

Computational Geometry Wrap-Up

Thomas Bläsius

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques
- oral exam: easier to test the first two points
- focus: second point (but I will also try to make the third point relevant)

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques
- oral exam: easier to test the first two points
- focus: second point (but I will also try to make the third point relevant)

Preparation

step 1: recap and understand the content

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques
- oral exam: easier to test the first two points
- focus: second point (but I will also try to make the third point relevant)

Preparation

- step 1: recap and understand the content
- step 2: explain the content to someone

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques
- oral exam: easier to test the first two points
- focus: second point (but I will also try to make the third point relevant)

Preparation

- step 1: recap and understand the content
- step 2: explain the content to someone
- Note: Step 2 is exactly what happens in the exam. Please practice this!

Goal Of The Exam

- we have to certify that you
 - know the content of the lecture
 - understand it
 - are able to use the learned techniques
- oral exam: easier to test the first two points
- focus: second point (but I will also try to make the third point relevant)

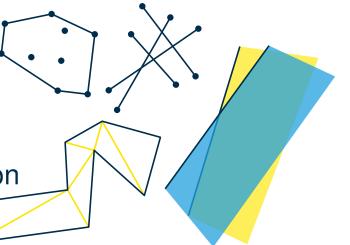
Preparation

- step 1: recap and understand the content
- step 2: explain the content to someone
- Note: Step 2 is exactly what happens in the exam. Please practice this!
- the questions on the following slides may serve as a starting point for this

Overview

Basic Toolbox

- convex hull
- line intersection
- triangulation
- plane intersection



Geometric Data Structures

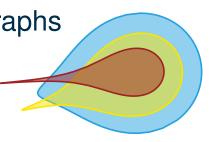
- orthogonal range searching
- space partitioning
- point location

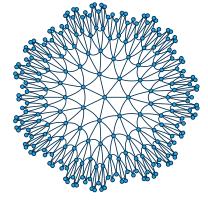
Advanced Toolbox

- Voronoi diagrams
- Delaunay triangulations
- origami
- complexity

Related Topics

- What is geometry?
- hyperbolic geometry
- geometric graphs

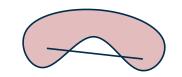




Convex Hull

Problem Definition

- What is a convex set? Different definitions?
- What problem did we consider?



Algorithms: Andrews Algorithm (Graham Scan)/Gift Wrapping

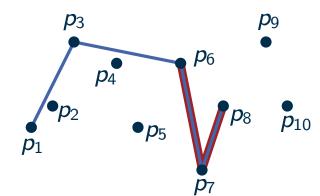
- How does the algorithm work?
- Why is it correct?
- What is the running time? Why?
- Is it robust?

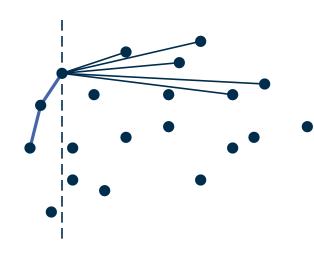
Lower Bounds

Can it be done faster? Why not?

Convex Hull On A Simple Polygon

- Can this be done faster?
- Why? How do you use the given polygon?





Segment Intersection & Sweep-Line

Intersection Of Line Segments

- What is the general approach?
- What special cases do we need to consider?
- How do we handle multiple events at the same point?

Running Time

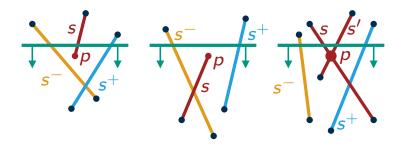
What is the running time? How can we show that?

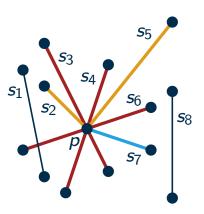
Memory Consumption

- Is linear memory sufficient? How do we achieve that?
- Do we need $\Omega(n^2)$ memory, if we are not careful?

Doubly-Connected Edge List

- What is it? What is it good for?
- What is the connection to segment intersection?





