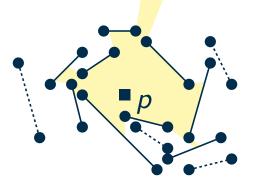


Computational Geometry Exercise 3 Assignment 2, 3 and kd-Trees

Jean-Pierre, Marcus, Wendy

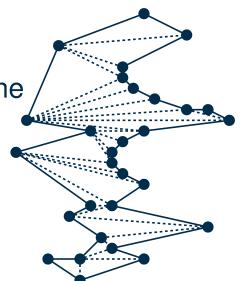
Assignment 2

Dangerous Walls

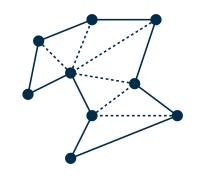


y-Monotone Triangulation

How to triangulate y-monotone Polygon in O(n)?



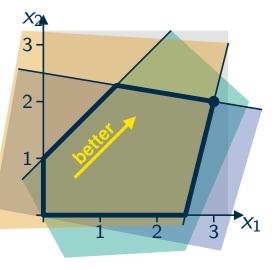
Triangulation



Q: how many triangles? what if *P* contains holes?

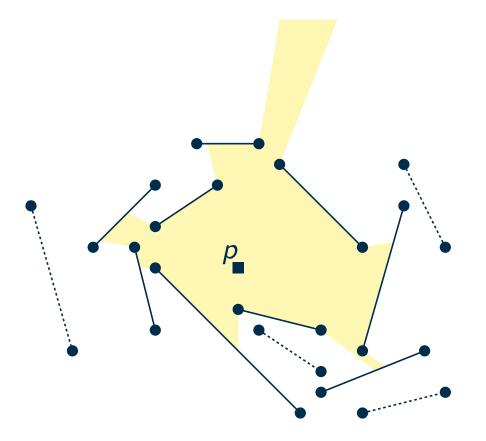
Bounded LP-solution Given: 2D LP

Decide: are there solutions with arbitrarily large objective?



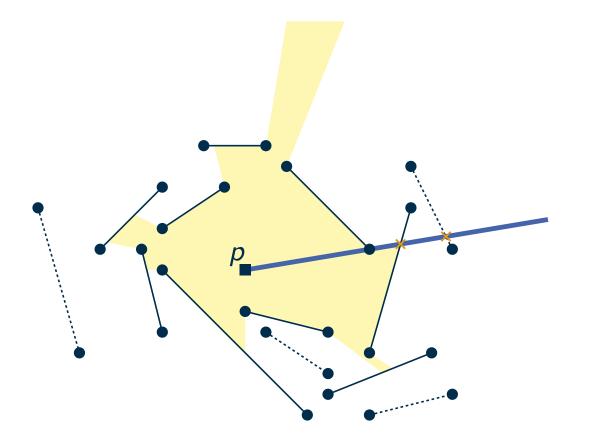
Sweepline:

- Events: start and endpoints of segments
- State: Sorted intersections with walls



Sweepline:

- Events: start and endpoints of segments
- State: Sorted intersections with walls

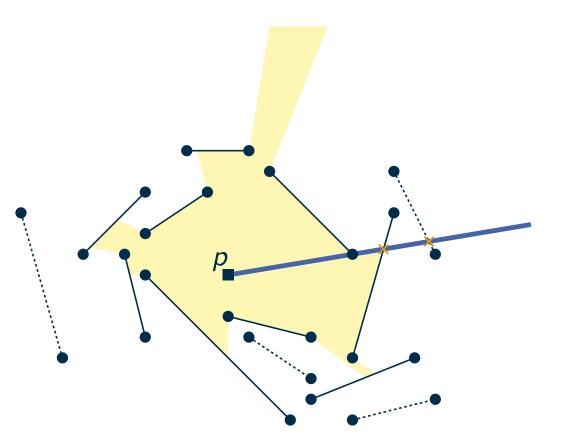


Sweepline:

