
1

Computational Geometry

Thomas Bläsius

Real RAM, Word RAM, Point Location
What is a computer?

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

common model in computational geometry → abstracts away precision issues

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

common model in computational geometry → abstracts away precision issues
potential problem: sometimes too powerful (more powerful than your computer)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

common model in computational geometry → abstracts away precision issues
potential problem: sometimes too powerful (more powerful than your computer)

word RAM
every memory cell holds a word consisting of w bits
w is sufficiently large (≥ log n, but potentially much larger)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

arithmetic operations on integers (of size up to 2w) in O(1)

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

common model in computational geometry → abstracts away precision issues
potential problem: sometimes too powerful (more powerful than your computer)

word RAM
every memory cell holds a word consisting of w bits
w is sufficiently large (≥ log n, but potentially much larger)

Thomas Bläsius – Computational Geometry2

What Can Your Computer Do?

bit-wise logical operations and bit shifts in O(1)

arithmetic operations on integers (of size up to 2w) in O(1)

Model Of Computation
RAM (random access machine): memory access in O(1) via an address
real RAM

every memory cell holds a real number (of arbitrary size/precision)
arithmetic operations (+;−; ·; =) in O(1)

rounding to integers is not allowed (otherwise, you can do broken things)

common model in computational geometry → abstracts away precision issues
potential problem: sometimes too powerful (more powerful than your computer)

word RAM
every memory cell holds a word consisting of w bits
w is sufficiently large (≥ log n, but potentially much larger)

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2
R3 R3

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2
R3 R3

R4

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2
R3 R3

R4

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2
R3 R3

R4

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Theorem (without proof)
There are instances encodable with Θ(n log n)
bits such that representing the polygons
R1; : : : ; Rn requires Θ(n2 log n) bits.

Thomas Bläsius – Computational Geometry3

Minimum Link Path In Polygons

s

t

General Idea
Ri = set of points reachable from s with i
links
iteratively compute Ri+1 from Ri

R1

R2
R3 R3

R4

Which Of Them Is True?
first theorem assumes a real RAM
an implementations (e.g., with doubles for
coordinates) is maybe not robust

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Theorem (without proof)
There are instances encodable with Θ(n log n)
bits such that representing the polygons
R1; : : : ; Rn requires Θ(n2 log n) bits.

Thomas Bläsius – Computational Geometry4

Point-Location In A Vertical Slab (word RAM)

p

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)

Thomas Bläsius – Computational Geometry4

Point-Location In A Vertical Slab (word RAM)

p

Lets Start With One Dimension
predecessor search in a sequence of numbers
default solution: binary search provides Θ(log n) queries

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)

Thomas Bläsius – Computational Geometry4

Point-Location In A Vertical Slab (word RAM)

p

Lets Start With One Dimension
predecessor search in a sequence of numbers
default solution: binary search provides Θ(log n) queries
goal: queries in o(log n)

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)

Thomas Bläsius – Computational Geometry4

Point-Location In A Vertical Slab (word RAM)

p

Lets Start With One Dimension
predecessor search in a sequence of numbers
default solution: binary search provides Θ(log n) queries

use properties of the word RAM
numbers are integers
numbers lie in the interval [0; 2w)
arithmetic operations, bit-wise logical operations, and bit-shifts on words of length w in O(1)

goal: queries in o(log n)

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound
Binary Search Basics

walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h
(in the beginning, all numbers lie in [0; 2w))

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h

recursion depth: w
h

(in the beginning, all numbers lie in [0; 2w))

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h

recursion depth: w
h

(in the beginning, all numbers lie in [0; 2w))

problem: deciding whether a subinterval still contains integers

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h

recursion depth: w
h

(in the beginning, all numbers lie in [0; 2w))

problem: deciding whether a subinterval still contains integers
combining both ideas

in each step: shrink the number of integers or the interval

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry5

Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h

recursion depth: w
h

(in the beginning, all numbers lie in [0; 2w))

problem: deciding whether a subinterval still contains integers
combining both ideas

in each step: shrink the number of integers or the interval
decision for the correct interval: O(1) with bit magic

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212

‘ = 12
h = 4
b = 3

n = 12

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

One Subdivision Step

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
define partition into subintervals

each marked cell is a subinterval

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
define partition into subintervals

each marked cell is a subinterval
each maximal sequence of unmarked cells is a subinterval

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
define partition into subintervals

each marked cell is a subinterval
each maximal sequence of unmarked cells is a subinterval