Triangulating Polygons

Basics

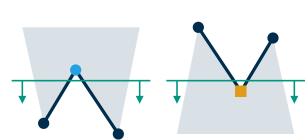
- What is the idea?
- What does y-monotone mean?
- What are split and merge vertices and how do they relate to y-monotonicity?

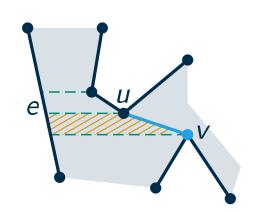
Eliminating Split Vertices

- How can we get rid of split vertices?
- What is the role of the helper?
- Why are the inserted edges crossing-free?
- How does this yield an algorithm? What events are there? How do we handle them?
- What running time do we get?

Triangulating

What is the idea for triangulating y-monotone polygons?





Linear Programs

Molds

■ What is the mold problem? How can it be solved using a 2D-LP?

Linear Programming

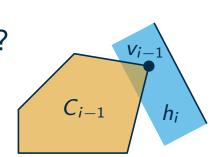
What is an LP? What is the connection to geometry?

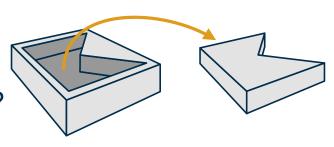
Algorithm 1: Divide And conquer

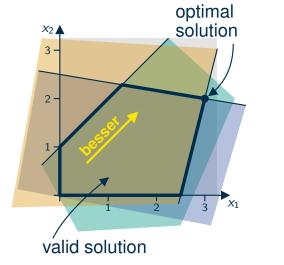
What is the idea? What running time do we get?

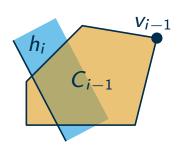
Algorithm 2: Incremental Approach

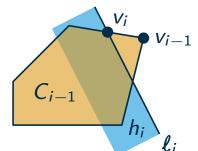
- What is the idea?
- How does it reduce to a 1D-LP in each step?
- Why does a random order help?
- What is the running time? Why?
- How does the backwards-analysis help?











Orthogonal Range Queries

Basics

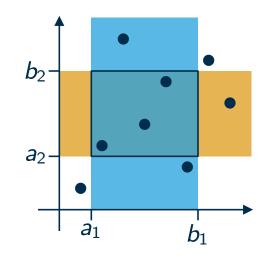
What is the setting?

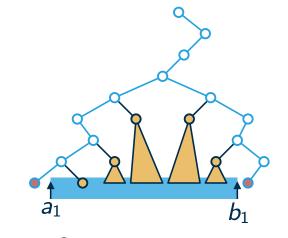
Range Trees

- What is a 2D-range tree?
- How can we answer queries and how long does it take?
- How can we build it and how long does it take? How much memory?
- How does it generalize to more dimensions?

Improved Queries

- How can we save log *n* searches?
- How does this generalize to fractional cascading?
- How to answer queries of the form $[-\infty, b_2] \times [-\infty, b_3]$? And $[a_1, b_1] \times [-\infty, b_2] \times [-\infty, b_3]$?
- Can we get rid of the ∞ ? What is the impact on running time and memory?





Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

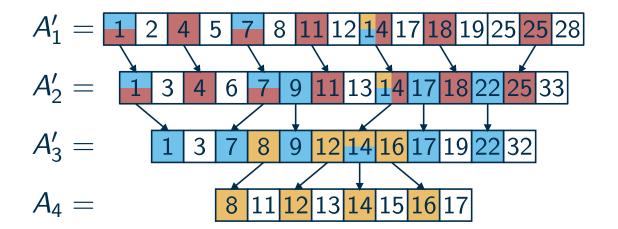
(linear preprocessing and memory)

$$A_1 = \boxed{2 \mid 5 \mid 8 \mid 12 \mid 17 \mid 19 \mid 25 \mid 28}$$

$$A_2 = \boxed{3 \mid 4 \mid 6 \mid 11 \mid 13 \mid 18 \mid 25 \mid 33}$$

$$A_3 = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32}$$

$$A_4 = 8 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |$$



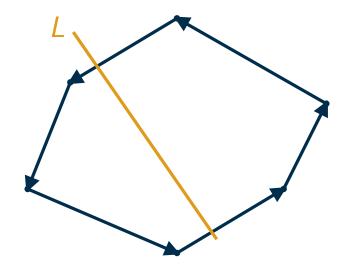
Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