- Events: start and endpoints of segments
- State: Sorted intersections with walls

At each event:

- Insert / remove wall from sweepline state
- Mark closest wall

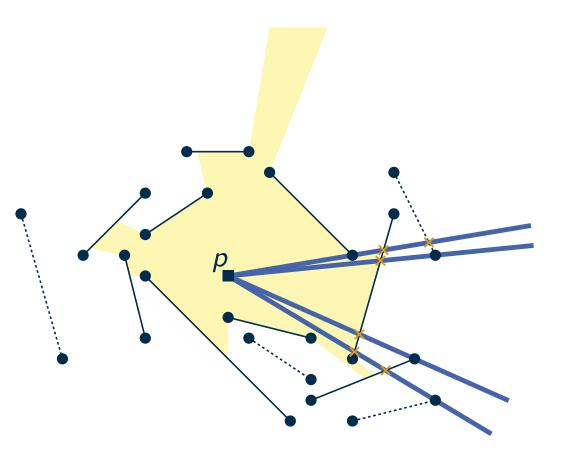


Sweepline:

- Events: start and endpoints of segments
- State: Sorted intersections with walls

At each event:

- Insert / remove wall from sweepline state
- Mark closest wall



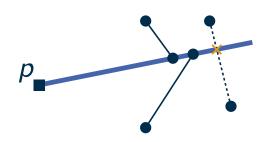
Sweepline:

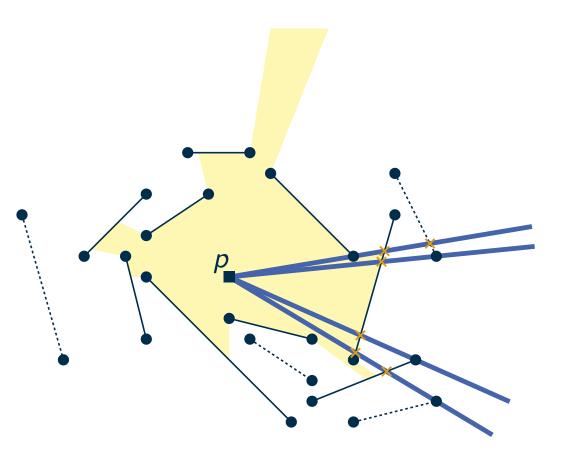
- Events: start and endpoints of segments
- State: Sorted intersections with walls

At each event:

- Insert / remove wall from sweepline state
- Mark closest wall

Special Case:





Sweepline:

- Events: start and endpoints of segments
- State: Sorted intersections with walls

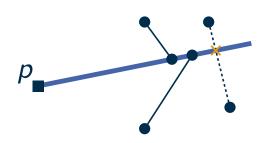
Are we storing real numbers in the state or something else?

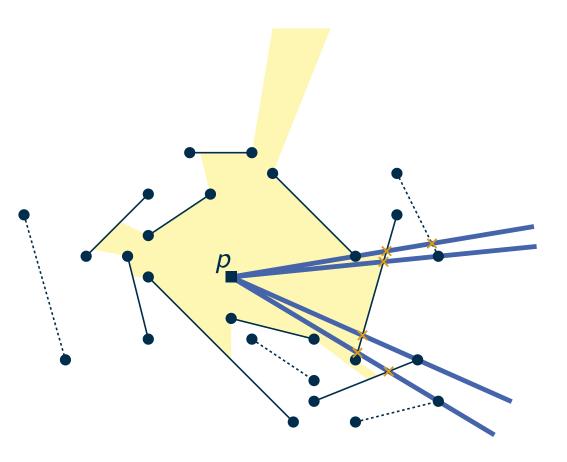
At each event:

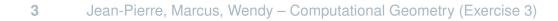
Insert / remove wall from sweepline state

Mark closest wall

Special Case:



