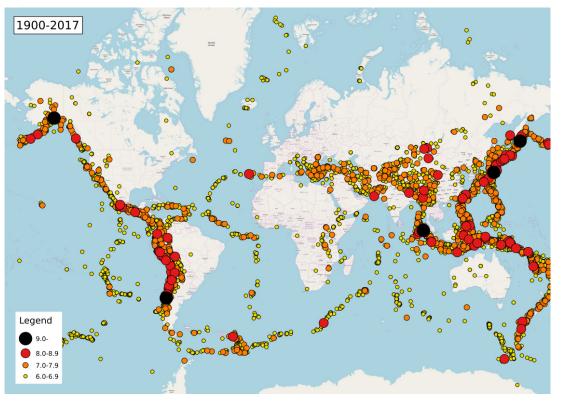


Computational Geometry Hard Problems

Thomas Bläsius

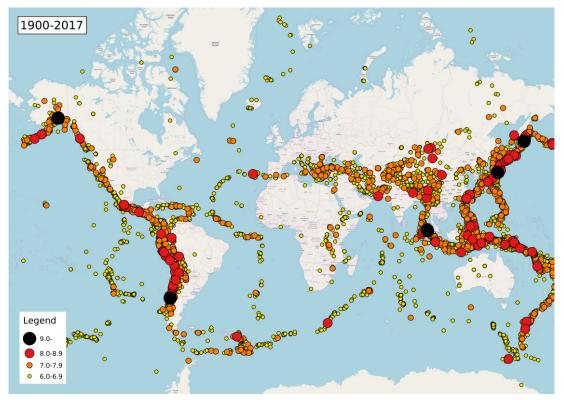
Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size



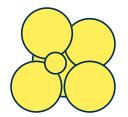
Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks

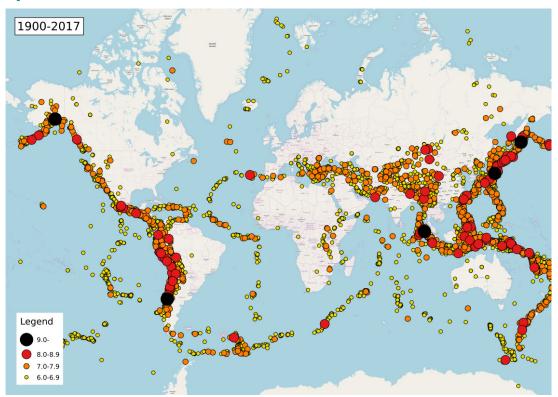


Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks
- readability depends on the order

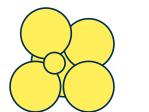


VS.



Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks
- readability depends on the order

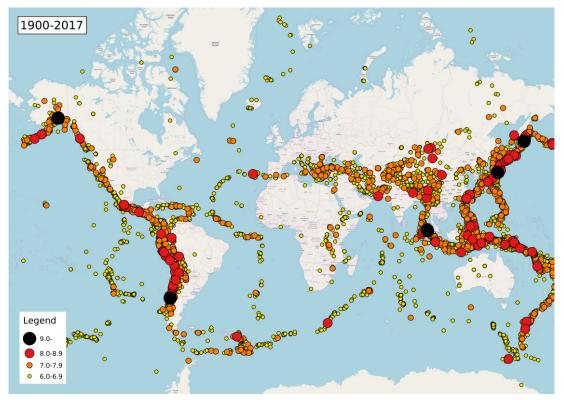


VS.



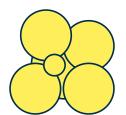
Problem

given: set of disk with potentially different radii



Proportional Symbol Map (Example: Earthquakes)

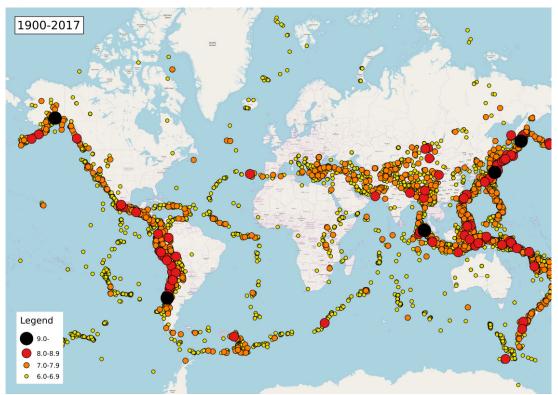
- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks
- readability depends on the order



VS.

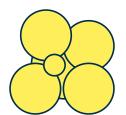
Problem

- given: set of disk with potentially different radii
- find: drawing that maximizes the visible border of each disk

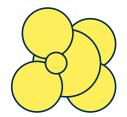


Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks
- readability depends on the order

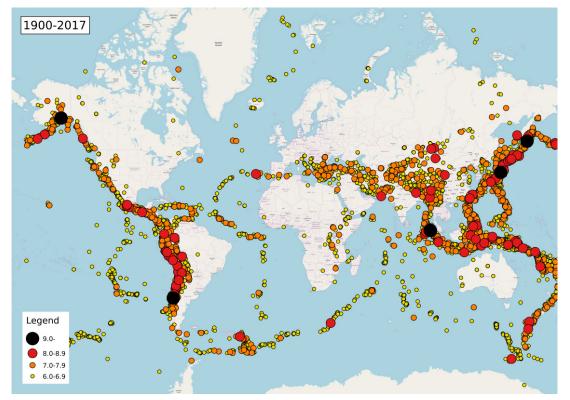


VS.



Problem

- given: set of disk with potentially different radii
- find: drawing that maximizes the visible border of each disk
- What is a valid drawing? What exactly does maximizing the visible border mean?

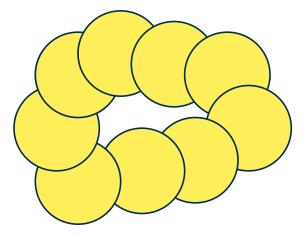


Two Types Of Valid Drawings

stacking: total z-order on all disks

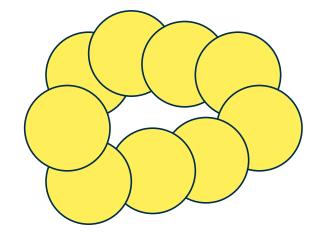


physically realizable: buildabel with thin coins

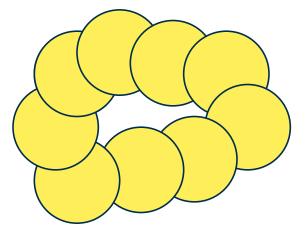


Two Types Of Valid Drawings

stacking: total z-order on all disks



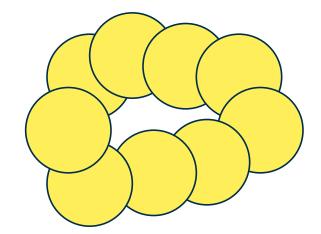
physically realizable: buildabel with thin coins



