

Computational Geometry Hard Problems

Thomas Bläsius

Proportional Symbol Maps

Proportional Symbol Map (Example: Earthquakes)

- visualizing weighted points on a map
- weight represented by disk size
- degree of freedom: z-order of overlapping disks
- readability depends on the order

Problem

- given: set of disk with potentially different radii
- find: drawing that maximizes the visible border of each disk
- What is a valid drawing? What exactly does maximizing the visible border mean?

What Exactly Is The Problem?

Two Types Of Valid Drawings

stacking: total z-order on all disks

physically realizable: buildabel with thin coins

every stacking is physically realizable, but not the other way round

Two Optimization Problems

- Max-Min: maximize minimally visible border over all disks
- Max-Total: maximize the total visible border

Useful NP-Hard SAT-Varints

Problem: 3-SAT Boolean formula Φ in CNF, with \leq 3 literals per clause. Is Φ satisfiable?

Problem: Monotone 3-SAT Each clause has only positive or only negative literals.

Problem: Planar 3-SAT The clause–variable graph is planar.

Problem: Rectilinear Planar 3-SAT The clause–variable graph has a *rectilinear planar* drawing.

$(\neg x_1 \lor \neg x_2 \lor \neg x_3)$ $\land (x_2 \lor x_4 \lor x_5)$ $\land (\neg x_1 \lor \neg x_4)$

Rectilinear Planar Drawing

- vertices: horizontal segments
- edges: vertical segments
- all variable vertices on one line

Note: allowing clauses < 2 is important here

Problem: Planar Monotone 3-SAT Clauses over/under the variables have only positive/negative literals.

Reductions From Planar Monotone 3-SAT

General Mindset

- we want to model a given 3-SAT instance
- our modeling language are overlapping disks
- satisfying all clauses $\hat{=}$ for each disk, a big part of its border is visible

Needed Building Blocks

- variables: n independent decisions, everything else is forced
- clauses: problematic ⇔ three specific decisions are wrong
- information transport
 - propagate decisions made at the variables to the clauses
 - must be possible for positive and negative literals
 - transport channel can be faulty in one direction: flip from satisfied to unsatisfied literal is ok

Gadgets

YES-instance: for every disk, $\geq 3/4$ of its border is visible **Variable Gadget**

- only two configurations possible
- every different configuration covers > 1/4 of a disk

Transport Gadget

- chain starting at a $\neg x$ (with $\neg x = FALSE$)
- every decision is forced $\rightarrow \frac{1}{4}$ of last disk covered
- transports information $\neg x = FALSE$ to (almost) arbitrary position
- chain starts at an x (instead of $\neg x$) \rightarrow last disk can be completely visible
- inverted behavior for the x = FALSE configuration

Clause Gadget

• C must overlap ≥ 1 of its neighbors $\rightarrow \geq 1$ chain comes from a true literal

What Is Left To Show?

Theorem

Deciding whether there is a physically realizable configuration that shows 3/4 of the border of each disk is NP-hard.

Details Of The Reduction (the big picture should be more or less clear already)

- size of the variable gadget: dependent on number of appearances in clauses
- Iength and shape of the transport gadget
 - follows the rectilinear drawing of the 3-SAT instance in the input
 - we can assume: drawing on the grid with polynomially bounded coordinates
- resulting instance has polynomial size and reduction runs in polynomial time

Correctness

- 3/4 of the border of each disk visible \Rightarrow formula satisfiable
- formula satisfiable $\Rightarrow 3/4$ of the border of each disk visible

Unit Disk Graphs

Definition Set of geometric objects *V* defines **intersection graph** G = (V, E) with $uv \in E \Leftrightarrow u \cap v \neq \emptyset$.

Definition

A graph is a unit disk graph if it is the intersection graph of disks of radius 1.

Recognition Problem Is a given graph a unit disk graph?

Basic Observations

Goal: reduce planar monotone 3-SAT to unit disk graphs recognition

Useful Basic Observations

- equivalent: are there vertex positions such that dist(u, v) ≤ 2 ⇔ uv ∈ E?
- two edges ab and uv cross in this representation \Rightarrow three of the vertices a, b, u, v form a triangle
- induced cycles are planar
- cycles contain a limited number of independent vertices (*i*-cage contains at most *i* independent vertices)

Why?

