns

• test foldability in O(n)

$\mathsf{MST} \subseteq \mathsf{Delaunay}$

Creative Outlet

doors are weird and can block each other

doors are weird and can block each other

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

Build gadgets!

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Is it NP-complete?

Show that BLOCKINGDOORS is NP-hard.

Build gadgets!

doors are weird and can block each other

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

Build gadgets!

- Is it NP-complete?
- Complexity if the side of the hinge is given for each door?

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

6

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

Transport + Split

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

Transport + Split

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

Transport + Split

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

Problem: BLOCKINGDOORS Given: Set of rectangular rooms with a set of doors (BA Oğuz)

Is is possible to assign every door a hinge and an opening direction such that no doors block each other?

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-EAR 3-SAT.

Variables

Transport + Split