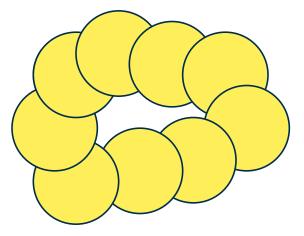
every stacking is physically realizable, but not the other way round

Two Types Of Valid Drawings

stacking: total z-order on all disks



physically realizable: buildabel with thin coins



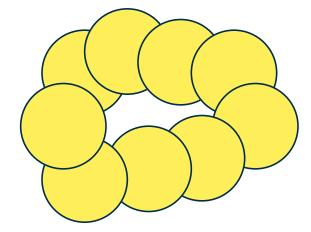
every stacking is physically realizable, but not the other way round

Two Optimization Problems

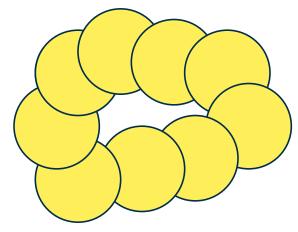
- Max-Min: maximize minimally visible border over all disks
- Max-Total: maximize the total visible border

Two Types Of Valid Drawings

stacking: total z-order on all disks



physically realizable: buildabel with thin coins



every stacking is physically realizable, but not the other way round

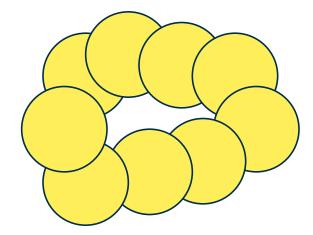
Two Optimization Problems

- Max-Min: maximize minimally visible border over all disks
- Max-Total: maximize the total visible border

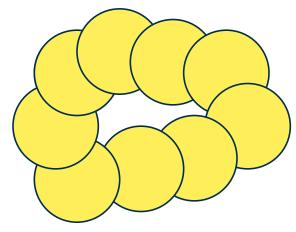
	Max-Total	Max-Min
stacking	?	Р
physically realizable	NP-hard	NP-hard

Two Types Of Valid Drawings

stacking: total z-order on all disks



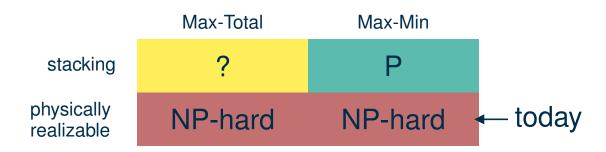
physically realizable: buildabel with thin coins



every stacking is physically realizable, but not the other way round

Two Optimization Problems

- Max-Min: maximize minimally visible border over all disks
- Max-Total: maximize the total visible border



Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

$$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee \neg x_4 \vee x_5) \wedge (\neg x_1 \vee x_4)$$

Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

 $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee \neg x_4 \vee x_5) \wedge (\neg x_1 \vee x_4)$

Problem: Monotone 3-SAT

Each clause has only positive or only negative literals.

$$(\neg x_1 \lor \neg x_2 \lor \neg x_3)$$
$$\land (x_2 \lor x_4 \lor x_5)$$
$$\land (\neg x_1 \lor \neg x_4)$$

Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

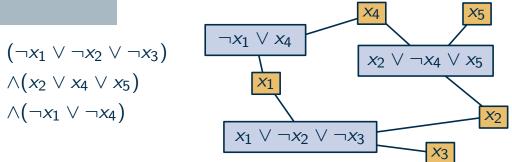
Problem: Monotone 3-SAT

Each clause has only positive or only negative literals.

Problem: Planar 3-SAT

The clause—variable graph is planar.

 $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee \neg x_4 \vee x_5) \wedge (\neg x_1 \vee x_4)$



Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

Problem: Monotone 3-SAT

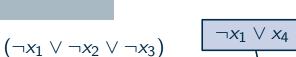
Each clause has only positive or only negative literals.

Problem: Planar 3-SAT

The clause-variable graph is planar.

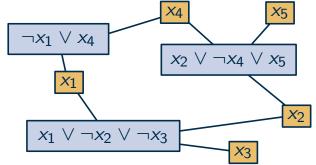
Problem: Rectilinear Planar 3-SAT

The clause—variable graph has a rectilinear planar drawing.



$$\land (x_2 \lor x_4 \lor x_5)$$

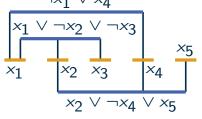
$$\wedge (\neg x_1 \vee \neg x_4)$$



 $(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee \neg x_4 \vee x_5) \wedge (\neg x_1 \vee x_4)$

Rectilinear Planar Drawing

- vertices: horizontal segments
- edges: vertical segments
- all variable vertices on one line



Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

Problem: Monotone 3-SAT

Each clause has only positive or only negative literals.

Problem: Planar 3-SAT

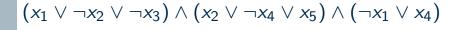
The clause-variable graph is planar.

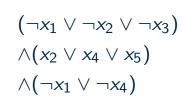
Problem: Rectilinear Planar 3-SAT

The clause—variable graph has a rectilinear planar drawing.

Problem: Planar Monotone 3-SAT

Clauses over/under the variables have only positive/negative literals.

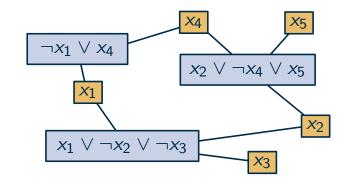




 $x_1 \vee \neg x_2 \vee \neg x_3$

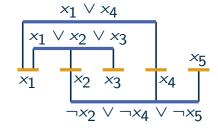
 $x_2 \vee \neg x_4 \vee x_5$

*x*₁



Rectilinear Planar Drawing

- vertices: horizontal segments
- edges: vertical segments
- all variable vertices on one line



Problem: 3-SAT

Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

Problem: Monotone 3-SAT

Each clause has only positive or only negative literals.

Problem: Planar 3-SAT

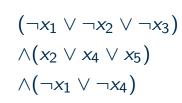
The clause-variable graph is planar.

Problem: Rectilinear Planar 3-SAT

The clause-variable graph has a rectilinear planar drawing.

Problem: Planar Monotone 3-SAT

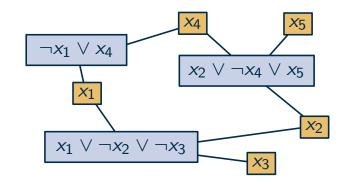
Clauses over/under the variables have only positive/negative literals.