10

Unit Disk Graph Or Not?

Gadgets

- we can transport the decision of a variable to only one clause
- variables are contained in multiple clauses
- we need a splitter gadget

(technically 2: one positive, one negative)

TRUE

Multiplying Information

Note

- o forces both o into the same 2-cage
- the 2-cage is realizable
- FALSE signal from the variable ⇒ FALSE signal to clauses (in every unit disk representation)
- TRUE signal from variable ⇒ TRUE signals to clauses possible
- gadget does what it should (flip from TRUE to FALSE is ok)

Graphs That Are Hard To Recognize

Theorem

It is NP-hard to decide whether a given graph is a unit disk graph.

What Do We Need To Think About For The Proof?

- Iength and exact positioning of the transport gadgets: follows given drawing of 3-SAT formula
- resulting instance has polynomial size and can be computed in polynomial time
- graph has unit disk representation \Rightarrow 3-SAT formula satisfiable
- 3-SAT formula satisfiable \Rightarrow graph has a unit disk representation

Is The Problem NP-Complete?

- \blacksquare probably not \rightarrow what goes wrong?
 - guess positions as certificate and check whether $uv \in E \Leftrightarrow dist(u, v) \leq 2$
 - problem: this certificate sometimes needs to be exponentially large

(because we need double exponentially precise coordinates)

Existential Theory Of The Reals

Problem: Existential Theory Of The Reals

Let $F(X_1, ..., X_n)$ be a quantifier-free Boolean formula over (in-)equalities of real polynomials. Is $\exists X_1 \cdots \exists X_n F(X_1, ..., X_n)$ true? (In logic, a *theory* is a set of statements. The *existential theory* of the reals is the set of all true statements of this form.)

The Complexity Class $\exists \mathbb{R}$

- $\Pi \in \exists \mathbb{R} \Leftrightarrow \Pi$ has a polynomial reduction to the existential theory of the reals
- Π is $\exists \mathbb{R}$ -hard \Leftrightarrow all problems in $\exists \mathbb{R}$ have a polynomial reduction to Π
- Π is $\exists \mathbb{R}$ -complete $\Leftrightarrow \Pi \in \exists \mathbb{R}$ and $\Pi \exists \mathbb{R}$ -hard

Recognizing Unit Disk Graphs

• problem lies in $\exists \mathbb{R}$

- Why?
- it is actually $\exists \mathbb{R}$ -complete
- we believe: recognizing unit disk graphs is strictly harder than every problem in NP

Relation To Other Classes

- $\mathsf{NP} \subseteq \exists \mathbb{R}$
- $\exists \mathbb{R} \subseteq \mathsf{PSPACE}$
- conjecture: NP $\subset \exists \mathbb{R} \subset \mathsf{PSPACE}$

Wrap-Up

Seen Today

- problems: proportional symbol maps (cartography), recognition of unit disk graphs
- complexity class $\exists \mathbb{R}$
- for geometric problems, it is often unclear whether they lie in NP
- reductions from SAT variants are often easy; you just need:
 - variable gadget
 - clause gadget
 - transportation gadget
 - maybe splitter gadget (if the variable gadget produces too few literals)

What Else Is There?

negation gadget

(if you have a place where you need negative literals but can only get positive literals)

crossing gadget

(if you reduce from a non-planar SAT variant)

Literature

Algorithmic Aspects of Proportional Symbol Maps

Sergio Cabello, Herman Haverkort, Marc van Kreveld, Bettina Speckmann

Unit disk graph recognition is NP-hard Heinz Breu, David G. Kirkpatrick

Optimal Binary Space Partitions in the Plane

Mark de Berg, Amirali Khosravi (NP-hardness for planar monotone 3-SAT)

Sphere and Dot Product Representations of Graphs Ross J. Kang, Tobias Müller Archive Anternational Strategy (Archive Anternational Strategy)

 $(\exists \mathbb{R}\text{-hardness for recognizing unit disk graphs})$

(1998) https://doi.org/10.1016/S0925-7721(97)00014-X

https://doi.org/10.1007/s00453-009-9281-8

(2010) https://doi.org/10.1007/978-3-642-14031-0_25

(2012) https://doi.org/10.1007/s00454-012-9394-8

