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Computational Geometry
Real RAM, Word RAM, Point Location

What is a computer?

Thomas Blasius




What Can Your Computer Do?

Model Of Computation
= RAM (random access machine): memory access in O(1) via an address
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- arithmetic operations (4, —, -, /) in O(1)
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What Can Your Computer Do?

Model Of Computation

RAM (random access machine): memory access in O(1) via an address
real RAM

- every memory cell holds a real number (of arbitrary size/precision)

- arithmetic operations (4, —, -, /) in O(1)

- rounding to integers is not allowed (otherwise, you can do broken things)

- common model in computational geometry — abstracts away precision issues
- potential problem: sometimes too powerful (more powerful than your computer)
word RAM

- every memory cell holds a word consisting of w bits

- w is sufficiently large (> log n, but potentially much larger)

- arithmetic operations on integers (of size up to 2) in O(1)

- bit-wise logical operations and bit shifts in O(1)
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Minimum Link Path In Polygons

General Idea

m R; = set of points reachable from s with /
links

= jteratively compute R;.1 from R;
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Minimum Link Path In Polygons

General Idea

m R; = set of points reachable from s with /
links

= jteratively compute R;.1 from R;

Which Of Them Is True?
m first theorem assumes a real RAM

= an implementations (e.g., with doubles for
coordinates) is maybe not robust
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Point-Location In A Vertical Slab (word RAM)

\
/
p\
=

4 Thomas Blasius — Computational Geometry ﬂ(IT



Point-Location In A Vertical Slab (word RAM)

Lets Start With One Dimension
m predecessor search in a sequence of numbers
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Point-Location In A Vertical Slab (word RAM)

Lets Start With One Dimension
m predecessor search in a sequence of numbers

= default solution: binary search provides ©(log n) queries
= goal: queries in o(log n)

\
/
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Point-Location In A Vertical Slab (word RAM)

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)

Lets Start With One Dimension

m predecessor search in a sequence of numbers _—
= default solution: binary search provides ©(log n) queries - ]
= goal: queries in o(log n) p\

o
= use properties of the word RAM /

- numbers are integers ~
- numbers lie in the interval [0, 2")
- arithmetic operations, bit-wise logical operations, and bit-shifts on words of length w in O(1)
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Beating The log n Lower Bound

Ideas For Improvement

= wider branching: shrink number of possible integers by the
factor b in each step
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Ideas For Improvement

= wider branching: shrink number of possible integers by the
factor b in each step

- recursion depth: Iogb(n) (sub-logarithmic if b super-constant)
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Beating The log n Lower Bound

Binary Search Basics
Ideas For Improvement ® walks down a decision tree
= wider branching: shrink number of possible integers by the | ® decisionforleitiright subset: one comparison
factor b in each ste ® per step: number of integers is halved
ac P ® recursion depth: log,(n)
- recursion depth: Iogb(n) (sub-logarithmic if b super-constant)

- problem: decision for the correct subinterval too expensive
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Beating The log n Lower Bound

Binary Search Basics
Ideas For Improvement i

® walks down a decision tree
wider branching: shrink number of possible integers by the ® decision for left/right §ubset: one comparison
factor b in each step ® per step: number of integers is halved
]

recursion depth: log,(n)
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Beating The log n Lower Bound

Id F | Binary Search Basics
eas ror mprovement B walks down a decision tree

= wider branching: shrink number of possible integers by the | ® decision forleftiright subset: one comparison
factor b in each step ® per step: number of integers is halved

® recursion depth: log,(n)
- recursion depth: Iogb(n) (sub-logarithmic if b super-constant)
- problem: decision for the correct subinterval too expensive
o shrinking the interval (in the beginning, all numbers lie in [0, 2"))
- shrink the interval by the factor 2"
- recursion depth: =

- problem: deciding whether a subinterval still contains integers
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Beating The log n Lower Bound

Id F | Binary Search Basics
eas ror mprovement B walks down a decision tree

= wider branching: shrink number of possible integers by the | ® decision forleftiright subset: one comparison
factor b in each step ® per step: number of integers is halved

® recursion depth: log,(n)
- recursion depth: Iogb(n) (sub-logarithmic if b super-constant)
- problem: decision for the correct subinterval too expensive
= shrinking the interval (in the beginning, all numbers lie in [0, 2*))
- shrink the interval by the factor 2"
- recursion depth: =
- problem: deciding whether a subinterval still contains integers
= combining both ideas
- In each step: shrink the number of integers or the interval

