

Computational Geometry Exercise

Jean-Pierre, Marcus, Wendy

Introductions

Introductions

Exercise Sheets

new sheet every two weeks

- new sheet every two weeks
 - problems concerning recent lectures

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - nice PDF to algogeom_abgaben@lists.kit.edu

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - nice PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

goal: engage with lecture material

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - nice PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

only discuss last exercise sheet?

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

only discuss last exercise sheet?

Problem: boring

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

- only discuss last exercise sheet?
- better: only discuss hard problems, alternative solutions

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

- only discuss last exercise sheet?
- better: only discuss hard problems, alternative solutions
- additionally:
 - work on *current sheet* + get assistance

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

- only discuss last exercise sheet?
- better: only discuss hard problems, alternative solutions
- additionally:
 - work on *current sheet* + get assistance
 - other things (more problems, different perspectives)

goal: engage with lecture material (deepen understanding, practice applying tools)

Exercise Sheets

- new sheet every two weeks
 - problems concerning recent lectures
- submission in teams
 - *nice* PDF to algogeom_abgaben@lists.kit.edu
 - goal: at least $\frac{1}{2}$ of total points, $\frac{1}{4}$ of every sheet

Exercise Session

- only discuss last exercise sheet?
- better: only discuss hard problems, alternative solutions
- additionally:
 - work on *current sheet* + get assistance
 - other things (more problems, different perspectives)

goal: engage with lecture material (deepen understanding, practice applying tools)

goal: practice communication

Plan for today

- vocabulary
- (more) general remarks
- work on sheet 1
- additional problem

4 Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise)

• q

• p

- point
- (straight) line

q

р

point

(straight) line

4 Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise

half-plane

q

р

- point
- (straight) line

4 Jean-Pierre, Marcus, Wendy – Computational Geometry (Exercise)

- point
- (straight) line
- ray

- point
- (straight) line

- point
- (straight) line
- ray
- line segment

- point
- (straight) line
- ray
- line segment

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- point
- quadrilateral
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

point

quadrilateral

- square

- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- point
- (straight) line
- ray

- quadrilateral
 - square
 - rectangle

- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- quadrilateral
 - square
 - rectangle
- circle, disk

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- quadrilateral
 - square
 - rectangle
- circle, disk

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- quadrilateral
 - square
 - rectangle
- circle, disk

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- quadrilateral
 - square
 - rectangle
- circle, disk
- sphere, ball

- point
- (straight) line
- ray
- line segment
- bisector
 - perpendicular
 - angular
- polygon
- polygonal chain / poly-line
- triangle
 - isosceles
 - equilateral

- quadrilateral
 - square
 - rectangle
- circle, disk
- sphere, ball
- (circular) arc

Describing algorithms

Describing algorithms

show correctness [and argue running time]

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode
- think about edge-cases

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode
- think about edge-cases

Level of abstraction

important: convey (all of) the main idea

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode
- think about edge-cases

Level of abstraction

- important: convey (all of) the main idea
- prefer explanations over mathematical formulas

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode
- think about edge-cases

Level of abstraction

- important: convey (all of) the main idea
- prefer explanations over mathematical formulas
- abstract away details when it's clear (how) they work

Describing algorithms

- show correctness [and argue running time]
- prefer natural language over pseudocode
- think about edge-cases

Level of abstraction

- important: convey (all of) the main idea
- prefer explanations over mathematical formulas
- abstract away details when it's clear (how) they work
- drawings are (often) helpful

Q: minimize barrier tape

Aerial Photography

Convex Hull via Divide and Conquer

Map Overlay

Convex Hull via Divide and Conquer

Map Overlay

Assignment Sheet 1 – Hints

Given: set of points

Given: set of points

Given: set of points

Given: set of points

Given: set of points

Can we rule out these two points?

Given: set of points

Task: find two points with maximum distance

Can we rule out these two points?

Given: set of points

Task: find two points with maximum distance

Given: set of points

Task: find two points with maximum distance

Given: set of points

Task: find two points with maximum distance

Given: set of points

Task: find two points with maximum distance

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

- Can we rule out these two points?
- Show: most separated points are *antipodal*
- algorithm: try all such points

Given: set of points

Task: find two points with maximum distance

Can we rule out these two points?

"rotating calipers"

- Show: most separated points are *antipodal*
- algorithm: try all such points

