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® data structure: persistent binary search tree

_ "
Events at oo = 0

= start point: add wall _
But wait! What about space?
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find x1, output all between x; and x
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Voronol Diagram

Size of Voronoi Diagram Q(nlog(n)) lower bound Find closest point

why?
add vertex to collect loose edges ® closest point is in neighbor cell
n faces = mid point lies on edge of cell

v + 1 vertices, with degree > 3
m edges with 2m > 3(v + 1) ——
use Euler’s formula Running time*?
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m for each point: try all neighbors in VD
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