- decision for the correct interval: O(1) with bit magic
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Subdivision Into Subintervals

word size: w
number of integers: n
interval: [0, 2¢)
number of cells: 2"
branching width: b

1920
1888 | 1952
7 1088 1216 1824 2016 2624 2688 3200 3456

C 1 \ / \\Il/ \ / 1 1 \

L v i o-000-¢ i e - /

0 4096 — 212
n=12
L =12
h=4
b=3
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word size: w
number of integers: n

Subdivision Into Subintervals A

number of cells; 2"
branching width: b

One Subdivision Step 1888 (1052

576 1088 1216 1824 2016 2624 2688 3200 3456

m divide interval of size 2¢ S A U A 11 \ 7 00 34 }

into 2" cells of size 2¢—h 0 256 4096 = 212
n=12
(=12
h=4
b=3

AKIT



word size: w

Subdivision Into Subintervals el

number of cells; 2"
branching width: b

One Subdivision Step 1688 |1

1952

- dIVIde Interval Of Slze 2‘6 [ I I516 | 1088\= 2:216 1824 2016 2624\ 3688 3200 34|56 )

into 2" cells of size 2¢~" 0 256 4096 = 212
It

= mark each ;th integer n— 19
L =12
h=4
b=3

AKIT



word size: w

Subdivision Into Subintervals el

number of cells; 2"
branching width: b

One Subdivision Step 1888 [1052
- dIVIde interval Of Slze 2£ [ ISI6 | 1088\‘ }I216 1824 2016 2624\ %688 3200 34|56 \
. . I - c !
into 2" cells of size 2¢~" 0 256 4096 = 212
hor
= mark each ;th integer n— 12
= mark cells that contain marked integers f,f f
b=3
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word size: w

Subdivision Into Subintervals el

number of cells; 2"
branching width: b

One Subdivision Step 1888 (1052
- dIVIde interval Of Slze 28 - | ,SI6 1088- }I216 1824 2016 2624\ 3688 3200 34|56 \
[l [l L I L I i o I I ,
into 2" cells of size 2¢~" 0 256 4096 = 212
hor [ ) [ )
= mark each ;th integer n— 19
L=12

= mark cells that contain marked integers
m define partition into subintervals b=3
- each marked cell is a subinterval
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word size: w

Subdivision Into Subintervals el

number of cells; 2"
branching width: b

One Subdivision Step 1888 (1052
= divide interval of size 2¢ N S N A 182fw°16 RN R \

into 27 cells of size 2¢~" 0 256 4006=21
« mark ach Zth integer L
= mark cells that contain marked integers P
= define partition into subintervals b=3

- each marked cell is a subinterval
- each maximal sequence of unmarked cells is a subinterval

Properties Of This Subdivision
= we have O(b) subintervals

= the boundaries of each subinterval is a multiple of 2¢="
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Subdivision Into Subintervals

One Subdivision Step 1883 | 1052

= divide interval of size 2 SR G U A |V
into 2" cells of size 2¢~" 0 256

= mark each 2th integer [ Ll

= mark cells that contain marked integers
m define partition into subintervals
- each marked cell is a subinterval
- each maximal sequence of unmarked cells is a subinterval

Properties Of This Subdivision
= we have O(b) subintervals

= the boundaries of each subinterval is a multiple of 2¢="
= each subinterval has length 2" or contains at most 7 integers

word size: w

number of integers: n
interval: [0, 2¢)

number of cells: 2"

branching width: b

2624 2688 3200 3456

oot
4096 = 212
1 )
n=12
£=12
h=4
b=3
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word size: w

Recursive Subdivision T 0, 24

number of cells: 2"
branching width: b
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word size: w

Recursive Subdivision T 0, 24

number of cells: 2"
branching width: b

Recursive Decision Tree
= one child for each subinterval in the (h, b)-subdivision
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word size: w

Recursive Subdivision T 0, 24

number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
: : : C o subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%). P
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word size: w
i n/icel ber of int :
Recursive Subdivision el
number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%).

= stop recursion if only few integers are left
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word size: w
Recursive Subdivision T 0,24

number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%).

