

Computational Geometry Real RAM, Word RAM, Point Location What is a computer?

Thomas Bläsius

What Can Your Computer Do?

Model Of Computation

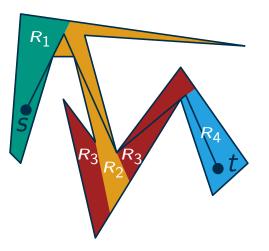
- **RAM** (random access machine): memory access in O(1) via an address
- real RAM
 - every memory cell holds a real number (of arbitrary size/precision)
 - arithmetic operations $(+, -, \cdot, /)$ in O(1)
 - rounding to integers is **not** allowed (otherwise, you can do broken things)
 - common model in computational geometry \rightarrow abstracts away precision issues
 - potential problem: sometimes too powerful
- (more powerful than your computer)

- word RAM
 - every memory cell holds a **word** consisting of *w* bits
 - w is sufficiently large ($\geq \log n$, but potentially much larger)
 - arithmetic operations on integers (of size up to 2^w) in O(1)
 - bit-wise logical operations and bit shifts in O(1)

Minimum Link Path In Polygons

Problem: Minimum Link Path

Given a polygon P as well as points s and t in P, compute an st-path inside P with the minimum number of segments.



Theorem

(without proof)

The minimum link path between two points in a polygon of size n can be computed in O(n) time.

Theorem

(without proof)

There are instances encodable with $\Theta(n \log n)$ bits such that representing the polygons R_1, \ldots, R_n requires $\Theta(n^2 \log n)$ bits.

General Idea

- *R_i* = set of points reachable from *s* with *i* links
- iteratively compute R_{i+1} from R_i

Which Of Them Is True?

- first theorem assumes a real RAM
- an implementations (e.g., with doubles for coordinates) is maybe not robust

Point-Location In A Vertical Slab (word RAM)

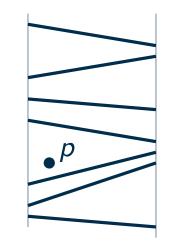
Problem

4

Let *S* be a set of disjoint segments between two vertical lines. Build a data structure that can answer between which two segments a query point *p* lies. (with acceptable memory consumption)

Lets Start With One Dimension

- predecessor search in a sequence of numbers
- default solution: binary search provides $\Theta(\log n)$ queries
- goal: queries in o(log n)
- use properties of the word RAM
 - numbers are integers
 - numbers lie in the interval $[0, 2^w)$
 - arithmetic operations, bit-wise logical operations, and bit-shifts on words of length w in O(1)



Beating The log n Lower Bound

Ideas For Improvement

- wider branching: shrink number of possible integers by the factor b in each step
 - recursion depth: $\log_b(n)$ (sub-logarithmic if *b* super-constant)
 - problem: decision for the correct subinterval too expensive
- shrinking the interval
 (in the beginning, all numbers lie in [0, 2^w))
 - shrink the interval by the factor 2^h
 - recursion depth: $\frac{w}{h}$
 - problem: deciding whether a subinterval still contains integers
- combining both ideas
 - in each step: shrink the number of integers or the interval
 - decision for the correct interval: O(1) with bit magic

Binary Search Basics

- walks down a decision tree
- decision for left/right subset: one comparison
- per step: number of integers is halved
- recursion depth: $\log_2(n)$

Subdivision Into Subintervals

word size: w

number of integers: n

interval: $[0, 2^{\ell})$

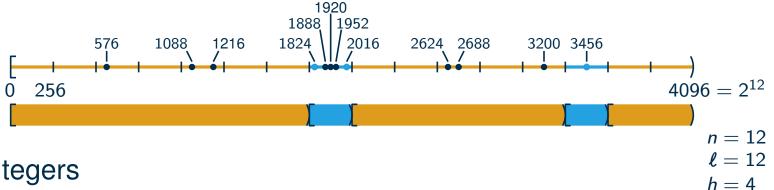
- number of cells: 2^h
- branching width: b

One Subdivision Step

- divide interval of size 2^l
 into 2^h cells of size 2^{l-h}
- mark each $\frac{n}{b}$ th integer
- mark cells that contain marked integers
- define partition into subintervals
 - each marked cell is a subinterval
 - each maximal sequence of unmarked cells is a subinterval

Properties Of This Subdivision

- we have O(b) subintervals
- the boundaries of each subinterval is a multiple of $2^{\ell-h}$
- each subinterval has length $2^{\ell-h}$ or contains at most $\frac{h}{b}$ integers



b=3

Recursive Subdivision

- word size: wnumber of integers: ninterval: $[0, 2^{\ell})$
 - number of cells: 2^h
 - branching width: b

Lemma

(nice (*h*, *b*)-subdivision)

Given *n* integers in $I = [0, 2^{\ell})$. *I* can be subdivided into O(b) subintervals such that:

Why?

