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Back To School: Congruence Theorems

Theorem (Congruence Theorem SSS)
∆ABC and ∆A′B′C′ with |AB| = |A′B′|, |BC| = |B′C′|, and |CA| = |C′A′| are congruent.
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Euclid (around 300 BC)
fix certain ground truths (postulates and axioms)
everything else should follow without using intuition

The Five Postulates Require That
one can draw a straight line from any point to any point;

one can extend every segment to a straight line;

one can draw a circle around every center with every radius;

all right angles are equal;

if a straight line falling on two straight lines makes the inte-
rior angles on the same side less than two right angles, the
two straight lines, if extended indefinitely, meet on that side
on which the angles are less than two right angles.

The Five Axioms
Things that are equal to the same thing are
also equal to one another.
If equals are added to equals, then the
wholes are equal.
If equals are subtracted from equals, then
the differences are equal.
Things that coincide are equal.

The whole is greater than the part.

the last postulate is called parallel postulate
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Euclid’s Elements (around 300 BC)
a series of books on everything known in math at the time with more or less consistent notation

follows the previously mentioned deductive reasoning (based on axioms)

includes: Pythagorean theorem, sum of angles in a triangle, first binomial formula, Thales’ theorem, first inter-
cept theorem, similarity theorems for triangles, Euclidean algorithm (GCD), infinitely many primes, . . .
after the bible the most edited, commented, and translated book

Parallel Postulate
over thousands of years: people tried to deduce it based on the other axioms

turns out: you cannot deduce it (we will see this later)

Modern Perspective
Euclid did not always manage to avoid using intuition completely

definitions like: point – that which has no part; straight line – that which lies evenly with the points on itself

Hilbert followed the deductive reasoning approach more rigorously

Hilbert (1891): »Man muss jederzeit an Stelle von “Punkte, Geraden, Ebenen” “Tische, Stühle, Bierseidel”
sagen können.«

(Grundlagen der Geometrie, 1899)
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Basic Building Blocks
(“point” and “table” are interchangeable)

the basic terms gain meaning from a set of axioms
basic terms that are initially meaningless

(properties that we wish our basic terms to have)

theorems, that can be deduced from the axioms
definitions are just abbreviations that simplify notation

Desirable Properties For A System Of Axioms
consistency
independence (no axiom can be deduced from the others)

completeness (every formulatable statement is (dis)provable)

you don’t always get what you want
(see Gödel’s incompleteness theorem)

Plan For Today
axiomatic system for geometry (with five
groups of axioms I–V)

we assume to already have basic stuff
like numbers (Peano) and set theory
(ZFC)

we follow the axiomatic system of Kol-
mogorov (1977) (equivalent to Hilbert’s system)

(free of contradictions)
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P is the set of chairs and L the set of tables in a restaurant
(P; ‘) ∈ I, if the chair P stands at the table ‘

Example
L ⊆ 2P and (P; ‘) ∈ I ⇔ P ∈ ‘ (we denote it with (P;L;∈))
easy to show: every geometry is isomorphic to (P;L;∈) (for the canonical definition of isomorphic)

Definition
Let P and L be disjoint sets. We call their elements points and lines, respectively. Then
I ⊆ P × L is called an incidence structure. If (P; ‘) ∈ I, we say that P and ‘ are incident.

Definition
An incidence structure is called a geometry if no two lines are incident to the same points.
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geometry. For A;B ∈ P, d(A;B) is called the distance between A and B.
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Definition
An incidence structure (P;L;∈) together with a map d : P × P → R that satisfies axiom
groups I–IV is called absolute geometry. If it satisfies axiom groups I–V, it is called Euclidean
geometry. For A;B ∈ P, d(A;B) is called the distance between A and B.

Axiom Group I: Axioms of Incidence
(1) For every two points A ̸= B, there is exactly one line

‘ with A ∈ ‘ and B ∈ ‘. (we denote it as: ‘ = AB)

(2) Every line contains at least two points.
(3) There are three points that do not lie on the same line.
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Absolute/Euclidean Geometry & Incidence Axioms

Definition
An incidence structure (P;L;∈) together with a map d : P × P → R that satisfies axiom
groups I–IV is called absolute geometry. If it satisfies axiom groups I–V, it is called Euclidean
geometry. For A;B ∈ P, d(A;B) is called the distance between A and B.