= stop recursion if only few integers are left

= height of the tree: at most log,(n) + ¥
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word size: w

Recursive Subdivision el
number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%).
= stop recursion if only few integers are left
H . w
= height of the tree: at most log,(n) + ¥

Searching For The Successor Of An Integer g
= find subinterval containing g at most log,(n) + ¥ times
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word size: w
Recursive Subdivision e 10,2

number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%). P
= stop recursion if only few integers are left
H . w
= height of the tree: at most log,(n) + ¥

Searching For The Successor Of An Integer g
= find subinterval containing g at most log,(n) + ¥ times

= bit magic: each step runs in O(1) if & > ’E’ (for a constant ¢)
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word size: w

Recursive Subdivision e 10,2

interval
number of cells: 2h
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%). P
= stop recursion if only few integers are left
H . w
= height of the tree: at most log,(n) + ¥

Searching For The Successor Of An Integer g
= find subinterval containing g at most log,(n) + % times } O(logy(n) + b) for ¥ = 2

= bit magic: each step runs in O(1) if & > ’E’ (for a constant ¢)
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word size: w
Recursive Subdivision e 10,2

number of cells: 2"
branching width: b

Recursive Decision Tree Note: In the recursive calls, we may need to shift the
. . . C e subinterval to 0 and increase it to the next power of
= one child for each subinterval in the (h, b)-subdivision 2. such that it has the form [0, 2%). P
= stop recursion if only few integers are left
H . w
= height of the tree: at most log,(n) + ¥

Searching For The Successor Of An Integer g
= find subinterval containing g at most log,(n) + % times } O(logy(n) + b) for ¥ = 2

O(Io'goﬁgn) for b = +/log n

7 Thomas Blasius — Computational Geometry ﬂ(IT

= bit magic: each step runs in O(1) if & > ’E’ (for a constant ¢)



How Many Bits Do You Need?

r
L

~Ll-

256 512

How many bits are necessary in total to encode the numbers b, r, e, a, k?
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How Many Bits Do You Need?

b r e a K
r [ [ i [ [ i i [ [ i [ [ [ [ i
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 bH12

~Ll-

How many bits are necessary in total to encode the numbers b, r, e, a, k?

b=3-256
r=06-256
e=17-256
a=10-256
k =15-256
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How Many Bits Do You Need?

b roe a K
r [ [ i [ [ i i [ [ i [ [ [ [ i
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 bH12

~Ll-

How many bits are necessary in total to encode the numbers b, r, e, a, k?

b=3-256 —— 001100000000
r=6-256 —— 011000000000
e=7-256 —— 011100000000
a=10-256 —— 101000000000
k=15-256 —— 111100000000
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How Many Bits Do You Need?

b r e a K
r [ [ i [ [ i i [ [ i [ [ [ [ i
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
256 bH12

~Ll-

How many bits are necessary in total to encode the numbers b, r, e, a, k?

b=3-256 — (001100000000
r=6-256 — [I000000000
e =7-256 — [OIE00000000 o OOLT | 0T10/ | [0TTT | 1010 | TT1T
a = 10 - 256 — [IOT000000000 20 bits

k =15 - 256 — [IIL00000000 .
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Representing The Subintervals

1920
. 1888 | 1952
: n=12
miber O‘;"i‘:ﬁs;z_:’ 4 — 15 576 1088 1216 1824 \|[2016 2624 2688 3200 3456
interval: [0, 2%) Z_g a; ap a3 ay

number of cells: 2"
branching width: b

Representing The b Interval Boundaries ay, .. ., aj
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Representing The Subintervals

1920
. 1888 | 1952
. n=12
] \;vprtd Slze: w /— 1 576 1088 1216 1824 \|[2016 2624 2688 3200 3456
number of integers: n =
interval: [0, 2¢) h=4 a2 an a2
number of cells: 2" b=3 000100000000 7256 1780 A A
: .56 = 1792 2048 — 8256 13 -256 — 3328 3584 — 14 - 256
011100000000 100000000000 110100000000 111000000000

branching width: b

Representing The b Interval Boundaries ay, .. ., aj
= boundaries are multiples of 2¢="
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Representing The Subintervals

1920

1888 [ 1952

ize: n=12
] ‘;"Prtd slz€. w 4 — 1 576 1088 1216 1824 \|[2016 2624 2688 3200 3456
number of integers: n =

interval: [0, 2¢) h=4 256 a; a a3 a

number of cells: 2/ b=3 000100000000 s 56— 178 048~ 8256 13.25 —ass  3e4— 14250

branching width: b EEI00000000 00000000000  EAGN00000000 FIEI000000000

7 8 13 Ny
0111 1000 1101 ‘1110

Representing The b Interval Boundaries ay, .. ., aj
= boundaries are multiples of 2¢~"
= divide by 2¢=" — result is < 2"
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Representing The Subintervals