Intersecting Lines With Convex Polygons

data: convex polygon P

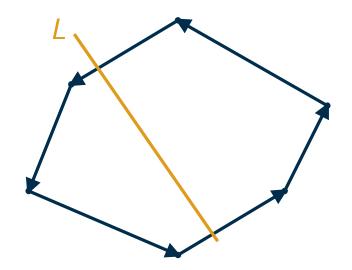
queries: Does a given line L intersect P?



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

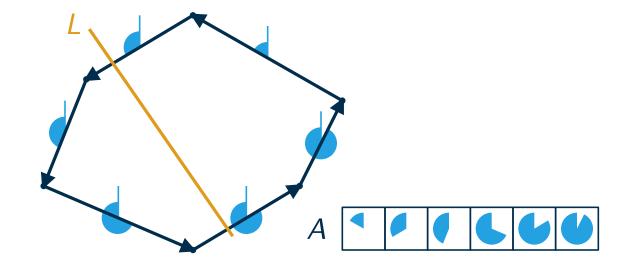
- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

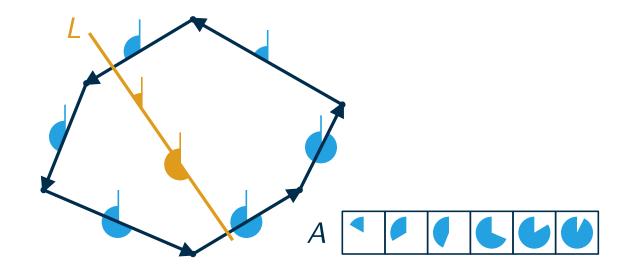
- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

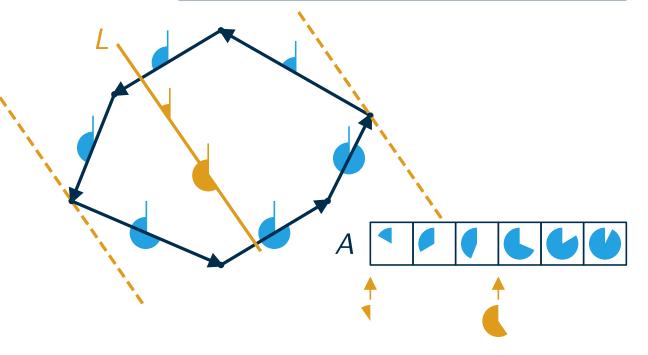
- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

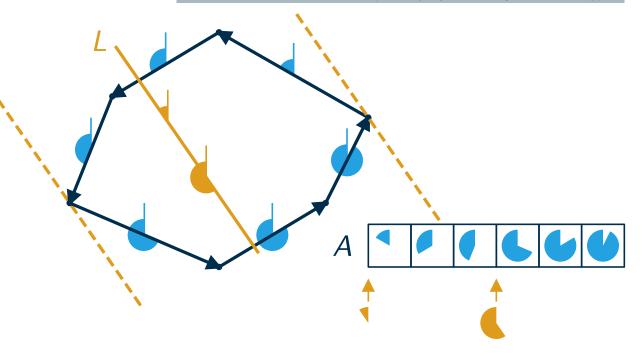
- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles
 - searching for them in A yields "tangents"



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

(linear preprocessing and memory)

- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles
 - searching for them in A yields "tangents"
 - $L \cap P \neq \emptyset \Leftrightarrow L$ lies between the tangents