Example
stools are points

incidence: stands next to
tables are lines

Does this satisfy I?

Axiom Group I: Axioms of Incidence
(1) For every two points A ̸= B, there is exactly one line

‘ with A ∈ ‘ and B ∈ ‘. (we denote it as: ‘ = AB)

(2) Every line contains at least two points.
(3) There are three points that do not lie on the same line.
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Absolute/Euclidean Geometry & Incidence Axioms

Definition
An incidence structure (P;L;∈) together with a map d : P × P → R that satisfies axiom
groups I–IV is called absolute geometry. If it satisfies axiom groups I–V, it is called Euclidean
geometry. For A;B ∈ P, d(A;B) is called the distance between A and B.

Example
stools are points

incidence: stands next to
tables are lines

Does this satisfy I?Theorem
Two different lines share at most one point.

Axiom Group I: Axioms of Incidence
(1) For every two points A ̸= B, there is exactly one line

‘ with A ∈ ‘ and B ∈ ‘. (we denote it as: ‘ = AB)

(2) Every line contains at least two points.
(3) There are three points that do not lie on the same line.
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Axioms of Distance Definition: Points that lie on the
same line are called collinear.
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Axioms of Distance

Axiom Group II: Axioms of Distance
(1) For all points A;B: d(A;B) ≥ 0 and d(A;B) = 0 ⇔ A = B.
(2) For all points A;B: d(A;B) = d(B;A).
(3) For all points A;B; C, it holds that d(A;B) + d(B;C) ≥ d(A; C). Moreover, A;B; C are

collinear if and only if
d(A;B) + d(B;C) = d(A; C);

d(A; C) + d(C;B) = d(A;B); or
d(B;A) + d(A; C) = d(B;C):

Definition: Points that lie on the
same line are called collinear.
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Axioms of Distance

Note
axiom group II turns a set of points into a metric space
three points on a line ⇔ it is not a detour to visit one of them on the way between the others
we will give the one a name in a moment: it lies between the others

Axiom Group II: Axioms of Distance
(1) For all points A;B: d(A;B) ≥ 0 and d(A;B) = 0 ⇔ A = B.
(2) For all points A;B: d(A;B) = d(B;A).
(3) For all points A;B; C, it holds that d(A;B) + d(B;C) ≥ d(A; C). Moreover, A;B; C are

collinear if and only if
d(A;B) + d(B;C) = d(A; C);

d(A; C) + d(C;B) = d(A;B); or
d(B;A) + d(A; C) = d(B;C):

Definition: Points that lie on the
same line are called collinear.



Thomas Bläsius – Computational Geometry9

Line Segments, Rays, and Convexity

Definition
B lies between A and C if d(A;B) + d(B;C) = d(A; C) and B =∈ {A; C}. A C

B| {z }| {z }

|{z} d(A; C)

d(A;B) d(B;C)
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Line Segments, Rays, and Convexity

Definition
Let A;B ∈ P with A ̸= B. We call (AB) = {P ∈ P | P lies between A and B}
the open segment and AB = (AB) ∪ {A;B} the segment between A and B.
A and B are the end points of AB and d(A;B) is its length.
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Definition
Let A;B ∈ P with A ̸= B. We call (AB) = {P ∈ P | P lies between A and B}
the open segment and AB = (AB) ∪ {A;B} the segment between A and B.
A and B are the end points of AB and d(A;B) is its length.

Definition
Let A;B ∈ P with A ̸= B. Define AB+ = {P | P ∈ AB or B ∈ AP} and
AB− = {P | A ∈ PB}. The sets AB+ and AB− are called rays starting at A.

Definition
B lies between A and C if d(A;B) + d(B;C) = d(A; C) and B =∈ {A; C}. A C

B| {z }| {z }

|{z} d(A; C)

d(A;B) d(B;C)

A B

AB+AB−
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Line Segments, Rays, and Convexity

Definition
Let A;B ∈ P with A ̸= B. We call (AB) = {P ∈ P | P lies between A and B}
the open segment and AB = (AB) ∪ {A;B} the segment between A and B.
A and B are the end points of AB and d(A;B) is its length.

