

Computational Geometry Computational Origami – Foldability

Thomas Bläsius

Given

- a geometric graph
- each inner edge is labeled either *mountain* or *valley*

Given

- a geometric graph
- each inner edge is labeled either mountain or valley

Interpretation

• boundary of the outer face is a piece of paper (in the following usually a square)

Given

- a geometric graph
- each inner edge is labeled either mountain or valley

Interpretation

- boundary of the outer face is a piece of paper (in the following usually a square)
- the geometric graph is a **crease pattern**
- folding direction is given via the mountain/valley-assignment

mountain/valley pattern

Given

- a geometric graph
- each inner edge is labeled either mountain or valley

Interpretation

- boundary of the outer face is a piece of paper (in the following usually a square)
- the geometric graph is a crease pattern
- folding direction is given via the mountain/valley-assignment

Problem: is the mountain/valley pattern flat foldable?

mountain/valley pattern

Given

- a geometric graph
- each inner edge is labeled either mountain or valley

Interpretation

- boundary of the outer face is a piece of paper (in the following usually a square)
- the geometric graph is a crease pattern
- folding direction is given via the mountain/valley-assignment

Problem: is the mountain/valley pattern flat foldable?

Examples:

mountain/valley pattern

Given

- a geometric graph
- each inner edge is labeled either mountain or valley

Interpretation

- boundary of the outer face is a piece of paper (in the following usually a square)
- the geometric graph is a crease pattern
- folding direction is given via the mountain/valley-assignment

Problem: is the mountain/valley pattern flat foldable?

Examples:

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Simplifying A Bit: 1D-case \rightarrow our "paper" is a line segment

1D Crease Pattern: 20 15 15 15 20

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

Two Problem Variants

- Given a mountain/valley pattern, is it flat foldable?
- Given a crease pattern, is there are mountain/valley assignment, such that it is flat foldable?

End-Fold

• condition: first/last piece smaller (\leq) than neighbor

End-Fold

• condition: first/last piece smaller (\leq) than neighbor

reduction: fold first/last vertex

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

condition: piece with mountain and valley vertex and larger neighbors

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

> x

Λ X

(Safety first!)

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

ProofEnd-Fold: obvious

> x

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Proof

9

- End-Fold: obvious
- **Crimp:** proof by picture

> x

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe.

(If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Proof

- End-Fold: obvious
- Crimp: proof by picture

> x

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe.

(If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Proof

- End-Fold: obvious
- Crimp: proof by picture

> x

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Proof

- End-Fold: obvious
- Crimp: proof by picture

End-Fold

- condition: first/last piece smaller (\leq) than neighbor
- reduction: fold first/last vertex

Crimp

- condition: piece with mountain and valley vertex and larger neighbors
- reduction: fold both adjacent vertices

Lemma

(Safety first!)

 $> \chi$

 $\geq X \wedge X$

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Proof

- End-Fold: obvious
- Crimp: proof by picture

 $\geq x \wedge x$

Thomas Bläsius – Computational Geometry

10

Theorem(foldable \Rightarrow reduction)If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

short pieces with one mountain and one valley vertex are good

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

- short pieces with one mountain and one valley vertex are good
- consider maximal sequence (wrt inclusion) with only mountain or only valley vertices

Thomas Bläsius – Computational Geometry 10

Reductions For The Win

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

- short pieces with one mountain and one valley vertex are good
- consider maximal sequence (wrt inclusion) with only mountain or only valley vertices
- Ieft-short: first piece is shorter than second

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

- short pieces with one mountain and one valley vertex are good
- consider maximal sequence (wrt inclusion) with only mountain or only valley vertices
- Ieft-short: first piece is shorter than second
- right-short: last piece shorter than second-to-last

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

- short pieces with one mountain and one valley vertex are good
- consider maximal sequence (wrt inclusion) with only mountain or only valley vertices
- Ieft-short: first piece is shorter than second
- right-short: last piece shorter than second-to-last

Lemma(foldable \Rightarrow left/right-short)flat foldable \Rightarrow each maximal sequence isleft-short or right-short

Theorem (foldable \Rightarrow reduction) If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Proof Plan