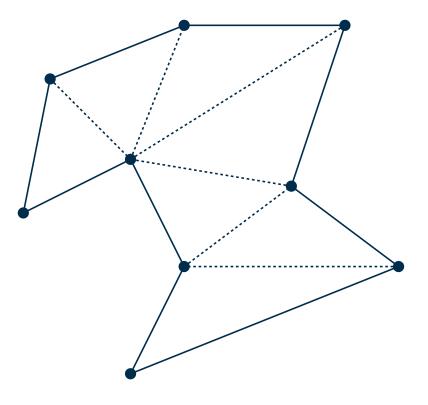




Triangulation

Given Polygon *P* with *n* vertices, how many triangles does a triangulation contain?

- *n* − 2
- Proof: by induction



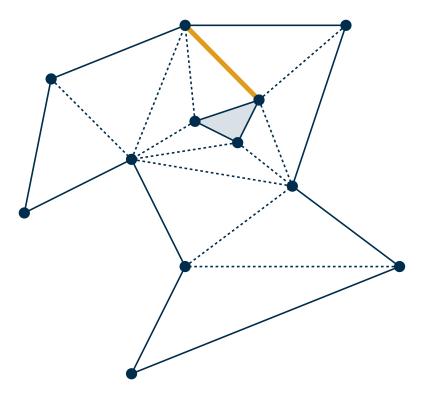
Triangulation

Given Polygon *P* with *n* vertices, how many triangles does a triangulation contain?

- *n* − 2
- Proof: by induction

Can *P* be triangulated, if it contains a hole?

- Find edge that connects the hole to *P*
- Use Lemma from lecture



Triangulation

Given Polygon *P* with *n* vertices, how many triangles does a triangulation contain?

- *n* − 2
- Proof: by induction

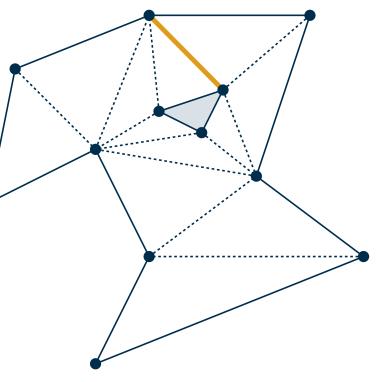
Can *P* be triangulated, if it contains a hole?

- Find edge that connects the hole to *P*
- Use Lemma from lecture

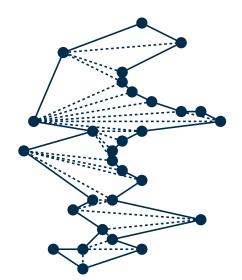
How many triangles are there, when *P* contains *k* holes? (*n* includes vertices of holes)

■ n + 2(k - 1)

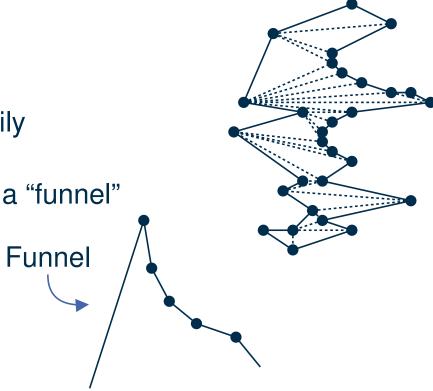
 Proof: Triangulation is planar graph, Euler's formula to count vertices, edges and faces



Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above

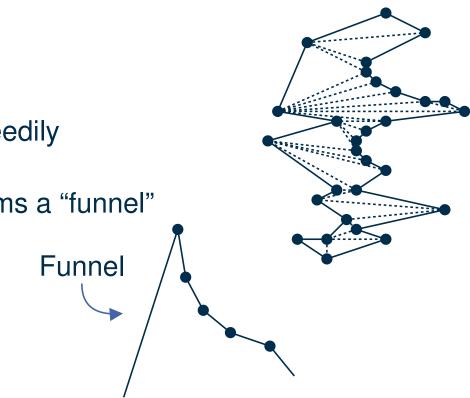


Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.