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

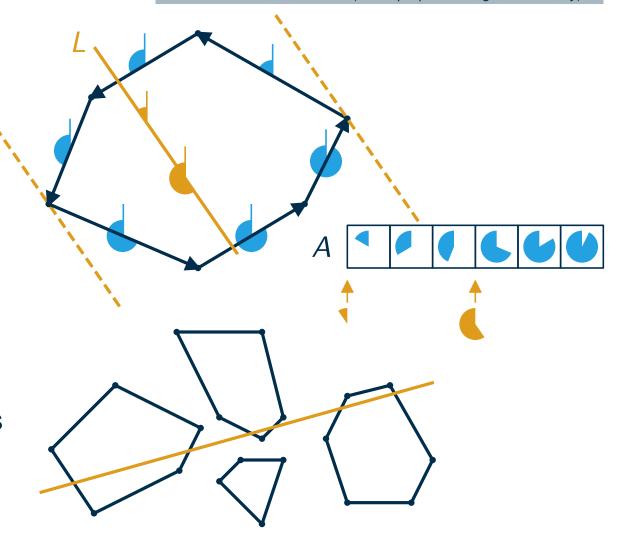
(linear preprocessing and memory)

Intersecting Lines With Convex Polygons

- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles
 - searching for them in A yields "tangents"
 - $L \cap P \neq \emptyset \Leftrightarrow L$ lies between the tangents

Now With Multiple Convex Polygons

• ℓ convex polygons \rightarrow search in ℓ angle arrays



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

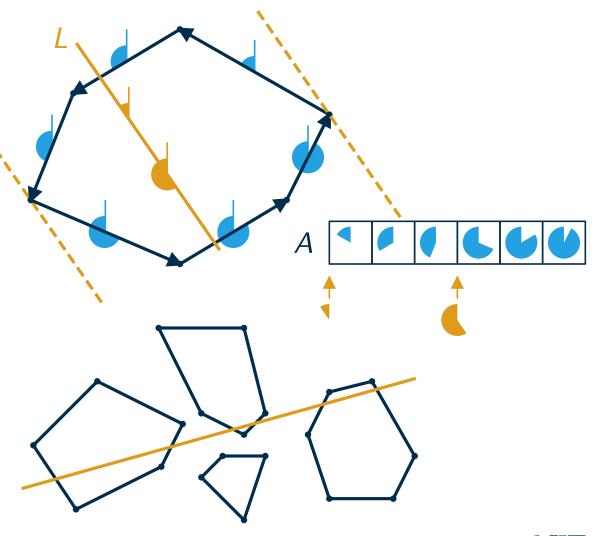
(linear preprocessing and memory)

Intersecting Lines With Convex Polygons

- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles
 - searching for them in A yields "tangents"
 - $L \cap P \neq \emptyset \Leftrightarrow L$ lies between the tangents

Now With Multiple Convex Polygons

- ℓ convex polygons \rightarrow search in ℓ angle arrays
- fractional cascading $\rightarrow O(\ell + \log n)$



Core Insight: Searching for the same x in ℓ sorted arrays of size n can be done in $\ell + \log n$ time.

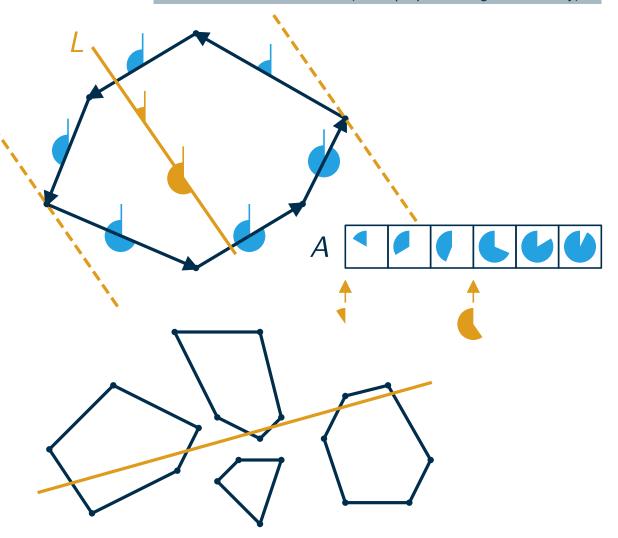
(linear preprocessing and memory)