- short pieces with one mountain and one valley vertex are good
- consider maximal sequence (wrt inclusion) with only mountain or only valley vertices
- Ieft-short: first piece is shorter than second
- right-short: last piece shorter than second-to-last

Lemma (foldable \Rightarrow left/right-short) flat foldable \Rightarrow each maximal sequence is left-short or right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or rightshort \Rightarrow there is an end-fold or a crimp

Lemma (foldable \Rightarrow left/right-short) flat foldable \Rightarrow each maximal sequence is left-short or right-short

Lemma (foldable \Rightarrow left/right-short) flat foldable \Rightarrow each maximal sequence is left-short or right-short

Proof

consider maximal sequence that is neither left-short nor right-short

Lemma (foldable \Rightarrow left/right-short) flat foldable \Rightarrow each maximal sequence is left-short or right-short

Proof

consider maximal sequence that is neither left-short nor right-short

Lemma (foldable \Rightarrow left/right-short) flat foldable \Rightarrow each maximal sequence is left-short or right-short

Proof

consider maximal sequence that is neither left-short nor right-short

 being one of left-short or right-short would be enough (for the maximal sequence in isolation)

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

Proof

assume for contradiction: no end fold and no crimp

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short
- iterate argument \Rightarrow every maximal sequence is right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short
- iterate argument \Rightarrow every maximal sequence is right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short
- iterate argument \Rightarrow every maximal sequence is right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short
- iterate argument \Rightarrow every maximal sequence is right-short

Lemma (left/right-short \Rightarrow reduction) each maximal sequence is left-short or right-short \Rightarrow there is an end-fold or a crimp

- assume for contradiction: no end fold and no crimp
- no end-fold \Rightarrow first maximal sequence not left-short \Rightarrow right-short
- no crimp \Rightarrow second maximal sequence not left-short \Rightarrow right-short
- iterate argument \Rightarrow every maximal sequence is right-short
- but: this gives an end-fold for the last segment

Wrap-Up: 1D Origami

Lemma

(Safety first!)

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Theorem(foldable \Rightarrow reduction)If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Wrap-Up: 1D Origami

(Safety first!)

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Theorem

Lemma

(foldable \Rightarrow reduction)

If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Algorithm For Recognizing Flat Foldable 1D Mountain/Valley Patterns

- while there is an end-fold or a crimp, apply an end-fold or a crimp
- result is a flat folding \Rightarrow flat foldable
- result is not a flat folding \Rightarrow not flat foldable

Wrap-Up: 1D Origami

(Safety first!)

The reduction rules "end-fold" and "crimp" are safe. (If a mountain/valley pattern is flat foldable, then it remains flat foldable after applying the reduction rules.)

Theorem

Lemma

(foldable \Rightarrow reduction)

If the mountain/valley pattern is flat foldable, then there is an end-fold or a crimp.

Algorithm For Recognizing Flat Foldable 1D Mountain/Valley Patterns

- while there is an end-fold or a crimp, apply an end-fold or a crimp
- result is a flat folding \Rightarrow flat foldable
- result is not a flat folding \Rightarrow not flat foldable
- running time: $O(n) \rightarrow$ exercise

Necessary Condition

• mountain/valley pattern foldable \Rightarrow each vertex locally foldable

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

Necessary Condition

• mountain/valley pattern foldable \Rightarrow each vertex locally foldable

Which 1-vertex mountain/valley patterns are flat foldable?

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

2D Origami (With Only One Vertex)

Necessary Condition

- mountain/valley pattern foldable \Rightarrow each vertex locally foldable
- Which 1-vertex mountain/valley patterns are flat foldable?

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

• orientations of the circular arcs alternate \Rightarrow *n* is even

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Θ_1 Θ_2 Θ_5 Θ_4

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Proof

1. try zig-zag

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Θ_1 Θ_2 Θ_5 Θ_4

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Proof

1. try zig-zag

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Proof

1. try zig-zag

2. cut at left-most point

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Observations

- similarity to 1D-case: sequence of angles $\Theta_1, \ldots, \Theta_n$
- now, our paper is a circle, instead of a line segment
- not every crease pattern is flat foldable (in 1D, zig-zag always works)

Necessary Condition For The Crease Pattern

- orientations of the circular arcs alternate \Rightarrow *n* is even
- $\Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$

Theorem

The crease pattern is flat-foldable if and only if the sum of even and odd angles is 180° each.