- each subinterval has length $2^{\ell-h}$ or contains at most $\frac{n}{h}$ integers
- the boundaries of the subintervals are multiples of $2^{\ell-h}$

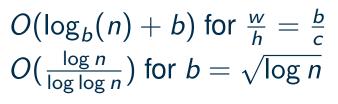
Recursive Decision Tree

- one child for each subinterval in the (h, b)-subdivision
- stop recursion if only few integers are left
- height of the tree: at most $\log_b(n) + \frac{w}{h}$

Searching For The Successor Of An Integer q

- find subinterval containing q at most $\log_b(n) + \frac{w}{h}$ times
- bit magic: each step runs in O(1) if $\frac{w}{h} \ge \frac{b}{c}$ (for a constant c)

Note: In the recursive calls, we may need to shift the subinterval to 0 and increase it to the next power of 2, such that it has the form $[0, 2^{\ell})$.

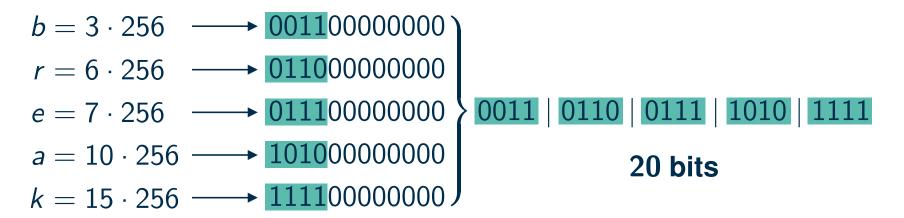


How Many Bits Do You Need?

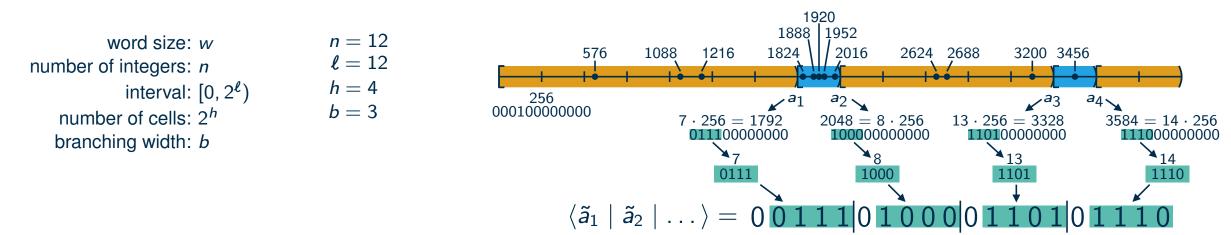
How many bits are necessary in total to encode the numbers b, r, e, a, k?

How Many Bits Do You Need?

How many bits are necessary in total to encode the numbers b, r, e, a, k?



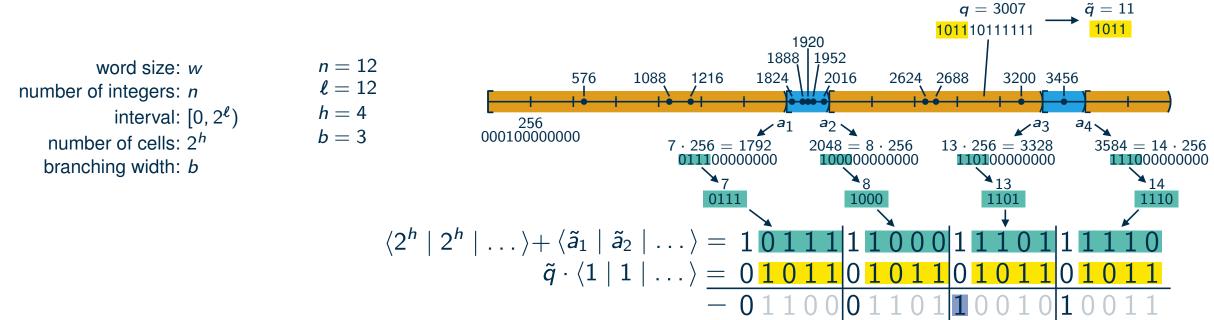
Representing The Subintervals



Representing The \bar{b} Interval Boundaries $a_1, \ldots, a_{\bar{b}}$

- boundaries are multiples of $2^{\ell-h}$
- divide by $2^{\ell-h} \rightarrow \text{result is} \leq 2^h$
- concatenate binary representation: $h \cdot \overline{b}$ bits
- spend one extra bit per boundary $\rightarrow (h+1) \cdot \overline{b}$ bits
- assume $(h+1) \cdot \overline{b} \leq w \rightarrow$ requires just one word (recall: we assumed things to work if $\frac{w}{h} \geq \frac{b}{c}$ for a constant c)
- store the resulting word $\langle \tilde{a}_1 | \tilde{a}_2 | \dots \rangle$ at the corresponding node in the recursion tree

Finding The Right Subintervall



Query: Which Subinterval Contains *q*?