Intersecting Lines With Convex Polygons

- data: convex polygon P
- queries: Does a given line L intersect P?
- goal: reduce it to binary search in an array
 - array A: angle sequence of the edges
 - L has two angles
 - searching for them in A yields "tangents"
 - $L \cap P \neq \emptyset \Leftrightarrow L$ lies between the tangents

Now With Multiple Convex Polygons

- ℓ convex polygons \rightarrow search in ℓ angle arrays
- fractional cascading $\rightarrow O(\ell + \log n)$
- for nested polygons: pruning possible



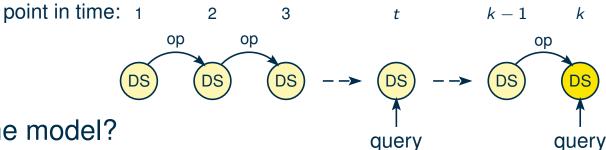
Time Travel and Point Location

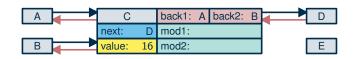
Persistence

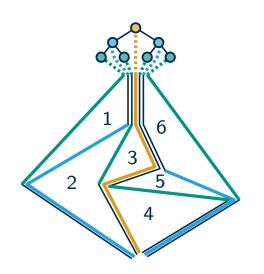
- What is a persistent data structure?
- What types of persistence are there?
- What is a data structure in the pointer machine model?
- How do we make such a data structure persistent?
 - What are atomic operations? How do we make them persistent?
 - Why are cascading recursive calls not too expensive?
 - Why do we need bounded in-degree?

Point-Location

- What is the Problem? How can we solve it using persistence?
- What running time and memory consumption do we get?
- What is an alternative solution? How does fractional cascading help?







Voronoi Diagrams

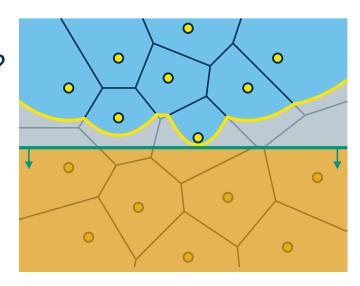
Basics

- What is the Voronoi diagram?
- Which points are vertices of the Voronoi diagram?

50

Sweep-Line Algo

- What is different compared to previous sweep-line algorithms?
- What is the beach line? What is its shape and why?
- In what sense does the beach line only change at discrete places?
- What are these places? What are our events?
- How do we handle these events?
- How do we get the Voronoi diagram in the end?
- What about special cases?



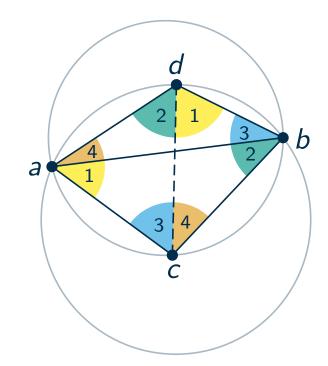
Delaunay Triangulation

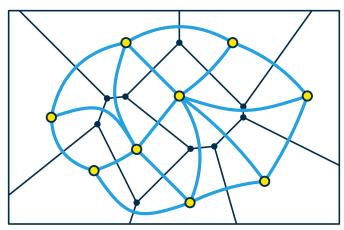
Improving Triangulations

- What is the angle vector of a triangulation?
- How can we iteratively improve a given triangulation?
- What are forbidden edges?
- Which edges are forbidden and what is the connection to circles?
- How does (the generalization of) Thales' theorem help?

(Locally) Optimal Triangulations

- What is the Delaunay triangulation? Is it unique?
- What is the relation to the Voronoi diagram?
- Why is the relation the way it is?





Origami

Flat Foldability

What is a crease pattern? What is a mountain/valley pattern?

1D-Case

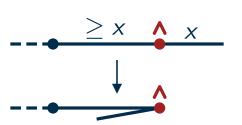
- What are crimp and end-fold?
- Are these reduction rules safe? Why?
- Are they always applicable? Why?
- How does this yield an algorithm?

