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Computational Geometry

Thomas Bläsius

Real RAM, Word RAM, Point Location
What is a computer?
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Which Of Them Is True?
first theorem assumes a real RAM
an implementations (e.g., with doubles for
coordinates) is maybe not robust

Problem: Minimum Link Path
Given a polygon P as well as points s and t in P , compute
an st-path inside P with the minimum number of segments.

Theorem (without proof)
The minimum link path between two points in
a polygon of size n can be computed in O(n)
time.

Theorem (without proof)
There are instances encodable with Θ(n log n)
bits such that representing the polygons
R1; : : : ; Rn requires Θ(n2 log n) bits.
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Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)
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Point-Location In A Vertical Slab (word RAM)

p

Lets Start With One Dimension
predecessor search in a sequence of numbers
default solution: binary search provides Θ(log n) queries

use properties of the word RAM
numbers are integers
numbers lie in the interval [0; 2w )
arithmetic operations, bit-wise logical operations, and bit-shifts on words of length w in O(1)

goal: queries in o(log n)

Problem
Let S be a set of disjoint segments between two vertical lines. Build a data structure that can
answer between which two segments a query point p lies. (with acceptable memory consumption)
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recursion depth: log2(n)

decision for left/right subset: one comparison
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Beating The log n Lower Bound

Ideas For Improvement
wider branching: shrink number of possible integers by the
factor b in each step

recursion depth: logb(n) (sub-logarithmic if b super-constant)

problem: decision for the correct subinterval too expensive
shrinking the interval

shrink the interval by the factor 2h

recursion depth: w
h

(in the beginning, all numbers lie in [0; 2w ))

problem: deciding whether a subinterval still contains integers
combining both ideas

in each step: shrink the number of integers or the interval
decision for the correct interval: O(1) with bit magic

Binary Search Basics
walks down a decision tree

per step: number of integers is halved
recursion depth: log2(n)

decision for left/right subset: one comparison
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b
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the boundaries of the subintervals are multiples of 2‘−h
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one child for each subinterval in the (h; b)-subdivision
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Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Note: In the recursive calls, we may need to shift the
subinterval to 0 and increase it to the next power of
2, such that it has the form [0; 2‘).

Searching For The Successor Of An Integer q

stop recursion if only few integers are left
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times
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O( log n
log log n ) for b =

√
log n|{z

}
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⟨ã1 | ã2 | : : : ⟩ = 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 00 1 1 1

a1 a2 a3 a4

Query: Which Subinterval Contains q?
find q̃ = ⌊q=2‘−h⌋ in {ã1; ã2; : : : } instead
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Recap

Recursive Decision Tree
one child for each subinterval in the (h; b)-subdivision

Searching For The Successor Of An Integer q

stop recursion if only few integers are left

find subinterval containing q at most logb(n) +
w
h

times

bit magic: each step runs in O(1) if w
h
≥ b

c
(for a constant c)

height of the tree: at most logb(n) +
w
h

number of integers: n
interval: [0; 2‘)

number of cells: 2h

branching width: b

word size: w

O(logb(n) + b) for w
h
= b

c

Lemma (nice (h; b)-subdivision)
Given n integers in I = [0; 2‘). I can be subdivided into O(b) subintervals such that:

each subinterval has length 2‘−h or contains at most n
b

integers

the boundaries of the subintervals are multiples of 2‘−h

O( log n
log log n ) for b =

√
log n|{z

}
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1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

Why Does This Help?



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)



Thomas Bläsius – Computational Geometry12

1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?
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query a point (x; y)

1D search with respect to y at the position x
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1D Search → 2D Search

O(b) boundaries, each a multiple of 2‘−h
1D: In Each Node Of The Searchtree

subintervals: small (2‘−h) or few integers ( n
b

)

1D: Query
search neighboring boundary
continue in corresponding subtree

sufficient progress in each node

happens ≤ logb(n) +
w
h

times

h bits per boundary → fit in just one word

works in O(1)

Why Does This Help?

Extension To Point Location In A Slab
choose boundaries with similar properties
query a point (x; y)

1D search with respect to y at the position x

round all coordinates → h bits per coordinate
recursive call between boundaries Problem: What if boundaries intersect the segments?
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Seen Today
models of computation: word RAM and real RAM
real RAM often useful for computational geometry (but high precision sometimes unrealistic)
bounded precision of the word RAM can be useful:
→ search and point location in vertical slab in O( log n

log log n )

What Else Is There?
general point location with o(log n) queries in the word RAM
problems with o(n log n) solutions on the word RAM:

3D convex hull
Voronoi diagram
Euclidean MST
triangulation of polygons
line segment intersection
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