- find $\tilde{q} = \lfloor q/2^{\ell-h} \rfloor$ in $\{\tilde{a}_1, \tilde{a}_2, \dots\}$ instead (division by $2^{\ell-h}$ preserves order)
- it holds that: $\tilde{a}_i < \tilde{q} \Leftrightarrow (2^h + \tilde{a}_i \tilde{q}) \& 2^h = 0$
- compute: $(\langle 2^{h} | 2^{h} | \dots \rangle + \langle \tilde{a}_{1} | \tilde{a}_{2} | \dots \rangle \tilde{q} \cdot \langle 1 | 1 | \dots \rangle) \& \langle 2^{h} | 2^{h} | \dots \rangle$
- most of it can be precomputed $\rightarrow O(1)$ (1× subtraction, 1× multiplication, 1× bit-wise &)
- the most significant 1-bit yields *i*, such that $a_{i-1} < q \leq a_i$ (MS1B computable with O(1) elementary operations)

Why?

word size: *w* number of integers: *n*

- interval: $[0, 2^{\ell})$
- number of cells: 2^h
- branching width: b

Lemma

(nice (*h*, *b*)-subdivision)

 $O(\log_b(n) + b)$ for $\frac{w}{h} = \frac{b}{c}$ $O(\frac{\log n}{\log \log n})$ for $b = \sqrt{\log n}$

Given *n* integers in $I = [0, 2^{\ell})$. *I* can be subdivided into O(b) subintervals such that:

- each subinterval has length $2^{\ell-h}$ or contains at most $\frac{n}{h}$ integers
- the boundaries of the subintervals are multiples of $2^{\ell-h}$

Recursive Decision Tree

- one child for each subinterval in the (h, b)-subdivision
- stop recursion if only few integers are left
- height of the tree: at most $\log_b(n) + \frac{w}{h}$

Searching For The Successor Of An Integer q

- find subinterval containing q at most $\log_b(n) + \frac{w}{h}$ times
- bit magic: each step runs in O(1) if $\frac{w}{h} \ge \frac{b}{c}$ (for a constant c)

1D Search \rightarrow 2D Search

1D: In Each Node Of The Searchtree	Why Does This Help?
• $O(b)$ boundaries, each a multiple of $2^{\ell-h}$	h bits per boundary \rightarrow fit in just one word
■ subintervals: small $(2^{\ell-h})$ or few integers $(\frac{n}{b})$	sufficient progress in each node
1D: Query	
search neighboring boundary	works in $O(1)$
continue in corresponding subtree	happens $\leq \log_b(n) + \frac{w}{h}$ times
 Extension To Point Location In A Slab choose boundaries with similar properties 	
query a point (x, y)	
 1D search with respect to y at the position x 	
- round all coordinates $\rightarrow h$ bits per coordinate	
recursive call between boundaries Problem:	What if boundaries intersect the segments?

Nice Subdivision

Lemma(nice (h, b)-subdivision)There are O(b) boundary segments $s_0, s_1, \dots \in S$ such that• between s_i and s_{i+1} there are $\leq \frac{n}{b}$ segments from S or $y_L(s_{i+1}) - y_L(s_i) < 2^{\ell_L - h}$ or $y_R(s_{i+1}) - y_R(s_i) < 2^{\ell_R - h}$ • $\tilde{s}_0 \prec s_0 \prec \tilde{s}_2 \prec s_2 \prec \cdots$ for "rounded" boundaries \tilde{s}_i

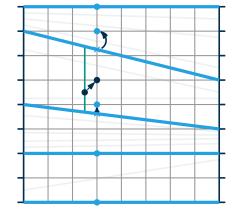
Proof: exercise

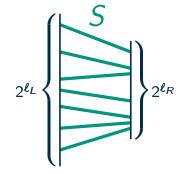
Notes On Running The Query For A Point q = (x, y)

- left/right endpoints of all \tilde{s}_i can be packed into just one word
- the (rounded) intersections of all \tilde{s}_i with a vertical line at \tilde{x} are computable with O(1) operations
- searching on the rounded intersections for \tilde{y} as in the 1D case
- un-rounding: position of \tilde{q} in the $\tilde{s}_i \rightarrow \text{position}$ of q in the s_i (only O(1) additional comparisons)

Input

- two vertical line segments that have length 2^{ℓ_L} and 2^{ℓ_R}
- *n* disjoint segments *S* between the two vertical segments





Wrap-Up

Seen Today

- models of computation: word RAM and real RAM
- real RAM often useful for computational geometry (but high precision sometimes unrealistic)
- bounded precision of the word RAM can be useful:
 - \rightarrow search and point location in vertical slab in $O(\frac{\log n}{\log \log n})$

What Else Is There?

- general point location with o(log n) queries in the word RAM
- problems with $o(n \log n)$ solutions on the word RAM:
 - 3D convex hull
 - Voronoi diagram
 - Euclidean MST
 - triangulation of polygons
 - line segment intersection

Literature

 Transdichotomous Results in Computational Geometry, I: Point Location in Sublogarithmic Time Timothy Chan, Mihai Pătraşcu

 Transdichotomous Results in Computational Geometry, II: Offline Search Timothy Chan, Mihai Pătraşcu

 On the bit complexity of minimum link paths: Superquadratic algorithms for problem solvable in linear time Simon Kahana, Jack Snoeyink (2010)

https://arxiv.org/abs/1010.1948

https://doi.org/10.1137/07068669X

https://doi.org/10.1016/S0925-7721(98)00041-8

(1999)

(2009)