Definition
Let A;B ∈ P with A ̸= B. Define AB+ = {P | P ∈ AB or B ∈ AP} and
AB− = {P | A ∈ PB}. The sets AB+ and AB− are called rays starting at A.

Definition
B lies between A and C if d(A;B) + d(B;C) = d(A; C) and B =∈ {A; C}.

Definition
A set M ⊆ P is convex, if AB ⊆ M for all A;B ∈ M.

A C
B| {z }| {z }

|{z} d(A; C)

d(A;B) d(B;C)

A B

AB+AB−
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Axioms of Order and Half Planes

Axiom Group III: Axioms of Order
(1) For every point A and every number a ∈ R+, every ray starting at A contains exactly one

point B with d(A;B) = a.
(2) Every line ‘ partitions the set P\‘ in two non-empty subsets such that for every A;B ∈ P\‘,

the segment AB intersects ‘ if and only if A and B are in different subsets.
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Axioms of Order and Half Planes

Definition
The two sets are called open half planes with boundary line ‘. The union with ‘ yields a half
plane. The half plane with boundary line ‘ = AB that contains a point C =∈ ‘ is denoted with
ABC+. The other half plane with ABC−.

Axiom Group III: Axioms of Order
(1) For every point A and every number a ∈ R+, every ray starting at A contains exactly one

point B with d(A;B) = a.
(2) Every line ‘ partitions the set P\‘ in two non-empty subsets such that for every A;B ∈ P\‘,

the segment AB intersects ‘ if and only if A and B are in different subsets.
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Axioms of Order and Half Planes

Note
(1) ensures that we have infinitely many points
(2) in particular tells us that half planes are convex

Definition
The two sets are called open half planes with boundary line ‘. The union with ‘ yields a half
plane. The half plane with boundary line ‘ = AB that contains a point C =∈ ‘ is denoted with
ABC+. The other half plane with ABC−.

Axiom Group III: Axioms of Order
(1) For every point A and every number a ∈ R+, every ray starting at A contains exactly one

point B with d(A;B) = a.
(2) Every line ‘ partitions the set P\‘ in two non-empty subsets such that for every A;B ∈ P\‘,

the segment AB intersects ‘ if and only if A and B are in different subsets.



Thomas Bläsius – Computational Geometry11

Angles and Motions
A

B

C

Definition
The union of two rays is an angle \BAC = AB+ ∪ AC+, with two arms AB+ and AC+. It is
straight if \BAC = AB and a zero angle if AB+ = AC+. ABC+ ∩ ACB+ is its interior.
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Definition
The union of two rays is an angle \BAC = AB+ ∪ AC+, with two arms AB+ and AC+. It is
straight if \BAC = AB and a zero angle if AB+ = AC+. ABC+ ∩ ACB+ is its interior.

Definition: A surjective map m : P → P is called motion if it preserves distances.
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Properties That More Or Less Directly Follow
a motion is also injective as d(A;B) = 0 ⇔ A = B
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straight if \BAC = AB and a zero angle if AB+ = AC+. ABC+ ∩ ACB+ is its interior.

Definition: A surjective map m : P → P is called motion if it preserves distances.
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Angles and Motions
A

B

C

Properties That More Or Less Directly Follow
a motion is also injective as d(A;B) = 0 ⇔ A = B

motions preserve the between-relation, segments, lines, rays, half planes, angles, etc.
for d(A;B) = d(A′; B′) > 0, there exist at most two motions that map A to A′ and B to B′

Definition
The union of two rays is an angle \BAC = AB+ ∪ AC+, with two arms AB+ and AC+. It is
straight if \BAC = AB and a zero angle if AB+ = AC+. ABC+ ∩ ACB+ is its interior.

Definition: A surjective map m : P → P is called motion if it preserves distances.

