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Computational Geometry
Height Interpolation & Delaunay Triangulation
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Height Interpolation

Sample Points Of Measuring The Height Of A Terrain
= What is the altitude of a point that was not measured?
= triangulate the points in the plane

®= — also triangulates the measured 3d points

® deduce the altitude based on the triangulation

What Makes A Good Triangulation?
m different triangulations yield different results
= goal: avoid thin triangles
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Good And Bad Triangulations

Angle Vector

f7-
= consider triangulation 7 of a point set with m triangles <>
= nterior angles of triangles sorted increasingly: a4, . .., Q3m
= angle vector: o(7T) = (o1, . . ., a3m) a(T) = (60°,60°,60°,60°, 60°, 60°)
[ ]
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Good And Bad Triangulations

Angle Vector
consider triangulation T of a point set with m triangles

interior angles of triangles sorted increasingly: o4

angle vector: a(7) = (a1,...,3m)
order the angle vectors lexicographically

(@(T) > a(T") & Ji € {1

3m}:a; > aundVj < i: aj :aJ’.)

a(T) = (60°,60°, 60°, 60°, 60°, 60°)
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Good And Bad Triangulations

Angle Vector T

= consider triangulation 7 of a point set with m triangles <>

= nterior angles of triangles sorted increasingly: a4, ..., asm

= angle vector: a(7T) = (a1, ..., a3m) a(T) = (60°,60°,60°, 60°, 60°, 60°)

= order the angle vectors lexicographically
((T)> (T = 3Jie{l,..., 3m}:a; > alundVj < i: aj:aJ/')

Optimal Triangulation

® triangulation is optimal, if it is maximal (wrt this order)
(T optimal < T > T for all triangulations T")

Questions For Today

= How can we recognize an optimal triangulation?
= Can we compute an optimal triangulation?

= |s the optimal triangulation unique?
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Idea
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= yields a local optimum
= hope: itis also a global optimum
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Forbidden Edges

Idea

iteratively improve triangulation by local improvements
yields a local optimum
hope: it is also a global optimum

Edge Flip

remove an (inner) edge <> g '<:>'

insert a new diagonal

Observations >
= is not feasible for every edge

we are interested in the four angles at the flipped edge
we call an edge forbidden if flipping increases the smallest of those angles
let e in T be a forbidden edge and let 7' = flip(T, e); then: a(T") > a(T)
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Forbidden Edges

Idea

iteratively improve triangulation by local improvements
: : Does this terminate?
yields a local optimum

hope: it is also a global optimum

Edge Flip

remove an (inner) edge <> g <D'

insert a new diagonal

Observations >‘
= is not feasible for every edge

we are interested in the four angles at the flipped edge
we call an edge forbidden if flipping increases the smallest of those angles
let e in T be a forbidden edge and let 7' = flip(T, e); then: a(T") > a(T)
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Thales’s Theorem

B
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Thales’s Theorem

Generalization
= fix an arbitrary chord of the circle (endpoints: a and b)

= also fix one of the two circular segment
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Thales’s Theorem

Generalization
= fix an arbitrary chord of the circle (endpoints: a and b)

= also fix one of the two circular segment

= the line segments from every point on the circular arc to a and b
form the same angle

= for points in the interior, the angle is bigger

m for points in the exterior, the angle is smaller
(on the same side of ab)
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Which Edges Are Forbidden?
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Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden R
= note: the circumcircle of Aabd then contains ¢

d

N,
N
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Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

= consider bijection between angles at a and b, and “opposite” angles /‘.\ b
at c and d of the flipped edge

a
= claim: each angle at ab is smaller than corresponding angle at cd \w

= follows from Thales’s theorem, when looking at the proper triangles

6 Thomas Blasius — Computational Geometry ﬂ(IT



Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

= consider bijection between angles at a and b, and “opposite” angles » b
at c and d of the flipped edge

d
= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles

6 Thomas Blasius — Computational Geometry ﬂ(IT



Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

m consider bijection between angles at a and b, and “opposite” angles
at c and d of the flipped edge 5

= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles

6 Thomas Blasius — Computational Geometry ﬂ(IT



Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

m consider bijection between angles at a and b, and “opposite” angles
at c and d of the flipped edge

= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles

6 Thomas Blasius — Computational Geometry ﬂ(IT



Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

m consider bijection between angles at a and b, and “opposite” angles
at c and d of the flipped edge

= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles

6 Thomas Blasius — Computational Geometry ﬂ(IT



Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

m consider bijection between angles at a and b, and “opposite” angles
at c and d of the flipped edge

= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles
= minimum angle at cd is bigger = ab is forbidden
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Which Edges Are Forbidden?

