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Proportional Symbol Maps

Proportional Symbol Map (Example: Earthquakes)
visualizing weighted points on a map
weight represented by disk size
degree of freedom: z-order of overlapping disks
readability depends on the order

vs.

Problem
given: set of disk with potentially different radii
find: drawing that maximizes the visible border of each disk
What is a valid drawing? What exactly does maximizing the visible border mean?
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Problem: 3-SAT
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Useful NP-Hard SAT-Varints

vertices: horizontal segments
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all variable vertices on one line
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Problem: Rectilinear Planar 3-SAT
The clause–variable graph has a rectilinear planar drawing.

Problem: Planar 3-SAT
The clause–variable graph is planar.

Problem: 3-SAT
Boolean formula Φ in CNF, with ≤ 3 literals per clause. Is Φ satisfiable?

Problem: Monotone 3-SAT
Each clause has only positive or only negative literals.

(¬x1 ∨ ¬x2 ∨ ¬x3)
∧(x2 ∨ x4 ∨ x5)
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Useful NP-Hard SAT-Varints

vertices: horizontal segments

Rectilinear Planar Drawing

all variable vertices on one line
x1 x2 x3 x4

x5

x1 ∨ ¬x2 ∨ ¬x3

x2 ∨ ¬x4 ∨ x5

¬x1 ∨ x4

x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ x4
x2 ∨ ¬x4 ∨ x5

x4 x5

x2

x3

x1
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Problem: Rectilinear Planar 3-SAT
The clause–variable graph has a rectilinear planar drawing.

Problem: Planar 3-SAT
The clause–variable graph is planar.

Problem: 3-SAT
Boolean formula Φ in CNF, with ≤ 3 literals per clause. Is Φ satisfiable?

Problem: Planar Monotone 3-SAT
Clauses over/under the variables have only positive/negative literals.

Problem: Monotone 3-SAT
Each clause has only positive or only negative literals.

(¬x1 ∨ ¬x2 ∨ ¬x3)
∧(x2 ∨ x4 ∨ x5)

∧(¬x1 ∨ ¬x4)

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x4 ∨ x5) ∧ (¬x1 ∨ x4)

Note: allowing clauses
< 2 is important here

edges: vertical segments
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Reductions From Planar Monotone 3-SAT

General Mindset
we want to model a given 3-SAT instance
our modeling language are overlapping disks
variable assignment =̂ decision how disks overlap
satisfying all clauses =̂ for each disk, a big part of its border is visible

Needed Building Blocks
variables: n independent decisions, everything else is forced
clauses: problematic ⇔ three specific decisions are wrong
information transport

propagate decisions made at the variables to the clauses
must be possible for positive and negative literals
transport channel can be faulty in one direction: flip from satisfied to unsatisfied literal is ok
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YES-instance: for every disk, ≥ 3=4 of its border is visible

1
4
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Transport Gadget

only two configurations possible
every different configuration covers > 1=4 of a disk

x = TRUE

x x

x

xx

x

¬x ¬x

¬x¬x¬x

¬x chain starting at a ¬x (with ¬x = FALSE)

every decision is forced → 1
4 of last disk covered

transports information ¬x = FALSE to (almost) arbitrary position
chain starts at an x (instead of ¬x) → last disk can be completely visible
inverted behavior for the x = FALSE configuration

Clause Gadget
C must overlap ≥ 1 of its neighbors → ≥ 1 chain comes from a true literal C
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What Is Left To Show?

Details Of The Reduction
size of the variable gadget: dependent on number of appearances in clauses

(the big picture should be more or less clear already)

length and shape of the transport gadget
follows the rectilinear drawing of the 3-SAT instance in the input
we can assume: drawing on the grid with polynomially bounded coordinates

resulting instance has polynomial size and reduction runs in polynomial time

Correctness
3=4 of the border of each disk visible ⇒ formula satisfiable
formula satisfiable ⇒ 3=4 of the border of each disk visible

Theorem
Deciding whether there is a physically realizable configuration that shows 3=4 of the border of
each disk is NP-hard.

Why?
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Unit Disk Graphs

Definition
Set of geometric objects V defines intersection graph G = (V; E) with uv ∈ E ⇔ u ∩ v ̸= ∅.

Definition
A graph is a unit disk graph if it is the intersection graph of disks of radius 1.

Recognition Problem
Is a given graph a unit disk graph?



Thomas Bläsius – Computational Geometry10

Basic Observations

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations
equivalent: are there vertex positions such that
dist(u; v) ≤ 2 ⇔ uv ∈ E?



Thomas Bläsius – Computational Geometry10

Basic Observations

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations
equivalent: are there vertex positions such that
dist(u; v) ≤ 2 ⇔ uv ∈ E?
two edges ab and uv cross in this representation
⇒ three of the vertices a; b; u; v form a triangle

a

b

u

vWhy?



Thomas Bläsius – Computational Geometry10

Basic Observations

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations
equivalent: are there vertex positions such that
dist(u; v) ≤ 2 ⇔ uv ∈ E?
two edges ab and uv cross in this representation
⇒ three of the vertices a; b; u; v form a triangle

a

b

u

v

induced cycles are planar

Why?