Axiom Group IV: Axiom of Motion
For d(A;B) = d(A′; B′) > 0 there are at least two motions that map A to A′ and B to B′.
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Parallel Axiom

Definition: Two lines that do not intersect are called parallel.
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Parallel Axiom

Definition: Two lines that do not intersect are called parallel.

Axiom Group V: Euclidean Parallel Axiom
For every line ‘ and every point P =∈ ‘, there is at most one line through P that is parallel to ‘.



Thomas Bläsius – Computational Geometry12

Parallel Axiom

Definition: Two lines that do not intersect are called parallel.

Axiom Group V: Euclidean Parallel Axiom
For every line ‘ and every point P =∈ ‘, there is at most one line through P that is parallel to ‘.

Recap
Axiom Group I: Incidence
two points define a line; every line contains two points; there are
three non-collinear points

Axiom Group II: Distance
distance is a metric; tightness of triangle inequality if and only if
collinear

Axiom Group IV: Motion
two motions that map segments of equal length onto each other (pre-
serving orientation)

Definition
An incidence structure (P;L;∈) together with a map d : P×P → R
that satisfies axiom groups I–IV is called absolute geometry. If it
satisfies axiom groups I–V, it is called Euclidean geometry. For
A;B ∈ P, d(A;B) is called the distance between A and B.

Axiom Group III: Order
there is a point in every direction with every distance; lines split the
plane into half planes
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Absolute Geometry: Flags and Special Motions

hA

H

Definition
Let h = AB+ be a ray and H be a half plane with boundary line
AB. The triple (A; h;H) is called flag.
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Absolute Geometry: Flags and Special Motions

hA

H

Theorem
For any two flags (A; h;H) and (A′; h′; H′), there is exactly one motion that maps (A; h;H) to
(A′; h′; H′) (i.e., m(A) = A′, m(h) = h′, m(H) = H′).

Definition
Let h = AB+ be a ray and H be a half plane with boundary line
AB. The triple (A; h;H) is called flag.
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Absolute Geometry: Flags and Special Motions

hA

H

Theorem
For any two flags (A; h;H) and (A′; h′; H′), there is exactly one motion that maps (A; h;H) to
(A′; h′; H′) (i.e., m(A) = A′, m(h) = h′, m(H) = H′).

Definition
Let h = AB+ be a ray and H be a half plane with boundary line
AB. The triple (A; h;H) is called flag.

Definition
The motion that maps (A; h;H) to (A′; h′; H′) is called translation if A ̸= A′, h′ ⊆ h and
H = H′. (Point) reflection and Rotation can be defined similarly.
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Absolute Geometry: Triangles and Congruence

Definition
Let A, B, C be non-collinear points. Then ∆ABC = AB ∪BC ∪ CA is the triangle with sides
AB, BC, and CA.
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Absolute Geometry: Triangles and Congruence

Definition
Let A, B, C be non-collinear points. Then ∆ABC = AB ∪BC ∪ CA is the triangle with sides
AB, BC, and CA.

Definition
Two sets of points S and S′ are congruent (S ∼= S′) if there is a motion m with m(S) = S′.
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Definition
Let A, B, C be non-collinear points. Then ∆ABC = AB ∪BC ∪ CA is the triangle with sides
AB, BC, and CA.

Definition
Two sets of points S and S′ are congruent (S ∼= S′) if there is a motion m with m(S) = S′.

Theorem (Congruence)
∆ABC and ∆A′B′C′ are congruent if AB ∼= A′B′, BC ∼= B′C′, and CA ∼= C′A′. (SSS)
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Absolute Geometry: Triangles and Congruence

Definition
Let A, B, C be non-collinear points. Then ∆ABC = AB ∪BC ∪ CA is the triangle with sides
AB, BC, and CA.

Definition
Two sets of points S and S′ are congruent (S ∼= S′) if there is a motion m with m(S) = S′.

