
1

Computational Geometry

Jean-Pierre, Marcus, Wendy

Exercise 5 Assignment 4, 5 and Voronoi diagrams of segments



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

sort by distance to center



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

sort by distance to center

data structure: persistent binary search tree

timestamp?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

sort by distance to center

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸

output all walls currently in sweep line state

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state

at ¸ = 0?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state

at ¸ = 0?

But wait! What about space?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y

points are above



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y

points

x-coordinate

are above



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y

points

x-coordinate

point

are above



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y

points

x-coordinate

point

are above

y



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)2

Mission Impossible + 1.5 Range Queries

query: O(log(n) + k)

preprocessing: O(n log(n))

Persistent Rotating Sweep Line

walls that intersect sweep line

Events

sort by distance to center

start point: add wall

end point: remove wall

data structure: persistent binary search tree

timestamp?

Queries
ask for time = ¸ Why O(log(n) + k)?

output all walls currently in sweep line state
x1 x2

y

points

x-coordinate

point

are above

y

find x1, output all between x1 and x2



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?

mid point lies on edge of cell



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)3

Voronoi Diagram

Size of Voronoi Diagram

add vertex to collect loose edges
n faces
v + 1 vertices, with degree ≥ 3

m edges with 2m ≥ 3(v + 1)

use Euler’s formula

Ω(n log(n)) lower bound Find closest point

closest point is in neighbor cell
why?

mid point lies on edge of cell
for each point: try all neighbors in VD

Running time?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation
algorithm try to maximize leaves of path



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation
algorithm try to maximize leaves of path

MST ⊆ Delaunay



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation
algorithm try to maximize leaves of path

MST ⊆ Delaunay



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

Foldability of Mountain/Valley Patterns

test foldability in O(n)

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation
algorithm try to maximize leaves of path

MST ⊆ Delaunay



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)4

Assignment 5

Triangulation of Concentric Points

Foldability of Mountain/Valley Patterns

test foldability in O(n)

Creative Outlet

find optimal triangulation
(smallest angle vector)

maximum angle vector ⇔ maximum length vector
weak dual graph is a path in optimal triangulation
algorithm try to maximize leaves of path

MST ⊆ Delaunay



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

(BA Oğuz)

Build gadgets!



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

Is it NP-complete?

(BA Oğuz)

Build gadgets!



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)5

Blocking Doors

doors are weird and can block each other

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such
that no doors block each other?

Show that BLOCKINGDOORS is NP-hard.

Is it NP-complete?

(BA Oğuz)

Build gadgets!

Complexity if the side of the hinge is given for each door?



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)

+ Split



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport Clauses

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)

+ Split



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport Clauses

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)

+ Split



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport Clauses

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)

+ Split



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 5)6

Blocking Doors

Show that BLOCKING DOORS is NP-hard by reduction from PLANAR MONOTONE RECTILIN-
EAR 3-SAT.

Variables

true false

Transport Clauses

Problem: BLOCKINGDOORS
Given: Set of rectangular rooms with a set of doors

Is is possible to assign every door a hinge and an opening direction such that no doors block
each other?

(BA Oğuz)

+ Split