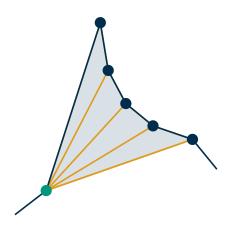
Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.

Case 1 Vertex on single edge

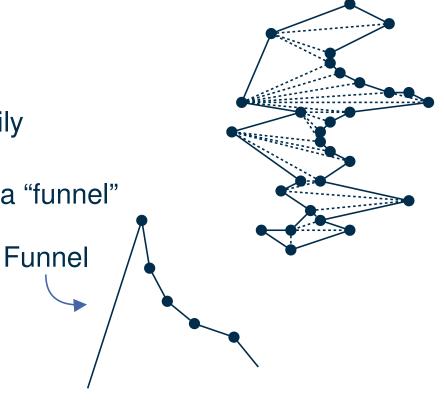


Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.

Case 1 Vertex on single edge

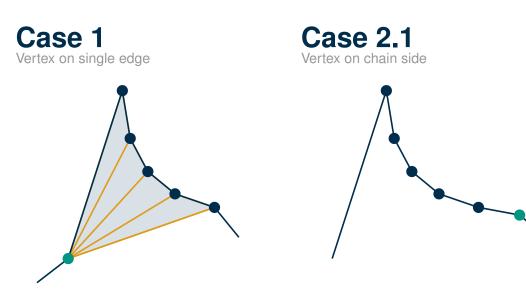


Connect new vertex with whole funnle



Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.

Funnel

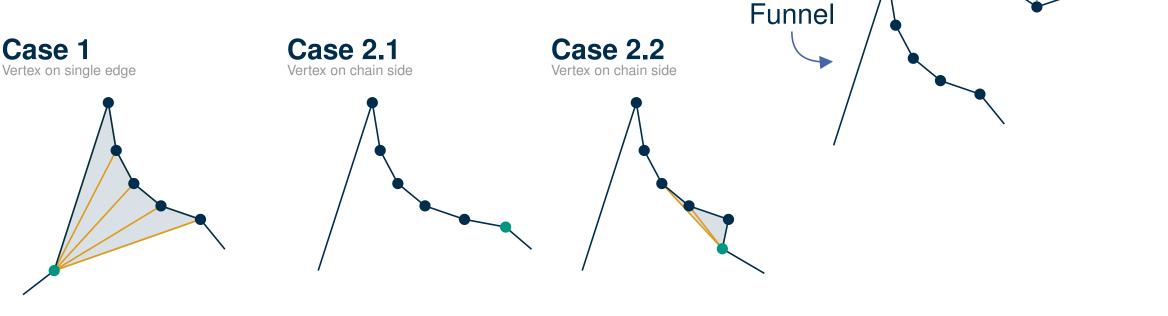


Connect new vertex
 Nothing to do with whole funnle

Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.

Connect new vertex Nothing to do with whole funnle

Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.



 Connect new vertex
 Nothing to do with whole funnle Connect with as much of chain as possible

Case 2.1

Idea: Iterate over the vertices from top to bottom and greedily add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a "funnel" (ger. Trichter). One side consists of only one edge.

Case 1

Vertex on single edge

Connect with as much of chain as possible

Case 2.2

Funnel

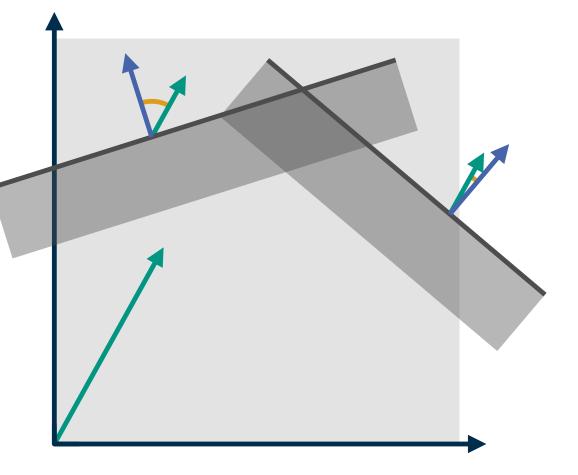
Implementation

- Store vertices on stack
- Stack is sorted by y
- Add edges by popping vertices from stack

