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Computational Origami – Foldability
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Short Pieces Everywhere

Proof
consider maximal sequence that is neither left-short nor right-short

we cannot escape from the spiral

being one of left-short or right-short would be enough (for the maximal
sequence in isolation)

Lemma (foldable ⇒ left/right-short)
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There Is Always One More Reduction

Lemma (left/right-short ⇒ reduction)
each maximal sequence is left-short or right-short ⇒ there is an end-fold or a crimp

Proof
assume for contradiction: no end fold and no crimp
no end-fold ⇒ first maximal sequence not left-short ⇒ right-short
no crimp ⇒ second maximal sequence not left-short ⇒ right-short
iterate argument ⇒ every maximal sequence is right-short
but: this gives an end-fold for the last segment

long short

long short

long short

long short

long

long short

short end-fold
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Wrap-Up: 1D Origami

Lemma (Safety first!)
The reduction rules “end-fold” and “crimp” are safe.
(If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Theorem (foldable ⇒ reduction)
If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.
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Crease Patterns With One Vertex

Observations
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now, our paper is a circle, instead of a line segment
not every crease pattern is flat foldable (in 1D, zig-zag always works)
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similarity to 1D-case: sequence of angles Θ1; : : : ;Θn

now, our paper is a circle, instead of a line segment
not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern
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Θ2
Θ3Θ6

Θ5

Θ4

orientations of the circular arcs alternate ⇒ n is even
Θ1 +Θ3 + · · ·+Θn−1 = Θ2 +Θ4 + · · ·+Θn = 180◦

Proof

Theorem
The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180◦ each.

1. try zig-zag 2. cut at left-most point
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Crease Patterns With One Vertex

Observations
similarity to 1D-case: sequence of angles Θ1; : : : ;Θn

now, our paper is a circle, instead of a line segment
not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern
Θ1

Θ2
Θ3Θ6

Θ5

Θ4

orientations of the circular arcs alternate ⇒ n is even
Θ1 +Θ3 + · · ·+Θn−1 = Θ2 +Θ4 + · · ·+Θn = 180◦

Proof

Theorem
The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180◦ each.

1. try zig-zag 2. cut at left-most point
3. swap order
4. reconnect
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Mountain/Valley Patterns With Only One Vertex

Safe Reduction Rule
define crimp as in the 1D-case

x≥ x ≥ x
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Mountain/Valley Patterns With Only One Vertex

Safe Reduction Rule
define crimp as in the 1D-case
same argument as before: reduction rule is safe
end-folds obviously no longer exist

Flat Foldable ⇒ Crimp
is still true, except if there are only two angles of equal size (in which case we are done)

Bonus Observation: flat foldable ⇒ #mountains −#valleys = ±2

x≥ x ≥ x

Theorem
If a mountain/valley pattern with one vertex is flat foldable, then there is a crimp and every
sequence of crimps yields a flat folding.
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Wrap-Up

1D crease pattern: always flat foldable (zig-zag)
1D mountain/valley pattern: flat foldable ⇒ safe reduction rule crimp or end-fold applicable
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Wrap-Up

1D crease pattern: always flat foldable (zig-zag)
1D mountain/valley pattern: flat foldable ⇒ safe reduction rule crimp or end-fold applicable

Seen Today

2D 1-vertex crease pattern: flat foldable ⇔ Θ1+Θ3+ · · ·+Θn−1 = Θ2+Θ4+ · · ·+Θn = 180◦

2D 1-vertex mountain/valley pattern: flat foldable ⇒ safe reduction rule crimp applicable

What Else Is There?
check if a crease pattern is flat foldable: NP-hard
check if mountain/valley-pattern is flat foldable: NP-hard
local foldability: O(n)
(find mountain/valley assignment, such that each vertex alone is flat foldable)

90◦ 90◦

120◦

60◦

̸=

̸= ̸=
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What Else Is There?

Origami everything is foldable (for different definitions of “everything”)
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What Else Is There?

Origami

1D-Linkages

everything is foldable (for different definitions of “everything”)

bring scissors!
Fold-and-Cut → Thursday
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More Books

https://link.springer.com/book/10.1007/978-981-15-4470-5 https://link.springer.com/book/10.1007/978-3-319-59189-6

https://link.springer.com/book/10.1007/978-981-15-4470-5
https://link.springer.com/book/10.1007/978-3-319-59189-6


Thomas Bläsius – Computational Geometry20

AI Generated Origami