 $x_1 \vee \neg x_2 \vee \neg x_3$

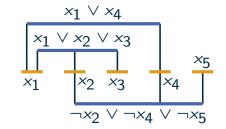
 $x_2 \vee \neg x_4 \vee x_5$

*x*₁



Rectilinear Planar Drawing

- vertices: horizontal segments
- edges: vertical segments
- all variable vertices on one line



Note: allowing clauses < 2 is important here

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

Needed Building Blocks

variables: n independent decisions, everything else is forced

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

- variables: n independent decisions, everything else is forced
- clauses: problematic ⇔ three specific decisions are wrong

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

- variables: n independent decisions, everything else is forced
- clauses: problematic ⇔ three specific decisions are wrong
- information transport
 - propagate decisions made at the variables to the clauses

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

- variables: n independent decisions, everything else is forced
- clauses: problematic ⇔ three specific decisions are wrong
- information transport
 - propagate decisions made at the variables to the clauses
 - must be possible for positive and negative literals

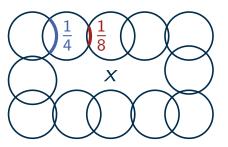
General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks

- variables: n independent decisions, everything else is forced
- clauses: problematic ⇔ three specific decisions are wrong
- information transport
 - propagate decisions made at the variables to the clauses
 - must be possible for positive and negative literals
 - transport channel can be faulty in one direction: flip from satisfied to unsatisfied literal is ok

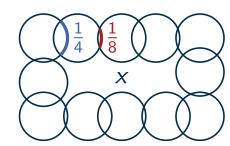
YES-instance: for every disk, $\geq 3/4$ of its border is visible

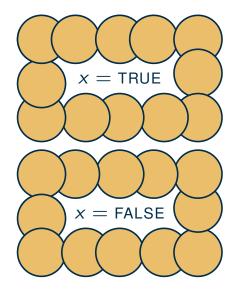
YES-instance: for every disk, $\geq 3/4$ of its border is visible **Variable Gadget**



YES-instance: for every disk, $\geq 3/4$ of its border is visible **Variable Gadget**

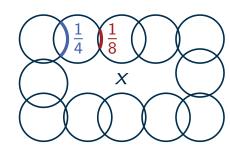
- only two configurations possible
- every different configuration covers > 1/4 of a disk

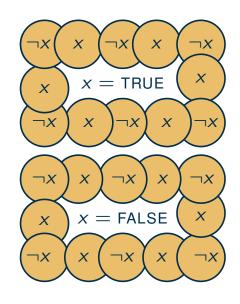




YES-instance: for every disk, $\geq 3/4$ of its border is visible **Variable Gadget**

- only two configurations possible
- every different configuration covers > 1/4 of a disk

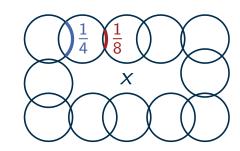




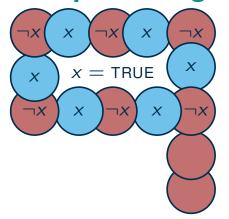
YES-instance: for every disk, $\geq 3/4$ of its border is visible

Variable Gadget

- only two configurations possible
- every different configuration covers > 1/4 of a disk



Transport Gadget



• chain starting at a $\neg x$ (with $\neg x = FALSE$)

x = TRUE

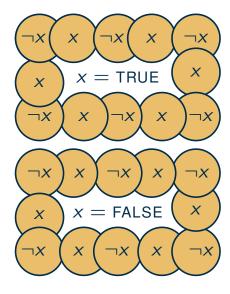
x = FALSE

YES-instance: for every disk, $\geq 3/4$ of its border is visible

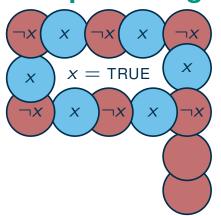
Variable Gadget

- only two configurations possible
- every different configuration covers > 1/4 of a disk

$\frac{1}{4} \frac{1}{8}$



Transport Gadget



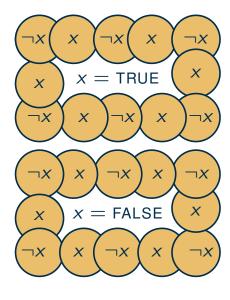
- chain starting at a $\neg x$ (with $\neg x = \mathsf{FALSE}$)
 - every decision is forced $ightarrow rac{1}{4}$ of last disk covered
 - transports information $\neg x = \text{FALSE}$ to (almost) arbitrary position

YES-instance: for every disk, $\geq 3/4$ of its border is visible

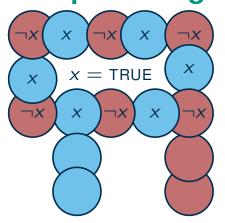
Variable Gadget

- only two configurations possible
- every different configuration covers > 1/4 of a disk

$\frac{1}{4} \frac{1}{8}$



Transport Gadget

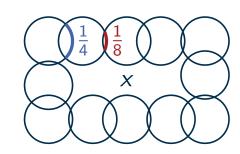


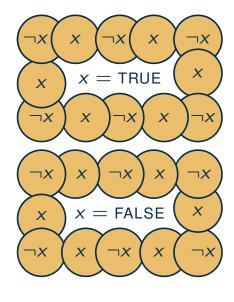
- chain starting at a $\neg x$ (with $\neg x = \mathsf{FALSE}$)
 - every decision is forced $ightarrow rac{1}{4}$ of last disk covered
 - transports information $\neg x = \text{FALSE}$ to (almost) arbitrary position
- chain starts at an x (instead of $\neg x$) \rightarrow last disk can be completely visible

YES-instance: for every disk, $\geq 3/4$ of its border is visible

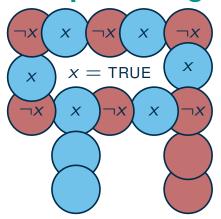
Variable Gadget

- only two configurations possible
- every different configuration covers > 1/4 of a disk





Transport Gadget

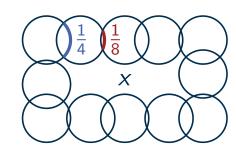


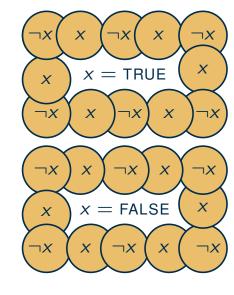
- chain starting at a $\neg x$ (with $\neg x = \mathsf{FALSE}$)
 - every decision is forced $ightarrow rac{1}{4}$ of last disk covered
 - transports information $\neg x = \text{FALSE}$ to (almost) arbitrary position
- chain starts at an x (instead of $\neg x$) \rightarrow last disk can be completely visible
- inverted behavior for the x = FALSE configuration