Proof: d in circumcircle of Aabc = ab forbidden
m note: the circumcircle of Aabd then contains ¢

m consider bijection between angles at a and b, and “opposite” angles
at c and d of the flipped edge

= claim: each angle at ab is smaller than corresponding angle at cd
= follows from Thales’s theorem, when looking at the proper triangles

= minimum angle at cd is bigger = ab is forbidden A
Other Direction ; A

= similar argument by looking at the minimum angle \ 7
C

b

6 Thomas Blasius — Computational Geometry
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Forbidden Edges And Empty Circles
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Forbidden Edges And Empty Circles

Proof

= [emma: forbidden edge = circumcircle contains vertex _
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

= todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of a triangle containing x
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

m todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of a triangle containing x
= [emma: x is adjacent = forbidden edge
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

m todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of a triangle containing x

= [emma: x is adjacent = forbidden edge

= problem: non-adjacent vertex x
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Forbidden Edges And Empty Circles

Proof
= |lemma: forbidden edge = circumcircle contains vertex

m todo: circumcircle contains vertex = forbidden edge
= consider the circumcircle of a triangle containing x

= [emma: x is adjacent = forbidden edge

= problem: non-adjacent vertex x

- consider riangle closerto x
- [circumcircle still contains x

- Iterate — at some point we should have x as neighbor
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Forbidden Edges And Empty Circles

Proof
= |lemma: forbidden edge = circumcircle contains vertex

m todo: circumcircle contains vertex = forbidden edge
= consider the circumcircle of a triangle containing x

= [emma: x is adjacent = forbidden edge

= problem: non-adjacent vertex x

- consider riangle closerto x
- [circumcircle still contains x

- Iterate — at some point we should have x as neighbor
= cleaner argument: consider extreme situation, show contradiction
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

= todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of Aabc containing x such

that _ (without loss of generality: x lies next to ab)

|
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

= todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of Aabc containing x such

that _ (without loss of generality: x lies next to ab)

m consider the other triangle A abd with side ab
m circumcircle of Aabd also contains x
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Forbidden Edges And Empty Circles

Proof
= [emma: forbidden edge = circumcircle contains vertex

= todo: circumcircle contains vertex = forbidden edge
m consider the circumcircle of Aabc containing x such

that _ (without loss of generality: x lies next to ab)

m consider the other triangle A abd with side ab
m circumcircle of Aabd also contains x

= Zdxb is bigger than[Zaxhl = contradiction

(or Zaxd)
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Locally Optimal Triangulations

Equivalent:
= no forbidden edges = |ocally optimal = the circumcircle of each triangle is empty

Implications For Locally Optimal Triangulations
m for every triangle, the center of the circumcircle is a Voronoi vertex

= the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex
= the triangulation is the dual graph of the Voronoi diagram

Conversely: Consider The Dual Of The Voronoi Diagram
m forms a triangulation (assumption: no four vertices lie on the same circle)

m circumcircle of each face is empty = locally optimal triangulation

,@ Don’t we need to show that there are no edge crossings?
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Delaunay Triangulation
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Delaunay Triangulation

Just Seen
= the Delaunay triangulation is locally maximal

m if 7 is locally maximal, then T is the Delaunay triangulation
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Just Seen
= the Delaunay triangulation is locally maximal

m if 7 is locally maximal, then T is the Delaunay triangulation
Implications

= the locally maximal triangulation is unique (it is the Delaunay triangulation)
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Delaunay Triangulation

The dual graph of the Voronoi diagram is called Delaunay triangulation.

Just Seen
= the Delaunay triangulation is locally maximal

m if 7 is locally maximal, then T is the Delaunay triangulation

Implications

= the locally maximal triangulation is unique (it is the Delaunay triangulation)
= the Delaunay triangulation is globally maximal

= jt can be computed in O(nlog n) time (e.g., using the beach-line algo)
Multiple Points On A Circle

= Voronoi vertex has higher degree

= dual is not a triangulation (more on this on the exercise sheet)
= multiple triangulations possible
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Wrap-Up

Seen Today
m the Delaunay triangulation has nice properties

- lexicographically maximal angle vector
- dual of the Voronoi diagram
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Wrap-Up

Seen Today
m the Delaunay triangulation has nice properties

- lexicographically maximal angle vector
- dual of the Voronoi diagram
m proof technique: local optimum uniqgue = must be the global optimum

What Else Is There?

= the Delaunay triangulation has other nice properties (e.g., the MST is part of the triangulation)
m different optimization criteria: minimizing the total edge length is NP-hard
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Help Us Improve

Evaluation
= survey open until 18:00

= |ink also in discord
m exercise sessions are evaluated separately

https://onlineumfrage.kit.edu/evasys/online.php?p=G4MUD
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