1920

word size: w n=12 1888 | 1952
ber of int ' ¢ — 12 576 1088 1216 1824 \[[2016 2624 2688 3200 3456
number of integers: n =

interval: [0, 2¢) h=4 - o T

number of cells: 2/ b=3 000100000000 s 56— 178 048~ 8256 13.25 —ass  3e4— 14250

branching width: b 0100000000 100000000000 110100000000 11000000000

7 8 13 My
0111 1000 1101 ‘1110

N N } v
0111 1000 1101 1110
Representing The b Interval Boundaries ay, .. ., aj
= boundaries are multiples of 2¢~"
= divide by 2¢=" — result is < 2"

= concatenate binary representation: h - b bits
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Representing The Subintervals

word size: w n=12

number of integers: n £=12
interval: [0, 2¢) h=4
number of cells: 2" b=3

branching width: b

576

256
000100000000

1088 1216

1920

1888 [ 1952
1824 2016

2624 2688 3200 3456

T 2N 93 TN

7-256 = 1792
011100000000

2048 = 8 - 256
1100000000000

13 - 256 = 3328 3584 = 14 - 256

1IFF0100000000 IFFF000000000
13 ™~ 14

o111 1000 1101 1110
\ . } %
O0TTION0000TrTOTOMrTTO

Representing The b Interval Boundaries ay, .. ., aj

= boundaries are multiples of 2¢~"
= divide by 2¢=" — result is < 2"

= concatenate binary representation: h - b bits

= spend one extra bit per boundary — (h -+ 1) - b bits
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Representing The Subintervals

1920
o 1888 | 1952
umber o\;vi?ﬁ;ezri: ‘,’7" " ig 576 1088 1216 1824 \|[2016 2624 2688 3200 3456
interval: [0, 2¢) h=4 256 a  ay Fea—
number of cells: 2" =3 000100000000 7256 — 1700 2048 ~5.256  13.256 —9328 3584 — 14. 256
branching width: b 08100000000 108000000000  EEGE00000000 1000000000
7 8 13 14
0111 11000 ‘1101 1110
N " v e
0 0°"1°1°T 0 10'0"0 0 1"1"0°L 0 "I"'1"0
Representing The b Interval Boundaries ay, .. ., aj
= boundaries are multiples of 2¢="
= divide by 2¢=" — result is < 2"
= concatenate binary representation: h - b bits
= spend one extra bit per boundary — (h + 1) - b bits
®E assume (h + ]_) b < w — requires jUSt one word  (recall: we assumed things to work if % > gforaconstant c)
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Representing The Subintervals

word size: w n=12 576 088 1216
number of integers: n £=12
interval: [0, 2¢) h=4 256
number of cells: 25 b=3 000100000000 7. 256 = 1792
branching width: b

1888 [ 1952
2624 2688

2048 = 8 - 256
1100000000000

13 - 256 = 3328

011100000000 1IFF0100000000

7
0111

3200 3456

3584 = 14 - 256
IFFre00000000

Ny

N Y v ¥
(d1] & |...) = OCNNND O 1N0N0N0| O INNON O N0

Representing The b Interval Boundaries ay, .. ., aj
= boundaries are multiples of 2¢="

= divide by 2¢=" — result is < 2"

= concatenate binary representation: h - b bits

= spend one extra bit per boundary — (h + 1) - b bits

= assume (h+1)- b < w — requires just one word  (recall: we assumed things to work if % >

b
c

for a constant c)

= store the resulting word (3; | 3, | ...) at the corresponding node in the recursion tree
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Finding The Right Subintervall

q = 3007
101110111111

1888 [ 1952

ize: n=12
] ‘;"Prtd slz€. w 4 — 1 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n =

interval: [0, 2¢) h=4 256 a; a a3 a

number of cells: 2/ b=3 000100000000 s 56— 178 048~ 8256 13.25 —ass  3e4— 14250

branching width: b EEI00000000 00000000000  EAGN00000000 FIEI000000000

7 8 13 Ny
0111 1000 1101 ‘1110

N Y v ¥
(d1] & |...) = OCNNND O 1N0N0N0| O INNON O N0

Query: Which Subinterval Contains g?
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Finding The Right Subintervall