YES-instance: for every disk, $\geq 3/4$ of its border is visible

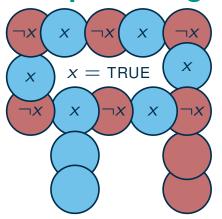
Variable Gadget

- only two configurations possible
- every different configuration covers > 1/4 of a disk





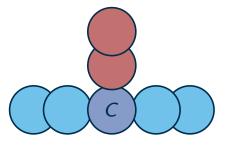
Transport Gadget



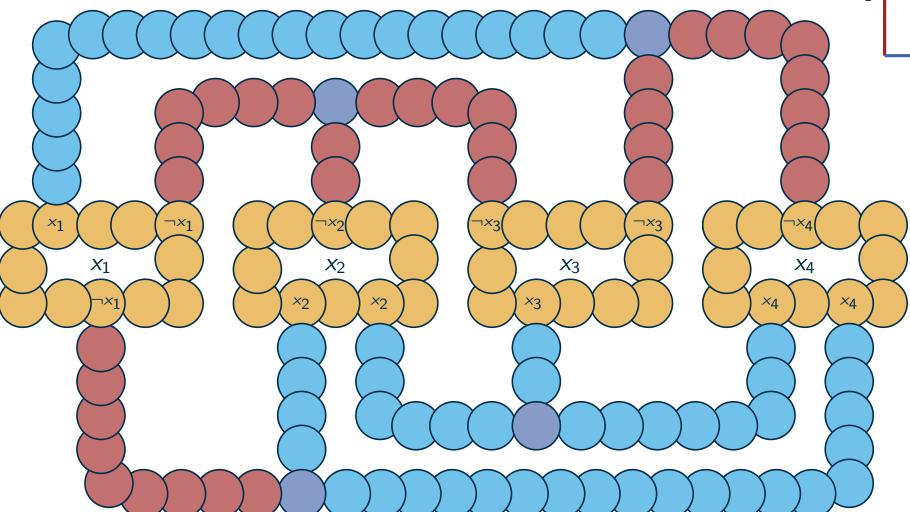
- chain starting at a $\neg x$ (with $\neg x = \mathsf{FALSE}$)
 - every decision is forced $ightarrow rac{1}{4}$ of last disk covered
 - transports information $\neg x = \text{FALSE}$ to (almost) arbitrary position
- chain starts at an x (instead of $\neg x$) \rightarrow last disk can be completely visible
- inverted behavior for the x = FALSE configuration

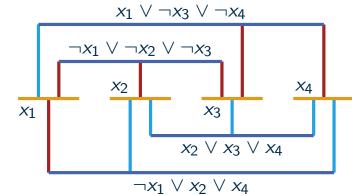
Clause Gadget

• C must overlap ≥ 1 of its neighbors $\rightarrow \geq 1$ chain comes from a true literal

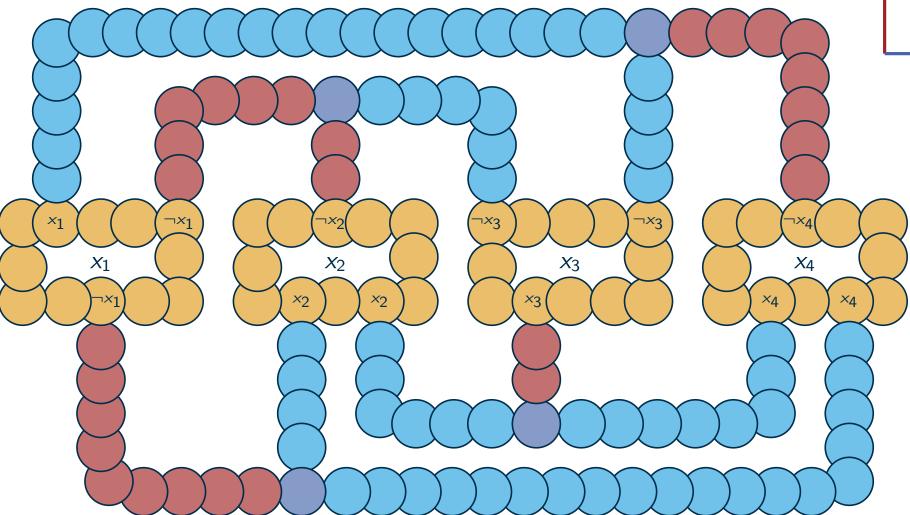


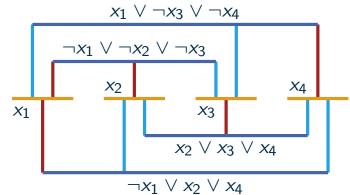
Putting Things Together





Putting Things Together





Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

Details Of The Reduction (the big picture should be more or less clear already)

size of the variable gadget: dependent on number of appearances in clauses

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

- size of the variable gadget: dependent on number of appearances in clauses
- length and shape of the transport gadget
 - follows the rectilinear drawing of the 3-SAT instance in the input

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

- size of the variable gadget: dependent on number of appearances in clauses
- length and shape of the transport gadget
 - follows the rectilinear drawing of the 3-SAT instance in the input
 - we can assume: drawing on the grid with polynomially bounded coordinates

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

- size of the variable gadget: dependent on number of appearances in clauses
- length and shape of the transport gadget
 - follows the rectilinear drawing of the 3-SAT instance in the input
 - we can assume: drawing on the grid with polynomially bounded coordinates
- resulting instance has polynomial size and reduction runs in polynomial time

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

Details Of The Reduction (the big picture should be more or less clear already)

- size of the variable gadget: dependent on number of appearances in clauses
- length and shape of the transport gadget
 - follows the rectilinear drawing of the 3-SAT instance in the input
 - we can assume: drawing on the grid with polynomially bounded coordinates
- resulting instance has polynomial size and reduction runs in polynomial time

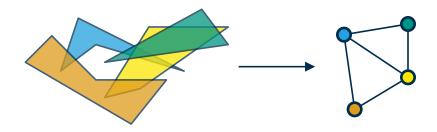
Correctness

- \blacksquare 3/4 of the border of each disk visible \Rightarrow formula satisfiable
- formula satisfiable \Rightarrow 3/4 of the border of each disk visible

Unit Disk Graphs

Definition

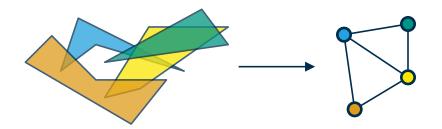
Set of geometric objects V defines **intersection graph** G = (V, E) with $uv \in E \Leftrightarrow u \cap v \neq \emptyset$.