Theorem (Congruence)
∆ABC and ∆A′B′C′ are congruent if AB ∼= A′B′, BC ∼= B′C′, and CA ∼= C′A′. (SSS)

. . . if AB ∼= A′B′, AC ∼= A′C′, and \BAC ∼= \B′A′C′. (SAS)

. . . if AB ∼= A′B′, \BAC ∼= \B′A′C′, and \ABC ∼= \A′B′C′. (ASA)
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Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward
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Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

angle

adjacent angle

opposite angle

adjacent angle angular bisector
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Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint
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right angle midpoint

perpendicular bisector

internal angle



Thomas Bläsius – Computational Geometry15

Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint

perpendicular bisector

angle measure

ı 0
ı
2

ı
4 3

4
ı

internal angle



Thomas Bläsius – Computational Geometry15

Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

Theorems
every angle is congruent to its opposite angle

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint

perpendicular bisector

angle measure

ı 0
ı
2

ı
4 3

4
ı

internal angle



Thomas Bläsius – Computational Geometry15

Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

Theorems

the following are unique: the angular bisector, the midpoint, the perpendicular bisector
every angle is congruent to its opposite angle

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint

perpendicular bisector

angle measure

ı 0
ı
2

ı
4 3

4
ı

internal angle



Thomas Bläsius – Computational Geometry15

Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

Theorems

the following are unique: the angular bisector, the midpoint, the perpendicular bisector
every angle is congruent to its opposite angle

the perpendicular bisector of AB is the set of all points with equal distance to A and B

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint

perpendicular bisector

angle measure

ı 0
ı
2

ı
4 3

4
ı

internal angle



Thomas Bläsius – Computational Geometry15

Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

Theorems
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Absolute Geometry: Miscellaneous

Disclaimer
we now use terms that we have not defined formally
you probably know them and have an intuition for them
a definition (without intuition) is usually straight-forward

Theorems

the following are unique: the angular bisector, the midpoint, the perpendicular bisector
every angle is congruent to its opposite angle

the perpendicular bisector of AB is the set of all points with equal distance to A and B
sum of all internal angles (measure) in a triangle ≤ ı

if there is a triangle with internal angle sum ı, then every triangle has internal angle sum ı

angle

adjacent angle

opposite angle

adjacent angle angular bisector

right angle midpoint

perpendicular bisector

angle measure

ı 0
ı
2

ı
4 3

4
ı

internal angle
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Seen So Far

Axiom Group I: Incidence
two points define a line; every line contains two points; there are
three non-collinear points

Axiom Group II: Distance
distance is a metric; tightness of triangle inequality if and only if
collinear

Definition
An incidence structure (P;L;∈) together with a map d : P×P → R
that satisfies axiom groups I–IV is called absolute geometry. If it
satisfies axiom groups I–V, it is called Euclidean geometry. For
A;B ∈ P, d(A;B) is called the distance between A and B.

Axiom Group IV: Motion
two motions that map segments of equal length onto each other (pre-
serving orientation)

Axiom Group V: Euclidean Parallel Axiom
line ‘ and point P =∈ ‘ ⇒ at most one line through P parallel to ‘

Axiom Group III: Order
there is a point in every direction with every distance; lines split the
plane into half planes
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Seen So Far

Axiom Group I: Incidence
two points define a line; every line contains two points; there are
three non-collinear points

Axiom Group II: Distance
distance is a metric; tightness of triangle inequality if and only if
collinear

What Happens If We Negate The Parallel Axiom?

Definition
An incidence structure (P;L;∈) together with a map d : P×P → R
that satisfies axiom groups I–IV is called absolute geometry. If it
satisfies axiom groups I–V, it is called Euclidean geometry. For
A;B ∈ P, d(A;B) is called the distance between A and B.

Axiom Group IV: Motion
two motions that map segments of equal length onto each other (pre-
serving orientation)

Axiom Group V: Euclidean Parallel Axiom
line ‘ and point P =∈ ‘ ⇒ at most one line through P parallel to ‘

Definition
An incidence structure (with d ) satisfying axiom groups I–IV, V’ is called hyperbolic geometry.

Axiom Group V’: Hyperbolic Parallel Axiom
There is a line ‘ and a point P =∈ ‘ such that there are two lines through P parallel to ‘.

