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Computational Geometry

Jean-Pierre, Marcus, Wendy

Exercise 3 Assignment 2, 3 and kd-Trees
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Assignment 2

Dangerous Walls

y -Monotone Triangulation Bounded LP-solution

Triangulation

p

Q: how many triangles?
what if P contains holes?

How to triangulate y-monotone
Polygon in O(n)?
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Given: 2D LP
Decide: are there
solutions with arbitrarily
large objective?
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Dangerous Walls

p

Sweepline:
Events: start and endpoints of segments
State: Sorted intersections with walls
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Dangerous Walls

p

Sweepline:
Events: start and endpoints of segments
State: Sorted intersections with walls

Insert / remove wall from sweepline state
At each event:

Mark closest wall
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Dangerous Walls

p

Sweepline:
Events: start and endpoints of segments
State: Sorted intersections with walls

Insert / remove wall from sweepline state
At each event:

Mark closest wall

Special Case:

p
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Dangerous Walls

p

Sweepline:
Events: start and endpoints of segments
State: Sorted intersections with walls

Insert / remove wall from sweepline state
At each event:

Mark closest wall

Special Case:

p

Are we storing real numbers in the state
or something else?
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?

n − 2
Proof : by induction
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?

n − 2
Proof : by induction

Can P be triangulated, if it contains a hole?
Find edge that connects the hole to P

Use Lemma from lecture
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Triangulation

Given Polygon P with n vertices, how many
triangles does a triangulation contain?

n − 2
Proof : by induction

Can P be triangulated, if it contains a hole?
Find edge that connects the hole to P

How many triangles are there, when P contains k holes?
(n includes vertices of holes)

n + 2(k − 1)
Proof : Triangulation is planar graph,
Euler’s formula to count vertices, edges and faces

Use Lemma from lecture
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y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
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y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 3)5

y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel
Case 1
Vertex on single edge
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y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel
Case 1

Connect new vertex
with whole funnle

Vertex on single edge
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y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel
Case 1

Connect new vertex
with whole funnle

Case 2.1

Nothing to do

Vertex on single edge Vertex on chain side
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add as many edges as possible to vertices above
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(ger. Trichter). One side consists of only one edge.
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Connect new vertex
with whole funnle
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y -monotone Triangulation
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(ger. Trichter). One side consists of only one edge.
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Connect new vertex
with whole funnle
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y -monotone Triangulation

Idea: Iterate over the vertices from top to bottom and greedily
add as many edges as possible to vertices above
Invariant: Untriangulated part above last seen vertex forms a “funnel”
(ger. Trichter). One side consists of only one edge.

Funnel
Case 1

Connect new vertex
with whole funnle

Case 2.1

Nothing to do

Case 2.2

Connect with as much
of chain as possible

Vertex on single edge Vertex on chain side Vertex on chain side

Implementation
Store vertices on stack
Stack is sorted by y

Add edges by popping
vertices from stack
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Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
It suffices to find at most two half planes
Calculate angle between half plane normal
and maximization vector



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 3)6

Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
It suffices to find at most two half planes
Calculate angle between half plane normal
and maximization vector

LP Algorithm from Lecture:
Iterate over halfplanes (in some order); update best point

Ci−1 hi Ci−1

hi
vi−1 vi−1
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Bounded LP-solution

Given 2d LP: is an optimal solution bounded?
It suffices to find at most two half planes
Calculate angle between half plane normal
and maximization vector

LP Algorithm from Lecture:
Iterate over halfplanes (in some order); update best point

Ci−1 hi Ci−1

hi
vi−1 vi−1

Ci−1

hi

vi−1

vi

‘i

need initial solution
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Assignment 3

Pizza-Guillotine

At which points does the blade cut the
pizza polygon?
Which ingredients are cooked?

O(n log n) precompute, O(log n) query
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Assignment 3

Pizza-Guillotine

At which points does the blade cut the
pizza polygon?
Which ingredients are cooked?
how many times is the tomato sauce hit?
O(n log n) precompute,
O((k + 1) log(n=(k + 1))) query
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Assignment 3

Pizza-Guillotine

At which points does the blade cut the
pizza polygon?
Which ingredients are cooked?
how many times is the tomato sauce hit?

2d Range Queries

p1

p2

p3
p4

p5

p6
p7

p8

p9

x
y

Given the points sorted by x , calculate the
geometric graph in O(n)

O(n log n) precompute,
O((k + 1) log(n=(k + 1))) query



Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise 3)7

Assignment 3

Pizza-Guillotine

At which points does the blade cut the
pizza polygon?
Which ingredients are cooked?
how many times is the tomato sauce hit?

2d Range Queries

p1

p2

p3
p4

p5

p6
p7

p8

p9

x
y

Given the points sorted by x , calculate the
geometric graph in O(n)

Bonus:
Range-Tree implementation. Testcases are on
website.

O(n log n) precompute,
O((k + 1) log(n=(k + 1))) query
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kd-Trees

Binary space partition (in 2d)
Given: Set of points
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kd-Trees

Binary space partition (in 2d)
Given: Set of points
divide with respect to x-coordinate
divide each side with respect to y -coordinate
iterate, until each region contains only Θ(1) points

How expensive is an orthogonal range
query in the worst case?

How can we answer range queries?
(e.g.: find all points in rectangle)

How fast is construction?
How much space do we need?