Unit Disk Graphs

Definition

Set of geometric objects V defines **intersection graph** G = (V, E) with $uv \in E \Leftrightarrow u \cap v \neq \emptyset$.



Definition

A graph is a unit disk graph if it is the intersection graph of disks of radius 1.

Unit Disk Graphs

Definition

Set of geometric objects V defines **intersection graph** G = (V, E) with $uv \in E \Leftrightarrow u \cap v \neq \emptyset$.

Definition

A graph is a unit disk graph if it is the intersection graph of disks of radius 1.

Recognition Problem
Is a given graph a unit disk graph?

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations

• equivalent: are there vertex positions such that $dist(u, v) \le 2 \Leftrightarrow uv \in E$?

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

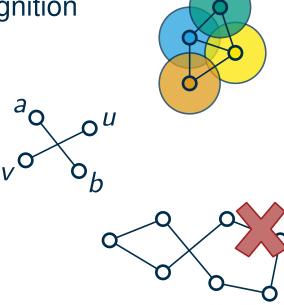
Useful Basic Observations

- equivalent: are there vertex positions such that $dist(u, v) \le 2 \Leftrightarrow uv \in E$?
- two edges ab and uv cross in this representation \Rightarrow three of the vertices a, b, u, v form a triangle

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations

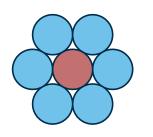
- equivalent: are there vertex positions such that $dist(u, v) \le 2 \Leftrightarrow uv \in E$?
- two edges ab and uv cross in this representation \Rightarrow three of the vertices a, b, u, v form a triangle
- induced cycles are planar

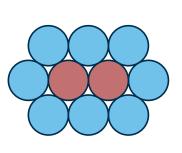


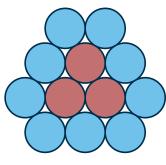
Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations

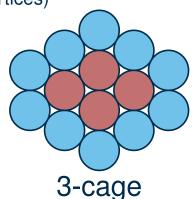
- equivalent: are there vertex positions such that $dist(u, v) \le 2 \Leftrightarrow uv \in E$?
- two edges ab and uv cross in this representation \Rightarrow three of the vertices a, b, u, v form a triangle
- Why?
- ⇒ three of the vertices a, b, u, v form a triangle
 induced cycles are planar
- cycles contain a limited number of independent
 vertices (i-cage contains at most i independent vertices)

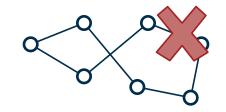




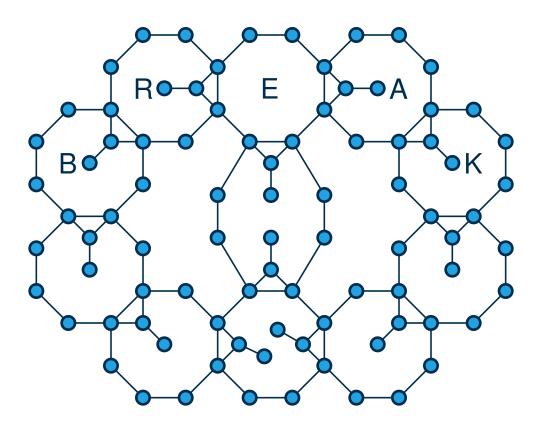


2-cage

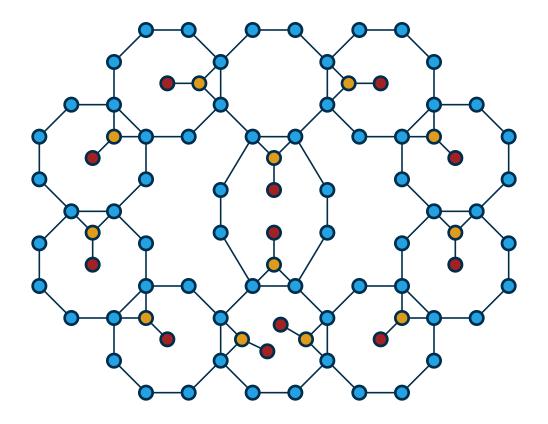




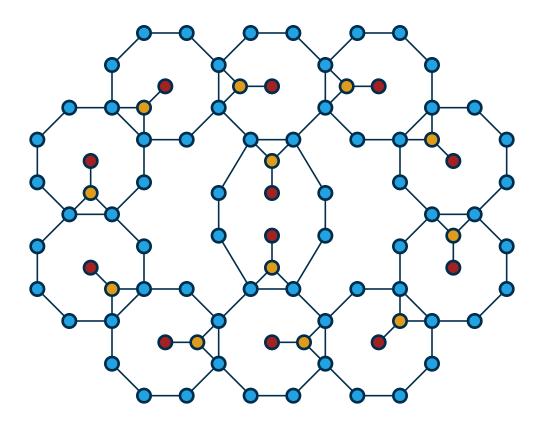
Unit Disk Graph Or Not?



Unit Disk Graph Or Not?



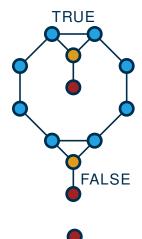
Unit Disk Graph Or Not?

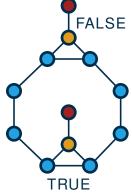


Gadgets We Need: variable, clause, transport

Gadgets We Need: variable, clause, transport

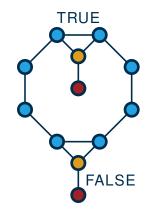
Variable Gadget

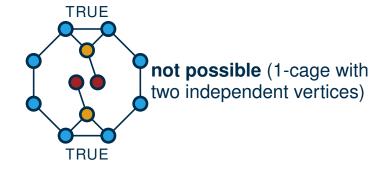


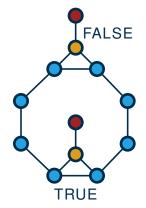


Gadgets We Need: variable, clause, transport

Variable Gadget

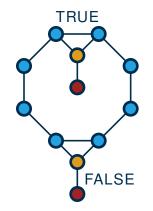


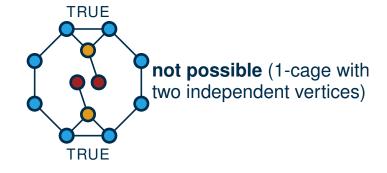


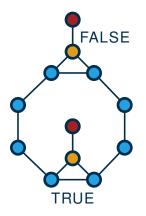


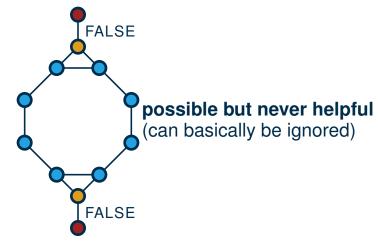
Gadgets We Need: variable, clause, transport