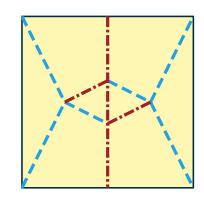
2D-Case: One Vertex

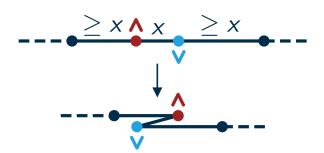
- What is the relation to the 1D-case?
- Which crease and mountain/valley patterns are flat foldable?

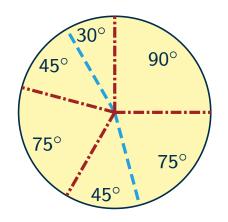
Multiple Vertices

- What is local flat foldability?
- What is the idea for fold-and-cut?









Hard Problems

Reductions From Hard SAT-Variants

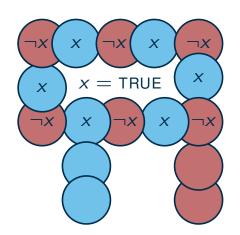
- Which SAT-variants are useful for geometric problems?
- What do we need to do in a reduction? What do we then need to show?

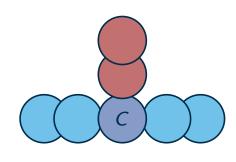
Example 1: Proportional Symbol Maps

- What is the problem? What variants exist?
- How do we prove hardness?

Example 2: Unit Disk Graph Recognition

- What is the problem?
- How do we prove hardness?
- Why do we need a splitter gadget?
- Why can the graph not be drawn completely differently?
- What is the complexity class $\exists \mathbb{R}$?





Searching In Sublogarithmic Time

Model Of Computation

- What are RAM, real RAM, and word RAM?
- Which operations are supported in constant time?

Real RAM

Why is it useful for us? What are the pitfalls?

Word RAM: Searching

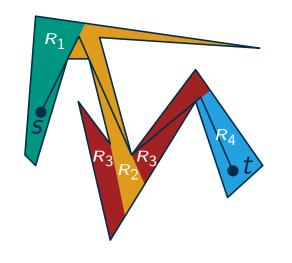
- Which two ideas do we use to speed-up the search?
- How do we branch in every search step? How high is the decision tree?

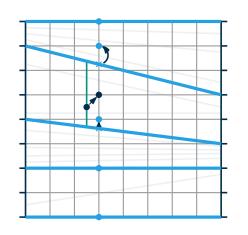
0 256

■ How do we make the decision in which child do descend? In O(1) time?

Word RAM: 2D-Search

- How does it relate to the 1D-case? What are the difficulties?
- What is the core idea to solve them?





Hyperbolic Geometry

Axiomatic Approach

- What is it?
- How to define geometric things without intuition?
- How are the basic terms filled with life?
- What is the Euclidean / absolute / hyperbolic plane?

Hyperbolic Plane

- What is it? Which statements still hold?
- How can I get some intuition? What is the Poincaré disk?

Hyperbolic Uniform Disk Graphs

- What is different compared to Euclidean UDGs?
- What properties do we have in the strongly hyperbolic setting?
- What can we do with it?

Axiom Group I: Incidence

two points define a line; every line contains two points; there are three non-collinear points

Axiom Group II: Distance

distance is a metric; tightness of triangle inequality if and only if collinear

Axiom Group III: Order

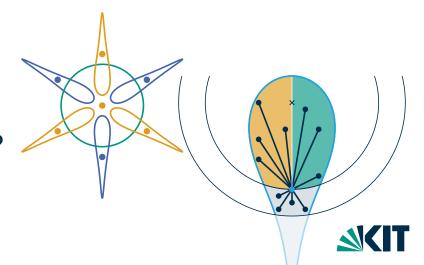
there is a point in every direction with every distance; lines split the plane into half planes

Axiom Group IV: Motion

two motions that map segments of equal length onto each other (preserving orientation)

Axiom Group V: Euclidean Parallel Axiom

line ℓ and point $P \notin \ell \Rightarrow$ at most one line through P parallel to ℓ



Good Luck!