Thomas Bläsius – Computational Geometry10

Basic Observations

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations
equivalent: are there vertex positions such that
dist(u; v) ≤ 2 ⇔ uv ∈ E?
two edges ab and uv cross in this representation
⇒ three of the vertices a; b; u; v form a triangle

a

b

u

v

induced cycles are planar
cycles contain a limited number of independent
vertices

0-cage 1-cage 2-cage 3-cage

(i -cage contains at most i independent vertices)

Why?
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Unit Disk Graph Or Not?

B

R E A
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Gadgets We Need: variable, clause, transport
Variable Gadget

TRUE

FALSE

FALSE

TRUE

not possible (1-cage with
two independent vertices)

TRUE

TRUE
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Gadgets

FALSE

Gadgets We Need: variable, clause, transport
Variable Gadget

TRUE

FALSE

FALSE

TRUE

not possible (1-cage with
two independent vertices)

TRUE

TRUE

FALSE

possible but never helpful
(can basically be ignored)
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Transporting Information
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Gadgets We Need: variable, clause, transport
Variable Gadget

TRUE
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TRUE

Transporting Information

can go around a corner

What Is Missing?
we can transport the decision of a variable to only one clause
variables are contained in multiple clauses (technically 2: one positive, one negative)
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Gadgets

Gadgets We Need: variable, clause, transport
Variable Gadget

TRUE

FALSE

FALSE

TRUE

Transporting Information

can go around a corner

What Is Missing?
we can transport the decision of a variable to only one clause
variables are contained in multiple clauses
we need a splitter gadget

(technically 2: one positive, one negative)

FALSE

FALSE

TRUE

2-cage

Clause
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Splitter Gadget

2-cage

2-cage

variable
clause

clause

FALSE signal from the variable ⇒ FALSE
signal to clauses
TRUE signal from variable ⇒ TRUE signals
to clauses possible

Note
forces both into the same 2-cage

the 2-cage is realizable

(in every unit disk representation)
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Multiplying Information

Splitter Gadget

2-cage

2-cage

variable
clause

clause

FALSE signal from the variable ⇒ FALSE
signal to clauses
TRUE signal from variable ⇒ TRUE signals
to clauses possible
gadget does what it should (flip from TRUE
to FALSE is ok)

Note
forces both into the same 2-cage

the 2-cage is realizable

(in every unit disk representation)
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What Do We Need To Think About For The Proof?
length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
resulting instance has polynomial size and can be computed in polynomial time
graph has unit disk representation ⇒ 3-SAT formula satisfiable
3-SAT formula satisfiable ⇒ graph has a unit disk representation

Is The Problem NP-Complete?
probably not → what goes wrong?

guess positions as certificate and check whether uv ∈ E ⇔ dist(u; v) ≤ 2

problem: this certificate sometimes needs to be exponentially large
(because we need double exponentially precise coordinates)

Theorem
It is NP-hard to decide whether a given graph is a unit disk graph.
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Existential Theory Of The Reals

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals (at most as hard)

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)

Why?



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R
it is actually ∃R-complete

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)

Why?



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R
it is actually ∃R-complete

Relation To Other Classes
NP ⊆ ∃R

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)

Why? Why?



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R
it is actually ∃R-complete

Relation To Other Classes
NP ⊆ ∃R
∃R ⊆ PSPACE

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)

Why? Why?



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R
it is actually ∃R-complete

Relation To Other Classes
NP ⊆ ∃R
∃R ⊆ PSPACE

conjecture: NP ⊂ ∃R ⊂ PSPACE

Problem: Existential Theory Of The Reals
Let F (X1; : : : ; Xn) be a quantifier-free Boolean formula over (in-)equalities of real polynomials.
Is ∃X1 · · · ∃Xn F (X1; : : : ; Xn) true? (In logic, a theory is a set of statements. The existential theory

of the reals is the set of all true statements of this form.)

Why? Why?



Thomas Bläsius – Computational Geometry15

Existential Theory Of The Reals

The Complexity Class ∃R
Π ∈ ∃R ⇔ Π has a polynomial reduction to the existential theory of the reals

Π is ∃R-hard ⇔ all problems in ∃R have a polynomial reduction to Π

(at most as hard)

(at least as hard)

Π is ∃R-complete ⇔ Π ∈ ∃R and Π ∃R-hard (equally hard)

Recognizing Unit Disk Graphs
problem lies in ∃R
it is actually ∃R-complete

Relation To Other Classes
NP ⊆ ∃R
∃R ⊆ PSPACE

conjecture: NP ⊂ ∃R ⊂ PSPACEwe believe: recognizing unit disk graphs is
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Wrap-Up

Seen Today
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problems: proportional symbol maps (cartography), recognition of unit disk graphs
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reductions from SAT variants are often easy; you just need:
variable gadget
clause gadget
transportation gadget
maybe splitter gadget (if the variable gadget produces too few literals)

for geometric problems, it is often unclear whether they lie in NP
complexity class ∃R
problems: proportional symbol maps (cartography), recognition of unit disk graphs

What Else Is There?
negation gadget (if you have a place where you need negative literals but can only get positive literals)

crossing gadget (if you reduce from a non-planar SAT variant)
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