Variable Gadget



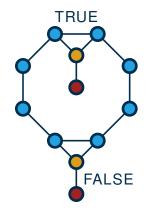


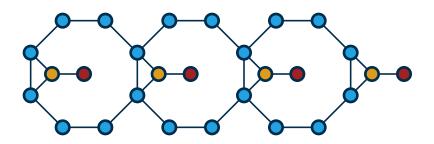


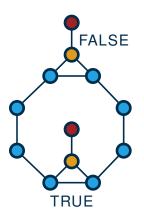


Gadgets We Need: variable, clause, transport

Variable Gadget Transporting Information

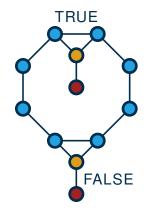


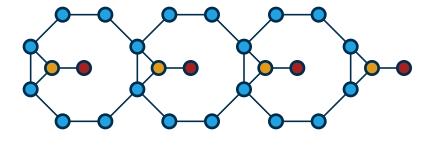


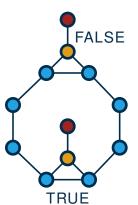


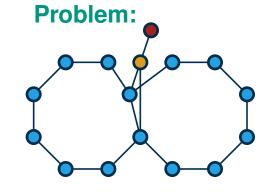
Gadgets We Need: variable, clause, transport

Variable Gadget Transporting Information



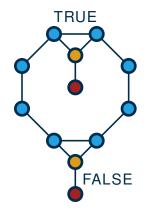


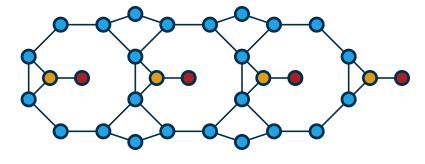


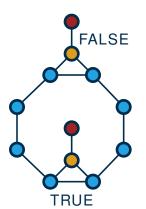


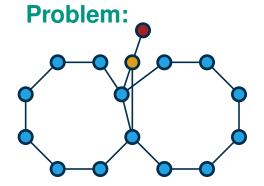
Gadgets We Need: variable, clause, transport

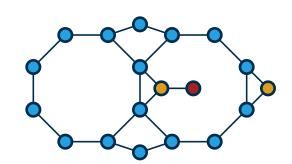
Variable Gadget Transporting Information









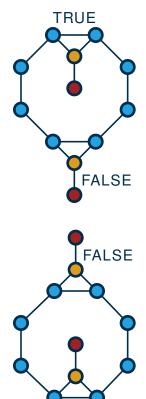


Solution:

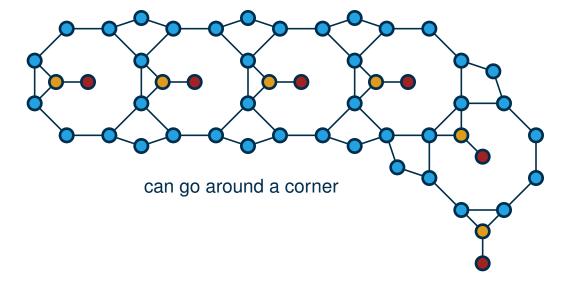
Gadgets We Need: variable, clause, transport

Variable Gadget

Transporting Information

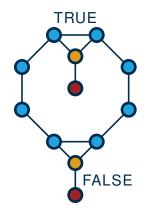


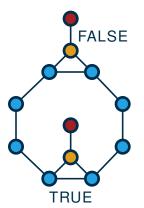
TRUE



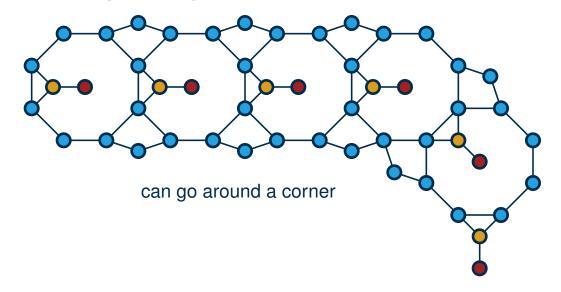
Gadgets We Need: variable, clause, transport

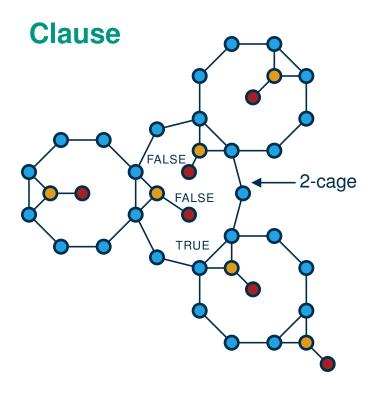
Variable Gadget





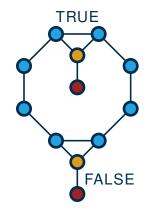
Transporting Information

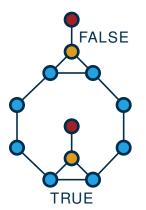




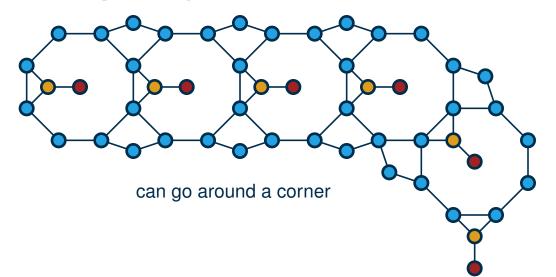
Gadgets We Need: variable, clause, transport

Variable Gadget

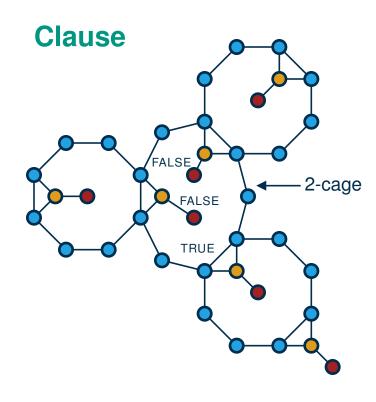




Transporting Information

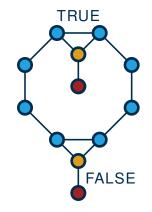


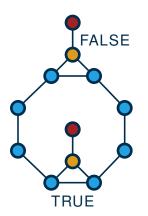
What Is Missing?