Proof1. try zig-zag2. cut at left-most point4. reconnect4. reconnect

Safe Reduction Rule

define crimp as in the 1D-case

Safe Reduction Rule

- define crimp as in the 1D-case
- same argument as before: reduction rule is safe

Safe Reduction Rule

- define crimp as in the 1D-case
- same argument as before: reduction rule is safe
- end-folds obviously no longer exist

Safe Reduction Rule

- define crimp as in the 1D-case
- same argument as before: reduction rule is safe
- end-folds obviously no longer exist

Flat Foldable \Rightarrow Crimp

■ is still true, except if there are only two angles of equal size (in which case we are done)

Safe Reduction Rule

- define crimp as in the 1D-case
- same argument as before: reduction rule is safe
- end-folds obviously no longer exist

Flat Foldable \Rightarrow Crimp

■ is still true, except if there are only two angles of equal size (in which case we are done)

Theorem

If a mountain/valley pattern with one vertex is flat foldable, then there is a crimp and every sequence of crimps yields a flat folding.

Safe Reduction Rule

- define crimp as in the 1D-case
- same argument as before: reduction rule is safe
- end-folds obviously no longer exist

Flat Foldable \Rightarrow Crimp

■ is still true, except if there are only two angles of equal size (in which case we are done)

Theorem

If a mountain/valley pattern with one vertex is flat foldable, then there is a crimp and every sequence of crimps yields a flat folding.

Bonus Observation: flat foldable \Rightarrow #mountains - #valleys = ± 2

Seen Today

- ID crease pattern: always flat foldable (zig-zag)
- 1D mountain/valley pattern: flat foldable ⇒ safe reduction rule crimp or end-fold applicable

Seen Today

- ID crease pattern: always flat foldable (zig-zag)
- 1D mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp or end-fold applicable
- 2D 1-vertex crease pattern: flat foldable $\Leftrightarrow \Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$
- 2D 1-vertex mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp applicable

Seen Today

- ID crease pattern: always flat foldable (zig-zag)
- 1D mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp or end-fold applicable
- 2D 1-vertex crease pattern: flat foldable $\Leftrightarrow \Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$
- 2D 1-vertex mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp applicable

What Else Is There?

check if a crease pattern is flat foldable: NP-hard

Seen Today

- ID crease pattern: always flat foldable (zig-zag)
- 1D mountain/valley pattern: flat foldable ⇒ safe reduction rule crimp or end-fold applicable
- 2D 1-vertex crease pattern: flat foldable $\Leftrightarrow \Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$
- 2D 1-vertex mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp applicable

What Else Is There?

- check if a crease pattern is flat foldable: NP-hard
- check if mountain/valley-pattern is flat foldable: NP-hard

Seen Today

- ID crease pattern: always flat foldable (zig-zag)
- 1D mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp or end-fold applicable
- 2D 1-vertex crease pattern: flat foldable $\Leftrightarrow \Theta_1 + \Theta_3 + \cdots + \Theta_{n-1} = \Theta_2 + \Theta_4 + \cdots + \Theta_n = 180^\circ$
- 2D 1-vertex mountain/valley pattern: flat foldable \Rightarrow safe reduction rule crimp applicable

What Else Is There?

- check if a crease pattern is flat foldable: NP-hard
- check if mountain/valley-pattern is flat foldable: NP-hard
- Iocal foldability: O(n)

(find mountain/valley assignment, such that each vertex alone is flat foldable)

18

Origami everything is foldable (for different definitions of "everything")

G C O M C T R I C F O L D I N G A L G O R I T H M S LINKAGES, O RIGAMI, POLYHEDRA ERIS D. DEMAINE & JOSEPH O'ROURKE

18

Origami everything is foldable (for different definitions of "everything")

Geometric

FOLDING

algorithms

LINKAGES,

POLYHED

erin D. Demaine & Joseph O'Rourke

More Books

https://link.springer.com/book/10.1007/978-981-15-4470-5

https://link.springer.com/book/10.1007/978-3-319-59189-6

AI Generated Origami

