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Assignment 2

Dangerous Walls Triangulation
. .
. ‘/:/o \ Q: how many triangles?
| ’\. ") * what if P contains holes?
..-®
o
y-Monotone Triangulation S Bounded LP-solution X
How to triangulate y-monotone / .- Given: 2D LP
: 0 s ey i
Polygon in O(n)" Decide: are there
Nty solutions with arbitrarily

large objective?




Dangerous Walls

Sweepline:
m Events: start and endpoints of segments

m State: Sorted intersections with walls
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Dangerous Walls

Sweepline:
m Events: start and endpoints of segments

m State: Sorted intersections with walls

Are we storing real numbers in the state
or something else?

At each event: |
= |nsert / remove wall from sweepline state

m Mark closest wall

Special Case:
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?
mn—2

= Proof: by induction
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?
mn—2

= Proof: by induction

Can P be triangulated, if it contains a hole?
= Find edge that connects the hole to P
= Use Lemma from lecture
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?
mn—2

= Proof: by induction

Can P be triangulated, if it contains a hole?
= Find edge that connects the hole to P

m Use Lemma from lecture

-----
-------

How many triangles are there, when P contains k holes?
(n includes vertices of holes)
" n+2(k—1)
® Proof. Triangulation is planar graph,
Euler’s formula to count vertices, edges and faces

AKIT



y-monotone Triangulation

Idea: lierate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
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Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel

N
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Idea: lterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above

Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel

Case 1 Case 2.1 Case 2.2 N
= Connect new vertex = Nothing to do = Connect with as much
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y-monotone Triangulation

Idea: lierate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above

Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel
Case 1 Case 2.1 Case 2.2 \,
Implementation
m Store vertices on stack
m Stack is sorted by y
= Connect new vertex = Nothing to do = Connect with as much " /dd edges by popping
. . . vertices from stack
with whole funnle of chain as possible
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Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
= |t suffices to find at most two half planes

m Calculate angle between half plane normal
and maximization vector
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Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
= |t suffices to find at most two half planes

m Calculate angle between half plane normal
and maximization vector

LP Algorithm from Lecture:
m |terate over halfplanes <o oo Update best point

Vi—1 Vi ,
I ‘ i—1
L;
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Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
= |t suffices to find at most two half planes

m Calculate angle between half plane normal
and maximization vector

LP Algorithm from Lecture:
m |terate over halfplanes <o oo Update best point

® need initial solution
Vi—1 Vi
I ‘ Vi—1
L;
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Assignment 3

Pizza-Guillotine

= At which points does the blade cut the
pizza polygon?
= Which ingredients are cooked?

= O(nlog n) precompute, O(log n) query
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= At which points does the blade cut the
pizza polygon?

= Which ingredients are cooked?

= how many times is the tomato sauce hit?

= O(nlog n) precompute,
O((k + 1) log(n/(k +1))) query
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Assignment 3

Pizza-Guillotine 2d Range Queries

(gl | L
oA b

S}l
1 Do

| P
b 5
L2
X
= At which points does the blade cut the = (Given the points sorted by x, calculate the
pizza polygon? geometric graph in O(n)

= Which ingredients are cooked?
= how many times is the tomato sauce hit?

= O(nlog n) precompute,
O((k + 1) log(n/(k +1))) query
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Assignment 3

Pizza-Guillotine 2d Range Queries

'A 1]

/, 81
T Po

| P
b 5
L2
X
= At which points does the blade cut the = (Given the points sorted by x, calculate the
pizza polygon? geometric graph in O(n)
= Which ingredients are cooked?
= how many times is the tomato sauce hit? Bonus: |
= O(nlog n) precompute Range-Tree implementation. Testcases are on
O((k + 1) log(n/(k + 1))) query website.
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kd-Trees

Binary space partition (in 2d)
= Given: Set of points
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kd-Trees

Binary space partition (in 2d)

= Given: Set of points

= divide with respect to x-coordinate

= divide each side with respect to y-coordinate

m jterate, until each region contains only ©(1) points

How fast is construction?
How much space do we need?

How can we answer range queries?
(e.g.: find all points in rectangle)

How expensive is an orthogonal range
query in the worst case?
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