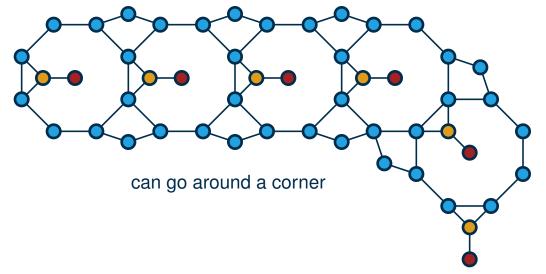
Gadgets We Need: variable, clause, transport

Variable Gadget





Transporting Information



Clause 2-cage

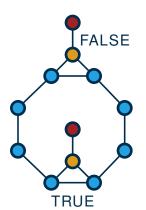
What Is Missing?

- we can transport the decision of a variable to only one clause
- variables are contained in multiple clauses

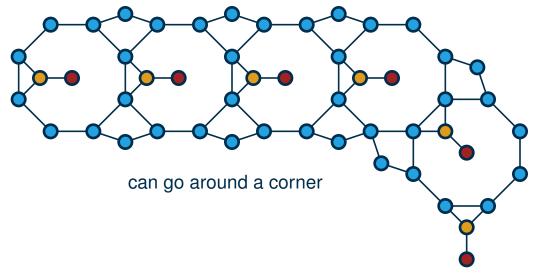
(technically 2: one positive, one negative)

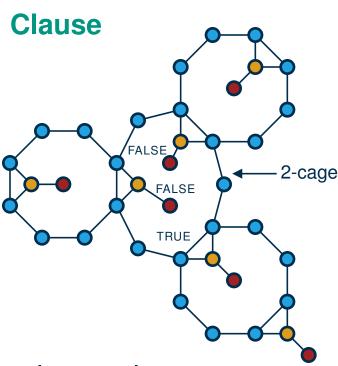
Gadgets We Need: variable, clause, transport

Variable Gadget



Transporting Information

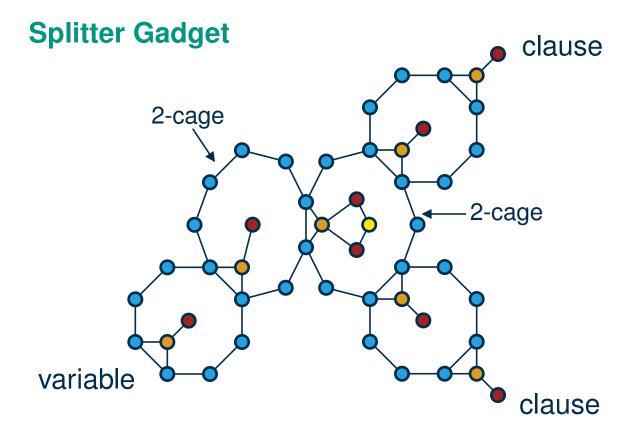


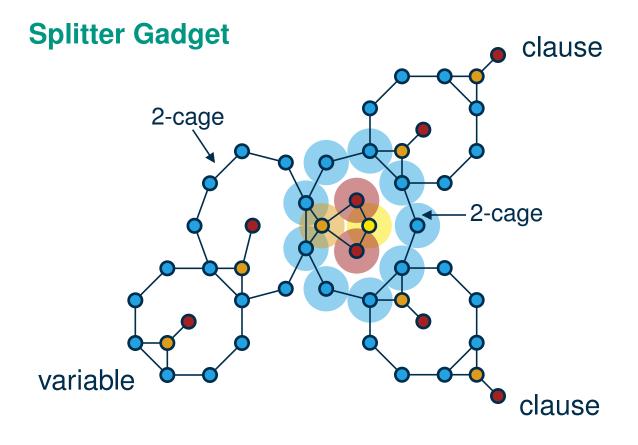


(technically 2: one positive, one negative)

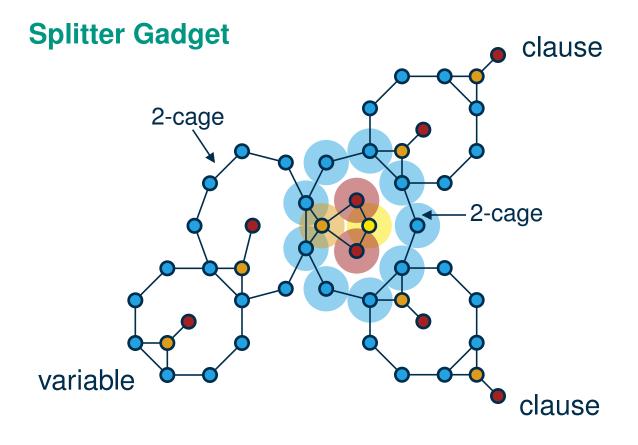
What Is Missing?

- we can transport the decision of a variable to only one clause
- variables are contained in multiple clauses
- we need a splitter gadget

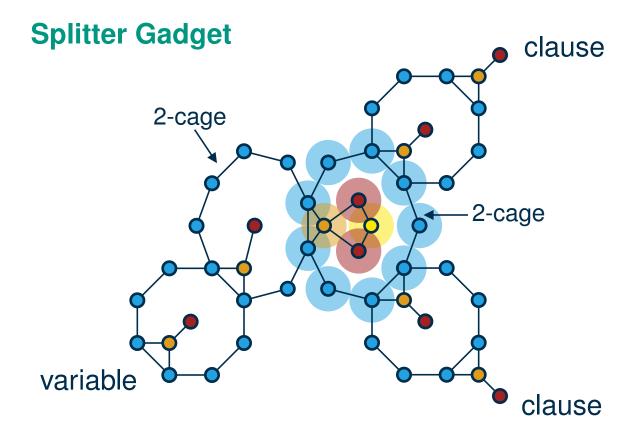




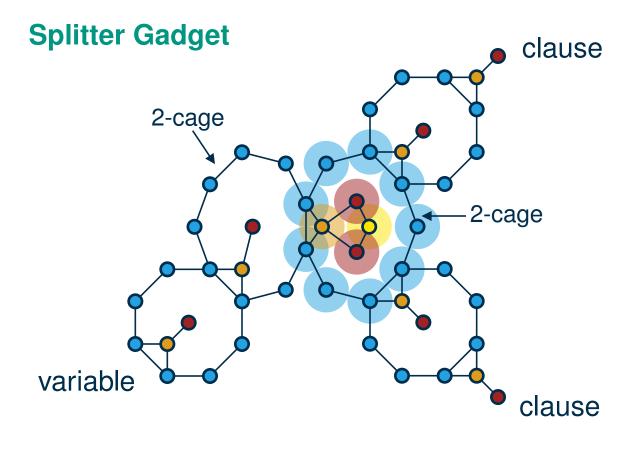
- o forces both o into the same 2-cage
- the 2-cage is realizable



- o forces both o into the same 2-cage
- the 2-cage is realizable
- FALSE signal from the variable ⇒ FALSE signal to clauses (in every unit disk representation)



- o forces both o into the same 2-cage
- the 2-cage is realizable
- FALSE signal from the variable ⇒ FALSE signal to clauses (in every unit disk representation)
- TRUE signal from variable ⇒ TRUE signals to clauses possible



- o forces both o into the same 2-cage
- the 2-cage is realizable
- FALSE signal from the variable ⇒ FALSE signal to clauses (in every unit disk representation)
- TRUE signal from variable ⇒ TRUE signals to clauses possible
- gadget does what it should (flip from TRUE to FALSE is ok)

Graphs That Are Hard To Recognize

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation \Rightarrow 3-SAT formula satisfiable
- 3-SAT formula satisfiable ⇒ graph has a unit disk representation

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation \Rightarrow 3-SAT formula satisfiable
- 3-SAT formula satisfiable ⇒ graph has a unit disk representation

Is The Problem NP-Complete?