Bounded LP-solution

Given 2*d* LP: is an optimal solution bounded?

- It suffices to find at most two half planes
- Calculate angle between half plane normal and maximization vector



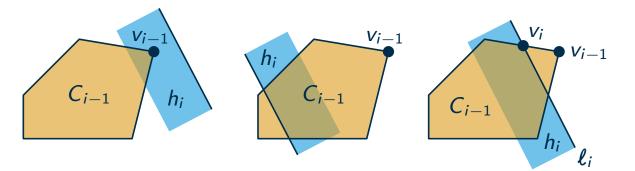
Bounded LP-solution

Given 2*d* LP: is an optimal solution bounded?

- It suffices to find at most two half planes
- Calculate angle between half plane normal and maximization vector

LP Algorithm from Lecture:

Iterate over halfplanes (in some order); update best point



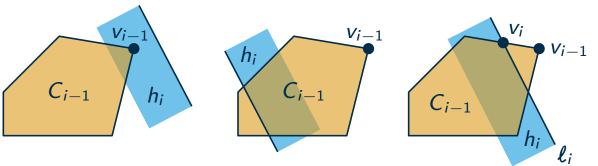
Bounded LP-solution

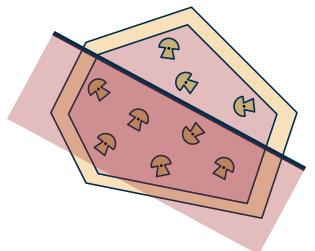
Given 2*d* LP: is an optimal solution bounded?

- It suffices to find at most two half planes
- Calculate angle between half plane normal and maximization vector

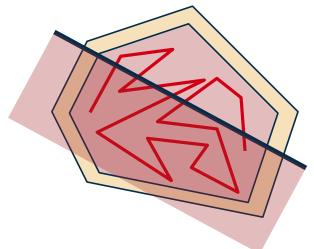
LP Algorithm from Lecture:

- Iterate over halfplanes (in some order); update best point
- need initial solution

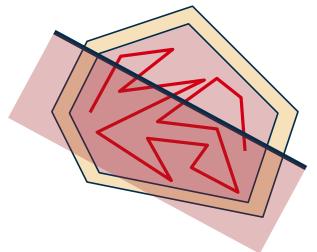




- At which points does the blade cut the pizza polygon?
- Which ingredients are cooked?
- $\mathcal{O}(n \log n)$ precompute, $\mathcal{O}(\log n)$ query

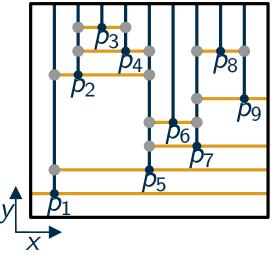


- At which points does the blade cut the pizza polygon?
- Which ingredients are cooked?
- how many times is the tomato sauce hit?
- $\mathcal{O}(n \log n)$ precompute, $\mathcal{O}((k+1) \log(n/(k+1)))$ query

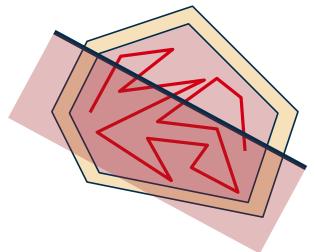


- At which points does the blade cut the pizza polygon?
- Which ingredients are cooked?
- how many times is the tomato sauce hit?
- $\mathcal{O}(n \log n)$ precompute, $\mathcal{O}((k+1) \log(n/(k+1)))$ query