q = 3007
o
101110111111 1

O
S |l
-

'—l

1888 [ 1952

ize: n=12
] ‘;"Prtd slz€. w 4 — 1 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n =

interval: [0, 2¢) h=4 a; a a3 a

number of cells: 2/ b=3 000100000000 7056 — 178 200 5.8 13.05 —awn %8 — 1425

branching width: b 081100000000 100000000000  EEOL00000000 00000000

7 8 13 14
0111 11000 1101 1110

N Y v ¥
(d1] & |...) = OCNNND O 1N0N0N0| O INNON O N0

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead  (division by 2¢~" preserves order)
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Finding The Right Subintervall

word size: w
number of integers: n
interval: [0, 2¢)
number of cells: 2"
branching width: b

g = 3007 § =11
101110111111 1011
1920
o 12 1888 | 1952
— 1o 576 1088 1216 1824 \|[/2016 2624 2688 | 3200 3456
b=3 000100000000 7.256 — 1702 2048 — 8 -256 13 - 256 — 3328 3584 = 14 - 256
0IT100000000 100000000000  EA100000000 1000000000
7 8 13 Ny
0111 1000 1101 1110

\ N\ v ¥
(& |5 |...) = 0CHNNO01N01%|0 INNEN|0 IO

Query: Which Subinterval Contains g?

m find g = Lq/2£—hJ in {51, a, ... } instead  (division by 2¢~" preserves order)
= jtholdsthat: 3, < § < (2" + 5, — §)&2" =0
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12
h=4

interval: [0, 2¢)

256 a a a a
— r e 2y K73 TN
b ol e 2 o T Talitnedish Hheodidh Culibnotits  Hwodiioss
branching width: b N
7 8 13 14
0111 11000 ‘1101 1110

N Y v ¥
(d1] & |...) = OCNNND O 1N0N0N0| O INNON O N0

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead (division by 2¢=" preserves order)

= it holds that: 3; < § & (2" + 5 — §) &2" = 0
= compute: (20 |20 | ..V 4 (G [ & | .. =G - (1|1].. . N&@"[20]...)
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12
h=4

interval: [0, 2¢)

256 a a a a
— r e 2y K73 TN
b ol e 2 o T Talitnedish Hheodidh Culibnotits  Hwodiioss
branching width: b N
7 8 13 14
0111 11000 ‘1101 1110

\a A v ¥
@20 (G G2 ] ..) = 10NN 1 IN0N0N0| 1 IO 1 e

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead (division by 2¢=" preserves order)

= it holds that: 3; < § & (2" + 5 — §) &2" = 0
= compute: (20 |20 | ..V 4 (G [ & | .. =G - (1|1].. . N&@"[20]...)
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12

interval: [0, 2¢) h=4 256 [T N L3 AN
e e 2 o T Talitnedish Hheodidh Culibnotits  Hwodiioss
branching width: b : g 13 Ny
0111, 11000 ‘1101 1110
h h 5 - —
2" )+ (a a2 ) =

. N v 4
1IIIIPIIII1IIII1IIII
01011

G-(1|1]...) 0101101011/01011

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead (division by 2¢=" preserves order)

= it holds that: 3; < § & (2" + 5 — §) &2" = 0
= compute: (20 |20 | ..V 4 (G [ & | .. =G - (1|1].. . N&@"[20]...)
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12

interval: [0, 2¢) h=4 256 a; a a3 a
' o £ °1 2\a x93 I

number of cells: 2° b=3 000100000000 7.256 = 1792 2048 — 8 -256 13 -256 — 3328 3584 — 14 - 256
branching width: b EA00000000 -\i)ooooooo 190100000000 119000000000

7 8 13 14

0111 11000 1101 1110
o o ~ \ ' %
"2 .. )+ (&1 | a2 | ...) = 1/0M¥INE|1 190%0M0| 1 I¥1N0rD 1 1o
g-(1/1]...)=0101101011/01011(01011

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead (division by 2¢=" preserves order)

= it holds that: 3; < § & (2" + 5 — §) &2" = 0
= compute: (20 |20 | ..V 4 (G [ & | .. =G - (1|1].. . N&@"[20]...)
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12

interval: [0, 2¢) h=4 256 a; a a3 a
' _ P A 93N

number of cells: 2° b=3 000100000000 7.256 = 1792 2048 — 8 -256 13 -256 — 3328 3584 — 14 - 256
branching width: b EA00000000 -\i)ooooooo 190100000000 119000000000