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation ⇒ 3-SAT formula satisfiable
- 3-SAT formula satisfiable ⇒ graph has a unit disk representation

Is The Problem NP-Complete?

■ probably not → what goes wrong?

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation ⇒ 3-SAT formula satisfiable
- 3-SAT formula satisfiable ⇒ graph has a unit disk representation

Is The Problem NP-Complete?

- probably not → what goes wrong?
 - guess positions as certificate and check whether $uv \in E \Leftrightarrow dist(u, v) \leq 2$

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- length and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation ⇒ 3-SAT formula satisfiable
- 3-SAT formula satisfiable ⇒ graph has a unit disk representation

Is The Problem NP-Complete?

- probably not → what goes wrong?
 - guess positions as certificate and check whether $uv \in E \Leftrightarrow dist(u, v) \leq 2$
 - problem: this certificate sometimes needs to be exponentially large

(because we need double exponentially precise coordinates)

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is
$$\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$$
 true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials. Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a theory is a set of statements. The existential theory of the reals is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

 \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals

(at most as hard)

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory* of the reals is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

■ $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals

(at most as hard)

■ Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π

(at least as hard)

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory* of the reals is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

 \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals

(at most as hard)

■ Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π

(at least as hard)

■ Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

 \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals

(at most as hard)

■ Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π

(at least as hard)

■ Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

(equally hard)

Recognizing Unit Disk Graphs

• problem lies in $\exists \mathbb{R}$

Problem: Existential Theory Of The Reals

Let $F(X_1, \ldots, X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

 \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals

(at most as hard)

■ Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π

(at least as hard)

■ Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

(equally hard)

Recognizing Unit Disk Graphs

- problem lies in $\exists \mathbb{R}$
- it is actually $\exists \mathbb{R}$ -complete

Problem: Existential Theory Of The Reals

Let $F(X_1, ..., X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

- \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals
- Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π
- Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Recognizing Unit Disk Graphs

- problem lies in $\exists \mathbb{R}$
- it is actually $\exists \mathbb{R}$ -complete

Relation To Other Classes

 \blacksquare NP $\subseteq \exists \mathbb{R}$

(at least as hard)

Problem: Existential Theory Of The Reals

Let $F(X_1, ..., X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

- \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals
- Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π
- Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Recognizing Unit Disk Graphs

- problem lies in $\exists \mathbb{R}$
- it is actually $\exists \mathbb{R}$ -complete

Relation To Other Classes

- \blacksquare NP $\subseteq \exists \mathbb{R}$
- $\exists \mathbb{R} \subset \mathsf{PSPACE}$

(at most as hard)

(at least as hard)

Problem: Existential Theory Of The Reals

Let $F(X_1, ..., X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

- \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals
- Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π
- Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Recognizing Unit Disk Graphs

- problem lies in $\exists \mathbb{R}$
- it is actually $\exists \mathbb{R}$ -complete

Relation To Other Classes

- \blacksquare NP $\subseteq \exists \mathbb{R}$
- $\exists \mathbb{R} \subset \mathsf{PSPACE}$
- conjecture: $NP \subset \exists \mathbb{R} \subset PSPACE$

(at most as hard)

(at least as hard)

Problem: Existential Theory Of The Reals

Let $F(X_1, ..., X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials.

Is $\exists X_1 \cdots \exists X_n \ F(X_1, \ldots, X_n)$ true?

(In logic, a *theory* is a set of statements. The *existential theory of the reals* is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

- \blacksquare $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals
- Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π
- Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Recognizing Unit Disk Graphs

- problem lies in $\exists \mathbb{R}$
- it is actually $\exists \mathbb{R}$ -complete
- we believe: recognizing unit disk graphs is strictly harder than every problem in NP

Relation To Other Classes

- \blacksquare NP $\subseteq \exists \mathbb{R}$
- ∃R ⊂ PSPACE
- conjecture: $NP \subset \exists \mathbb{R} \subset PSPACE$

(at most as hard)

(at least as hard)

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP
- reductions from SAT variants are often easy; you just need:
 - variable gadget
 - clause gadget
 - transportation gadget

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP
- reductions from SAT variants are often easy; you just need:
 - variable gadget
 - clause gadget
 - transportation gadget
 - maybe splitter gadget (if the variable gadget produces too few literals)

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP
- reductions from SAT variants are often easy; you just need:
 - variable gadget
 - clause gadget
 - transportation gadget
 - maybe splitter gadget (if the variable gadget produces too few literals)

What Else Is There?

negation gadget (if you have a place where you need negative literals but can only get positive literals)

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP
- reductions from SAT variants are often easy; you just need:
 - variable gadget
 - clause gadget
 - transportation gadget
 - maybe splitter gadget (if the variable gadget produces too few literals)

What Else Is There?

negation gadget (if you have a place where you need negative literals but can only get positive literals)

crossing gadget (if you reduce from a non-planar SAT variant)

Literature

Algorithmic Aspects of Proportional Symbol Maps
 Sergio Cabello, Herman Haverkort, Marc van Kreveld, Bettina Speckmann

(2009)

(2010)

(2012)

https://doi.org/10.1007/s00453-009-9281-8

Unit disk graph recognition is NP-hard Heinz Breu, David G. Kirkpatrick (1998)

https://doi.org/10.1016/S0925-7721(97)00014-X

 Optimal Binary Space Partitions in the Plane Mark de Berg, Amirali Khosravi
 (NP-hardness for planar monotone 3-SAT)

https://doi.org/10.1007/978-3-642-14031-0 25

Sphere and Dot Product Representations of Graphs Ross J. Kang, Tobias Müller

https://doi.org/10.1007/s00454-012-9394-8

 $(\exists \mathbb{R}\text{-hardness for recognizing unit disk graphs})$