2d Range Queries

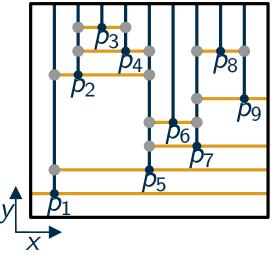


• Given the points sorted by x, calculate the geometric graph in $\mathcal{O}(n)$



- At which points does the blade cut the pizza polygon?
- Which ingredients are cooked?
- how many times is the tomato sauce hit?
- $\mathcal{O}(n \log n)$ precompute, $\mathcal{O}((k+1) \log(n/(k+1)))$ query

2d Range Queries



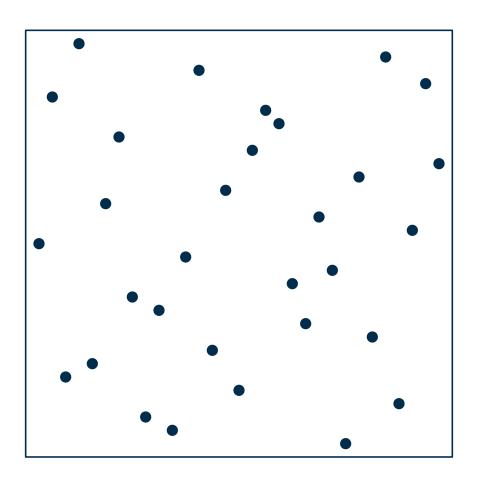
• Given the points sorted by x, calculate the geometric graph in $\mathcal{O}(n)$

Bonus:

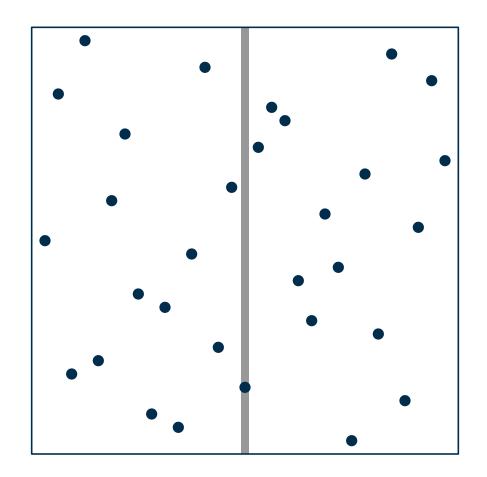
Range-Tree implementation. Testcases are on website.

Binary space partition (in 2d)

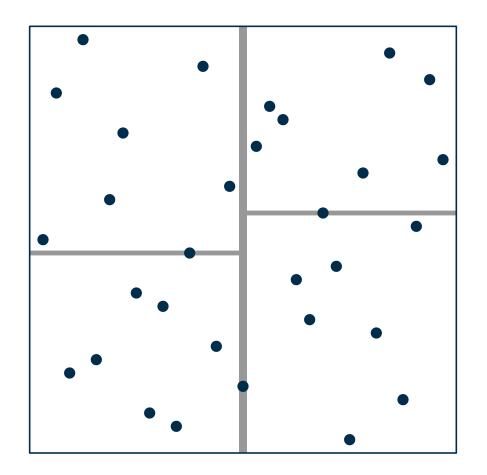
Given: Set of points



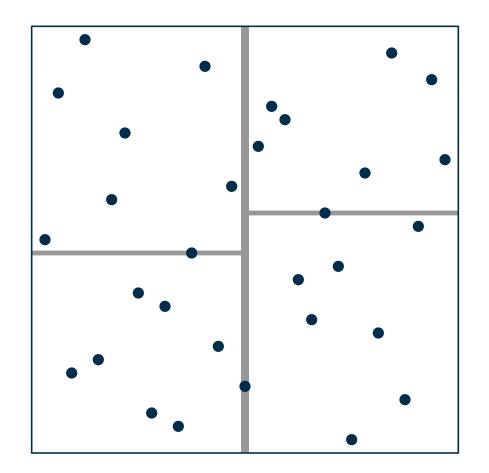
- Given: Set of points
- divide with respect to x-coordinate