7 8 13 14

0111 11000 1101 1110
o o ~ \ ' %
"2 .. )+ (&1 | a2 | ...) = 1/0M¥INE|1 190%0M0| 1 I¥1N0rD 1 1o
g-(1/1]...)=0101101011/01011(01011

—01100/01101{10010/10011
Query: Which Subinterval Contains g?

m find g = Lq/2£—hJ in {51, a, ... } instead  (division by 2¢~" preserves order)

= it holds that: 3; < § & (2" + 5 — §) &2" = 0
= compute: (20 |20 | ..V 4 (G [ & | .. =G - (1|1].. . N&@"[20]...)
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q = 3007 §=11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12
' h=4

interval: [0, 2¢)

256 a a a a
_ K 1 A x93 LW
number of cells: 2" b=3 000100000000 7.256 — 1702 2048 — 8 -256 13 - 256 — 3328 3584 = 14 - 256
branching width: b 02100000000 -\i)ooooooo 10100000000 1000000000
8

7
0111

-
20 N+ (E | & ... ) = 10 1—1—‘
§-(1|1]...)=01 |01011|0101101011
— 0 0

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead (division by 2¢=" preserves order)

= it holds that: &; < § < (2" + 5, — §) & 2" = 0

= compute: (27 [ 20 | ...+ (G1 |G| ... ) — G- (1] 1]...))& 2" 20| ...)
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q = 3007 § =11

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12
' h=14

interval: [0, 2¢)

256 a a a a
_ K 71 24 x93 LW
number of cells: 2° b=3 000100000000 7.256 = 1792 2048 — 8-256 13 -256 — 3328 3584 — 14 - 256
branching width: b EA00000000 -\i)ooooooo 190100000000 119000000000
7 8
0111 -
<2h|2h|...>—|—(51|52|--->:1 1_1_
G-(1|1]...)=101 010110101101011
-0 |0 1

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead  (division by 2¢~" preserves order)

= jtholdsthat: 3, < § < (2" + 5, — §)&2" =0
= compute: ({22 — ; - (O <

= most of it can be precomputed — O(1) (1x subtraction, 1x multiplication, 1x bit-wise &)
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q = 3007 § =11
1

Finding The Right Subintervall

1920
word size: w n=12 1888 | 1952
, 576 1088 1216 1824 \|[2016 2624 2688 | 3200 3456
number of integers: n £=12
h=14

interval: [0, 2¢)

256 a a a a
_ x °1 2\a 293 ANy
number of cells: 2° b=3 000100000000 7.256 = 1792 2048 — 8 -256 13 -256 — 3328 3584 — 14 - 256
branching width: b i400000000 -\i)ooooooo 110100000000 T11000000000
7 8 13 14
0111 11000 11101 1110
o . ~ \ ¢ v
"2 .. )+ (&1 | a2 | ...) = 1/0M¥INE|1 190%0M0| 1 I¥1N0rD 1 1o
G-(1]1]...)=021011/01011/01011/01011
-0 0 i 1

Query: Which Subinterval Contains g?
m find g = Lq/2£—hJ in {51, a, ... } instead  (division by 2¢~" preserves order)

= jtholdsthat: 3, < § < (2" + 5, — §)&2" =0
= compute: ({22 — ; - (O <

= most of it can be precomputed — O(1) (1x subtraction, 1x multiplication, 1x bit-wise &)

m the _yields I, such that a;_1 < g < a; (MS1B computable with O(1) elementary operations)
AN{]]




word size: w
Reca number of integers: n
p interval: [0, 2¢)

number of cells: 2"
branching width: b

Recursive Decision Tree
= one child for each subinterval in the (h, b)-subdivision

= stop recursion if only few integers are left

= height of the tree: at most log,(n) + %

Searching For The Successor Of An Integer g
= find subinterval containing g at most log,(n) + % times } O(logy(n) + b) for ¥ = 2

O(Io'goﬁgn) for b = +/log n

11 Thomas Blasius — Computational Geometry ﬂ(IT

= bit magic: each step runs in O(1) if & > ’E’ (for a constant ¢)



1D Search — 2D Search

1D: In Each Node Of The Searchtree
= O(b) boundaries, each a multiple of 2¢="

= subintervals: small (2¢~") or few integers ()
1D: Query

m search neighboring boundary

= continue in corresponding subtree

AKIT



1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?
= O(b) boundaries, each a multiple of 2¢="