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

Properties Of This Subdivision
we have O(b) subintervals

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
define partition into subintervals

each marked cell is a subinterval
each maximal sequence of unmarked cells is a subinterval

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

Properties Of This Subdivision
we have O(b) subintervals

the boundaries of each subinterval is a multiple of 2‘−h

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry6

Subdivision Into Subintervals

0 4096 = 212
divide interval of size 2‘

into 2h cells of size 2‘−h

‘ = 12
h = 4

mark each n
b

th integer

One Subdivision Step

mark cells that contain marked integers
define partition into subintervals

each marked cell is a subinterval
each maximal sequence of unmarked cells is a subinterval

b = 3

n = 12

256

2016

19521888

18241088576 2624 2688 3456

Properties Of This Subdivision
we have O(b) subintervals

the boundaries of each subinterval is a multiple of 2‘−h

each subinterval has length 2‘−h or contains at most n
b

integers

1920

1216 3200

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry7

Recursive Subdivision number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

stop recursion if only few integers are left

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

stop recursion if only few integers are left
height of the tree: at most logb(n) +

w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Why?

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Why?

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

bit magic: each step runs in O(1) if w
h
≥ b

c
(for a constant c)

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

Why?

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

bit magic: each step runs in O(1) if w
h
≥ b

c
(for a constant c)

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

O(logb(n) + b) for w
h
= b

c

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

|{z
}

Why?

Thomas Bläsius – Computational Geometry7

Recursive Subdivision

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

bit magic: each step runs in O(1) if w
h
≥ b

c
(for a constant c)

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

O(logb(n) + b) for w
h
= b

c

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

O(log n
log log n) for b =

√
log n|{z

}

Why?

Thomas Bläsius – Computational Geometry8

How Many Bits Do You Need?

256 512

b r e a k

How many bits are necessary in total to encode the numbers b, r , e, a, k?

Thomas Bläsius – Computational Geometry8

How Many Bits Do You Need?

256 512

b r e a k

How many bits are necessary in total to encode the numbers b, r , e, a, k?

b = 3 · 256
r = 6 · 256
e = 7 · 256
a = 10 · 256
k = 15 · 256

Thomas Bläsius – Computational Geometry8

How Many Bits Do You Need?

256 512

b r e a k

How many bits are necessary in total to encode the numbers b, r , e, a, k?

b = 3 · 256 001100000000

r = 6 · 256 011000000000

e = 7 · 256 011100000000

a = 10 · 256 101000000000

k = 15 · 256 111100000000

Thomas Bläsius – Computational Geometry8

How Many Bits Do You Need?

256 512

b r e a k

How many bits are necessary in total to encode the numbers b, r , e, a, k?

0011 | 0110 | 0111 | 1010 | 1111

b = 3 · 256 001100000000

r = 6 · 256 011000000000

e = 7 · 256 011100000000

a = 10 · 256 101000000000

k = 15 · 256 111100000000
20 bits|

{z
}

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

divide by 2‘−h → result is ≤ 2h

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

divide by 2‘−h → result is ≤ 2h

concatenate binary representation: h · b̄ bits

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

1 0 0 0 1 1 0 1 1 1 1 00 1 1 1

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

divide by 2‘−h → result is ≤ 2h

concatenate binary representation: h · b̄ bits

spend one extra bit per boundary → (h + 1) · b̄ bits

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

divide by 2‘−h → result is ≤ 2h

concatenate binary representation: h · b̄ bits

spend one extra bit per boundary → (h + 1) · b̄ bits

assume (h + 1) · b̄ ≤ w → requires just one word

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

(recall: we assumed things to work if w
h

≥ b
c

for a constant c)

Thomas Bläsius – Computational Geometry9

Representing The Subintervals

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

Representing The b̄ Interval Boundaries a1; : : : ; ab̄
boundaries are multiples of 2‘−h

divide by 2‘−h → result is ≤ 2h

concatenate binary representation: h · b̄ bits

spend one extra bit per boundary → (h + 1) · b̄ bits

assume (h + 1) · b̄ ≤ w → requires just one word

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

store the resulting word ⟨ã1 | ã2 | : : : ⟩ at the corresponding node in the recursion tree

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

(recall: we assumed things to work if w
h

≥ b
c

for a constant c)

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?