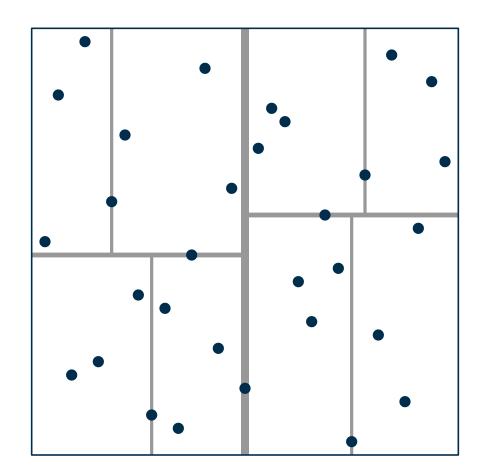
- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate



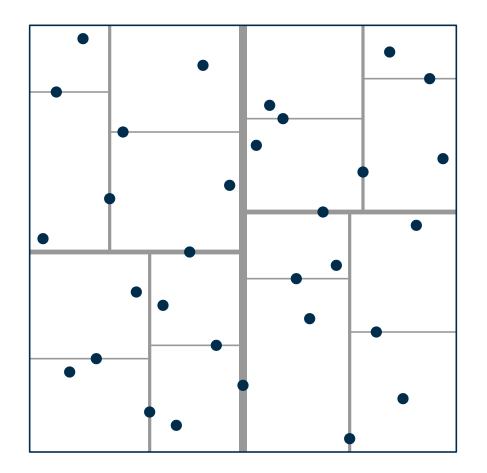
- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points



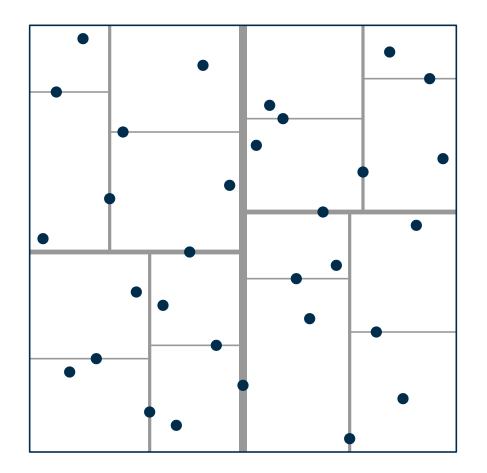
- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points



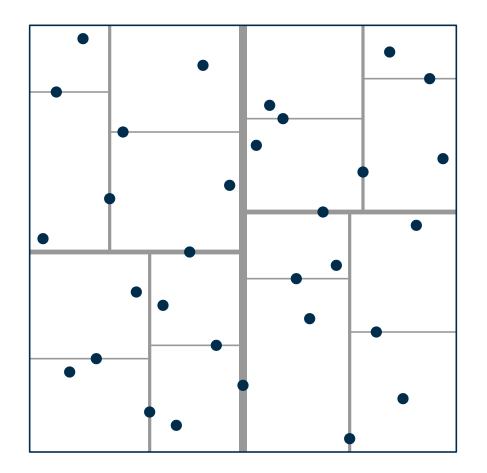
- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points



- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points



- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points



Binary space partition (in 2d)

- Given: Set of points
- divide with respect to x-coordinate
- divide each side with respect to y-coordinate
- iterate, until each region contains only $\Theta(1)$ points

How fast is construction? How much space do we need?

How can we answer range queries?

(e.g.: find all points in rectangle)

How expensive is an orthogonal range query in the worst case?

