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Computational Geometry

Jean-Pierre, Marcus, Wendy

Exercise 5 Assignment 4, 5 and Voronoi diagrams of segments
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x-coordinate
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find x1, output all between x1 and x2
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Size of Voronoi Diagram
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n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?

mid point lies on edge of cell
for each point: try all neighbors in VD

Running time?
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Build gadgets!



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

Is it NP-complete?

(BA Oğuz)
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Complexity if the side of the hinge is given for each door?
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