1D: Query
m search neighboring boundary

AKIT
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1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query
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1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab \
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1D: In Each Node Of The Searchtree Why Does This Help?
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= choose boundaries with similar properties \
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1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab <
= choose boundaries with similar properties \

= query a point (x, y) =
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1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab \
= choose boundaries with similar properties \\
= query a point (x, y) =

- 1D search with respect to y at the position x
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1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab
= choose boundaries with similar properties ~
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1D: Query
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= choose boundaries with similar properties ~
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1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab - I
= choose boundaries with similar properties —~{_
= query a point (x, y) . L'L

- 1D search with respect to y at the position x
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1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab - I
= choose boundaries with similar properties —~{_
= query a point (x, y) . L'L

- 1D search with respect to y at the position x
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1D Search — 2D Search

1D: In Each Node Of The Searchtree Why Does This Help?

1D: Query

Extension To Point Location In A Slab <
= choose boundaries with similar properties :\:
= query a point (x, y) S !

- 1D search with respect to y at the position x '

|

12 Thomas Blasius — Computational Geometry ﬂ(IT



1D Search — 2D Search

1D: In Each Node Of The Searchtree
= O(b) boundaries, each a multiple of 2¢="

® subintervals: small (2°=") or few integers/(%)
1D: Query

= search neighboring boundary

= continue in corresponding subtree

Extension To Point Location In A Slab
m choose boundaries with similar properties

= query a point (x, y)
- 1D search with respect to y at the position x
- round all coordinates — h bits per coordinate

= recursive call between boundaries

Why Does This Help?
h bits per boundary — fit in just one word

sufficient progress in each node

works in O(1)
happens < log,(n) + ¥ times

—_—

|

Problem: What if boundaries intersect the segments?

AKIT



Nice Subdivision

S
§
200 § —_| p2%r
\
_—

Input \
= two vertical line segments that
have length 24t and 2¢r

= ndisjoint segments S between
the two vertical segments

AKIT



221 <

S
Nice Subdivision Q}t
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

13 Thomas Blasius — Computational Geometry ﬂ(IT



221 <

S
Nice Subdivision Q}t
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

Proof: exercise

13 Thomas Blasius — Computational Geometry ﬂ(IT



221 <

S
Nice Subdivision Q}t
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

Proof: exercise

Notes On Running The Query For A Point g = (x, y)
m |eft/right endpoints of all 5; can be packed into just one word
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221 <

S
Nice Subdivision Q}t
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

~—
Proof: exercise T~

]

Notes On Running The Query For A Point g = (x, y)
m |eft/right endpoints of all 5; can be packed into just one word ‘
= the (rounded) intersections of all §; with a vertical line at X are computable with O(1) operations
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221 <

S
Nice Subdivision Q}l
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

~—
Proof: exercise T~

]

Notes On Running The Query For A Point g = (x, y)

m |eft/right endpoints of all 5; can be packed into just one word
= the (rounded) intersections of all §; with a vertical line at X are computable with O(1) operations
m searching on the rounded intersections for y as in the 1D case
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221 <

S
Nice Subdivision Q}l
—

Input \
= two vertical line segments that
have length 2 and 2¢r

= ndisjoint segments S between
the two vertical segments

~—
Proof: exercise T~

7

Notes On Running The Query For A Point g = (x, y)

m |eft/right endpoints of all 5; can be packed into just one word
= the (rounded) intersections of all ; with a vertical line at X are computable with O(1) operations
m searching on the rounded intersections for y as in the 1D case

= un-rounding: position of g in the §; — position of g in the s; (only O(1) additional comparisons)

13 Thomas Blasius — Computational Geometry ﬂ(IT



Wrap-Up

Seen Today
= models of computation: word RAM and real RAM
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= general point location with o(log n) queries in the word RAM
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= general point location with o(log n) queries in the word RAM
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Wrap-Up

Seen Today

= models of computation: word RAM and real RAM

= real RAM often useful for computational geometry (but high precision sometimes unrealistic)
= bounded precision of the word RAM can be useful:

— search and point location in vertical slab in O(

What Else Is There?

= general point location with o(log n) queries in the word RAM

log n
log log n

problems with o(nlog n) solutions on the word RAM:

3D convex hull

Voronoi diagram
Euclidean MST
triangulation of polygons
line segment intersection

)
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