Axiom Group III: Order
there is a point in every direction with every distance; lines split the
plane into half planes
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The Hyperbolic Plane

What Happens If We Negate The Parallel Axiom?
the axioms remain consistent
we get a second model that satisfies the axioms of the absolute plane
all theorems for the absolute plane also hold in the hyperbolic plane

(next to the Euclidean plane)
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The Hyperbolic Plane

What Happens If We Negate The Parallel Axiom?
the axioms remain consistent
we get a second model that satisfies the axioms of the absolute plane
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The Hyperbolic Plane

The sum of interior angles in a triangle is less than ı. There are not rectangles.

What Happens If We Negate The Parallel Axiom?
the axioms remain consistent
we get a second model that satisfies the axioms of the absolute plane
all theorems for the absolute plane also hold in the hyperbolic plane

This All Seems Somewhat Strange
so far: consider Euclidean geometry without intuition → naturally yields hyperbolic geometry
we are somehow lacking an intuition for the hyperbolic plane
helpful: models that represent the hyperbolic plane

(next to the Euclidean plane)

Theorem (Hyperbolic Plane)
For every line ‘ and every point P =∈ ‘, there are infinitely many lines parallel to ‘ through P .
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Poincaré Disk Model

Points
consider a (Euclidean) disk D with radius 1 around the point O
let P be the set of points in the interior of the disk

Lines
let L be the union of:

set of open segments through O with endpoints on D’s boundary
set of open circular arcs in D perpendicular to the boundary of D

D

O

Axiom Group I: Incidence
two points define a line; every line contains two points; there are
three non-collinear points

Axiom Group II: Distance
distance is a metric; tightness of triangle inequality if and only if
collinear

Axiom Group III: Order
there is a point in every direction with every distance; lines split the
plane int half planes

Axiom Group III: Order
there is a point in every direction with every distance; lines split the
plane int half planes

Axiom Group IV: Motion
two motions that map segments of equal length onto each other (pre-
serving orientation)

Axiom Group V’: Hyperbolic Parallel Axiom
There is a line ‘ and a point P =∈ ‘ such that there are two lines
through P parallel to ‘.

Short Break
Can you verify that the model satisfies some of the axioms?
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Poincaré Disk Model

Points
consider a (Euclidean) disk D with radius 1 around the point O
let P be the set of points in the interior of the disk

Lines
let L be the union of:

set of open segments through O with endpoints on D’s boundary
set of open circular arcs in D perpendicular to the boundary of D

D

O

It Holds That
(P;L;∈) together with an appropriate distance function satisfies axiom groups I–IV and V’
the model is angle preserving
this makes it “intuitively obvious” that the sum of internal angles in a triangle is less than ı

r

r r

r

points on the boundary of D are not part of the hyperbolic plane
distances are distorted, but hyperbolic circles look like circles (with different center)
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Poincaré Disk – Parallels, Half Plans, Ideal Points

Parallel Lines Through One Point

‘

P
you can easily find multiple lines parallel to ‘ through P
two lines are only barely parallel

they “intersect” ‘ at the boundary of the Poincaré Disk
those are the limiting parallels of ‘ through P

Half Planes
there are infinitely many disjoint half planes (being pairwise congruent)
so compared to the Euclidean plane, there is somehow more space

Ideal Points
points on the disk’s boundary are called ideal points
each line “ends” in two ideal points
ideal triangle: three lines that “connect” three ideal points

(they are not points!)

(generalizes to n-gons)
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dH(A;B) = log
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′) · dE(A′; B)

dE(A;A′) · dE(B;B′)

hyperbolic distance
Euclidean distance

(in the Poincaré disk)

Distance To The Origin
let O be the origin and P a point with rE = dE(O; P ) und rH = dH(O; P )

O

P

r

then:
rH = log

1 + rE
1− rE

= 2arctanh(rE) and rE =
erH − 1

erH + 1
= tanh

“ rH
2

”

rE

rH

rH

rE



Thomas Bläsius – Computational Geometry20

Poincaré Disk – Distances

0 11=2
0

1

1=2

0 4321 5
0

4

3

2

1

5

Distances
A and B: two points in the Poincaré disk
A′ and B′: ideal points of the line AB A B

A′
B′

dH(A;B) = log
dE(A;B

′) · dE(A′; B)

dE(A;A′) · dE(B;B′)

hyperbolic distance
Euclidean distance

(in the Poincaré disk)