101110111111
q = 3007

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

1011
q̃ = 11

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

1011
q̃ = 11

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

−

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

− 0 0 1 11 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

− 0 0 1 11 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

most of it can be precomputed → O(1) (1× subtraction, 1× multiplication, 1× bit-wise &)

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

− 0 0 1 11 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry10

Finding The Right Subintervall

most of it can be precomputed → O(1) (1× subtraction, 1× multiplication, 1× bit-wise &)

256

2016

19521888

18241088576 2624 2688 3456

1920

1216 3200

7 · 256 = 1792 2048 = 8 · 256 13 · 256 = 3328 3584 = 14 · 256000100000000

011100000000 100000000000 110100000000 111000000000

7 8 13 14
0111 1000 1101 1110

⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead

101110111111
q = 3007

(division by 2‘−h preserves order)

it holds that: ãi < q̃ ⇔ (2h + ãi − q̃)& 2h = 0

compute: (⟨2h | 2h | : : : ⟩+ ⟨ã1 | ã2 | : : : ⟩ − q̃ · ⟨1 | 1 | : : : ⟩)& ⟨2h | 2h | : : : ⟩

the most significant 1-bit yields i , such that ai−1 < q ≤ ai (MS1B computable with O(1) elementary operations)

1011
q̃ = 11

⟨2h | 2h | : : : ⟩+ 1 1 1 1
q̃ · ⟨1 | 1 | : : : ⟩ = 0 0 0 01 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

− 0 0 1 11 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1

‘ = 12
h = 4
b = 3

n = 12

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

Why?

Thomas Bläsius – Computational Geometry11

Recap

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

bit magic: each step runs in O(1) if w
h
≥ b

c
(for a constant c)

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

O(logb(n) + b) for w
h
= b

c

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

O(log n
log log n) for b =

√
log n|{z

}

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

Why Does This Help?

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate
recursive call between boundaries

Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers (n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate
recursive call between boundaries Problem: What if boundaries intersect the segments?

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

2‘R2‘L

S|
{z

} |{
z}

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

Proof: exercise

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

Notes On Running The Query For A Point q = (x; y)

left/right endpoints of all s̃i can be packed into just one word

Proof: exercise

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

Notes On Running The Query For A Point q = (x; y)

the (rounded) intersections of all s̃i with a vertical line at x̃ are computable with O(1) operations
left/right endpoints of all s̃i can be packed into just one word

Proof: exercise

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

Notes On Running The Query For A Point q = (x; y)

the (rounded) intersections of all s̃i with a vertical line at x̃ are computable with O(1) operations
left/right endpoints of all s̃i can be packed into just one word

searching on the rounded intersections for ỹ as in the 1D case

Proof: exercise

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry13

Nice Subdivision

Input
two vertical line segments that
have length 2‘L and 2‘R

n disjoint segments S between
the two vertical segments

Notes On Running The Query For A Point q = (x; y)

un-rounding: position of q̃ in the s̃i → position of q in the si (only O(1) additional comparisons)

the (rounded) intersections of all s̃i with a vertical line at x̃ are computable with O(1) operations
left/right endpoints of all s̃i can be packed into just one word

searching on the rounded intersections for ỹ as in the 1D case

Proof: exercise

2‘R2‘L

S|
{z

} |{
z}

Lemma (nice (h; b)-subdivision)
There are O(b) boundary segments s0; s1; · · · ∈ S such that

between si and si+1 there are ≤ n
b

segments from S or
yL(si+1)− yL(si) < 2‘L−h or yR(si+1)− yR(si) < 2‘R−h

s̃0 ≺ s0 ≺ s̃2 ≺ s2 ≺ · · · for “rounded” boundaries s̃i

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull
Voronoi diagram

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull
Voronoi diagram
Euclidean MST

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull
Voronoi diagram
Euclidean MST
triangulation of polygons

Thomas Bläsius – Computational Geometry14

Wrap-Up

Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O(log n

log log n)

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull
Voronoi diagram
Euclidean MST
triangulation of polygons
line segment intersection

Thomas Bläsius – Computational Geometry15

Literature

Transdichotomous Results in Computational Geometry, I: (2009)
Point Location in Sublogarithmic Time
Timothy Chan, Mihai Pǎtraşcu

Transdichotomous Results in Computational Geometry, II: (2010)
Offline Search
Timothy Chan, Mihai Pǎtraşcu

On the bit complexity of minimum link paths: (1999)
Superquadratic algorithms for problem solvable in linear time
Simon Kahana, Jack Snoeyink

https://doi.org/10.1137/07068669X

https://arxiv.org/abs/1010.1948

https://doi.org/10.1016/S0925-7721(98)00041-8

https://doi.org/10.1137/07068669X
https://arxiv.org/abs/1010.1948
https://doi.org/10.1016/S0925-7721(98)00041-8