Distance To The Origin
let O be the origin and P a point with rE = dE(O; P ) und rH = dH(O; P )

O

P

r

then:
rH = log

1 + rE
1− rE

= 2arctanh(rE) and rE =
erH − 1

erH + 1
= tanh

“ rH
2

”

rE

rH

rH

rE



Thomas Bläsius – Computational Geometry21

Area In The Hyperbolic Plane

Area Of A Triangle
ı − (sum of internal angles)
all triangles have area strictly below ı



Thomas Bläsius – Computational Geometry21

Area In The Hyperbolic Plane

Area Of A Triangle
ı − (sum of internal angles)

an ideal triangle has area ı
all triangles have area strictly below ı



Thomas Bläsius – Computational Geometry21

Area In The Hyperbolic Plane

Area Of A Triangle
ı − (sum of internal angles)

an ideal triangle has area ı
all triangles have area strictly below ı

Disks With (Hyperbolic) Radius r

circumference: 2ı sinh(r)

area: 4ı sinh2(r=2) = 2ı(cosh(r)− 1)



Thomas Bläsius – Computational Geometry21

Area In The Hyperbolic Plane

Area Of A Triangle
ı − (sum of internal angles)

an ideal triangle has area ı
all triangles have area strictly below ı

Disks With (Hyperbolic) Radius r

circumference: 2ı sinh(r)

area: 4ı sinh2(r=2) = 2ı(cosh(r)− 1)

10

31 2

5

cosh(x)

ex=2

sinh(x)

sinh(x) =
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Area In The Hyperbolic Plane

Area Of A Triangle
ı − (sum of internal angles)

an ideal triangle has area ı
all triangles have area strictly below ı

Disks With (Hyperbolic) Radius r

circumference: 2ı sinh(r)

area: 4ı sinh2(r=2) = 2ı(cosh(r)− 1)

10

31 2

5

cosh(x)

ex=2

sinh(x)

circumference
area

4

100

31 20
0

50
area (Euclidean)

circumference (Euc.)

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2
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Wrap-Up

Seen Today
axiomatic construction of geometry: defining and proving without intuition
the parallel axiom and the hyperbolic plane
basic similarities and differences between Euclidean and hyperbolic geometry
Poincaré Disk helps the intuition

What Else Is There?
several other models: upper half-plane (Poincaré half plane), hyperboloid, Beltrami-Klein, na-
tive polar coordinates, . . .
different coordinate systems
different applications in the hyperbolic plane
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Some Useful Ressources

“yellow pages”: many useful infos and formulas

Hipe hyperbolic Ipe (native polar)

HManim: hyperbolic extension of Manim

Ipelets
Poincaré disk
native polar coordinates

Hyperbolic Games
HyperRogue
Hyperbolica
hyperbolic Sokoban https://sokyokuban.com/

http://www.maths.gla.ac.uk/wws/cabripages/hyperbolic/hyperbolic0.html

https://github.com/thobl/ipelets/tree/master/poincare

https://github.com/maxkatzmann/native-hyperbolic-ipelet

https://github.com/maxkatzmann/Hipe

https://maxkatzmann.github.io/hmanim/

http://www.roguetemple.com/z/hyper/

https://www.youtube.com/playlist?list=PLh9DXIT3m6N4qJK9GKQB3yk61tVe6qJvA

https://sokyokuban.com/
http://www.maths.gla.ac.uk/wws/cabripages/hyperbolic/hyperbolic0.html
https://github.com/thobl/ipelets/tree/master/poincare
https://github.com/maxkatzmann/native-hyperbolic-ipelet
https://github.com/maxkatzmann/Hipe
https://maxkatzmann.github.io/hmanim/
http://www.roguetemple.com/z/hyper/
https://www.youtube.com/playlist?list=PLh9DXIT3m6N4qJK9GKQB3yk61tVe6qJvA
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Circle Limit III
M. C. Escher

Bonus: Hyperbolic Fish
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Circle Limit III
M. C. Escher

Bonus: Hyperbolic Fish
(more or less)
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