

Computational Geometry Height Interpolation & Delaunay Triangulation

Thomas Bläsius

Sample Points Of Measuring The Height Of A Terrain

• What is the altitude of a point that was not measured?

- What is the altitude of a point that was not measured?
- triangulate the points in the plane

- What is the altitude of a point that was not measured?
- triangulate the points in the plane
- $\blacksquare \rightarrow$ also triangulates the measured 3d points

- What is the altitude of a point that was not measured?
- triangulate the points in the plane
- $\blacksquare \rightarrow$ also triangulates the measured 3d points
- deduce the altitude based on the triangulation

Sample Points Of Measuring The Height Of A Terrain

- What is the altitude of a point that was not measured?
- triangulate the points in the plane
- $\blacksquare \rightarrow$ also triangulates the measured 3d points
- deduce the altitude based on the triangulation

What Makes A Good Triangulation?

Sample Points Of Measuring The Height Of A Terrain

- What is the altitude of a point that was not measured?
- triangulate the points in the plane
- $\blacksquare \rightarrow$ also triangulates the measured 3d points
- deduce the altitude based on the triangulation

What Makes A Good Triangulation?

different triangulations yield different results

Sample Points Of Measuring The Height Of A Terrain

- What is the altitude of a point that was not measured?
- triangulate the points in the plane
- $\blacksquare \rightarrow$ also triangulates the measured 3d points
- deduce the altitude based on the triangulation

What Makes A Good Triangulation?

- different triangulations yield different results
- goal: avoid thin triangles

Angle Vector

- consider triangulation \mathcal{T} of a point set with *m* triangles
- interior angles of triangles sorted increasingly: $\alpha_1, \ldots, \alpha_{3m}$
- angle vector: $\alpha(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$

Angle Vector

- consider triangulation \mathcal{T} of a point set with *m* triangles
- interior angles of triangles sorted increasingly: $\alpha_1, \ldots, \alpha_{3m}$
- angle vector: $\alpha(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$
- order the angle vectors lexicographically $(\alpha(\mathcal{T}) > \alpha(\mathcal{T}') \Leftrightarrow \exists i \in \{1, ..., 3m\}: a_i > a'_i \text{ und } \forall j < i: a_j = a'_j)$

Angle Vector

- consider triangulation \mathcal{T} of a point set with m triangles
- interior angles of triangles sorted increasingly: $\alpha_1, \ldots, \alpha_{3m}$
- angle vector: $\alpha(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$
- order the angle vectors lexicographically $(\alpha(\mathcal{T}) > \alpha(\mathcal{T}') \Leftrightarrow \exists i \in \{1, ..., 3m\}: a_i > a'_i \text{ und } \forall j < i: a_j = a'_j)$

Optimal Triangulation

• triangulation is optimal, if it is maximal (wrt this order) $(\mathcal{T} \text{ optimal} \Leftrightarrow \mathcal{T} \geq \mathcal{T}' \text{ for all triangulations } \mathcal{T}')$

Angle Vector

- consider triangulation \mathcal{T} of a point set with m triangles
- interior angles of triangles sorted increasingly: $\alpha_1, \ldots, \alpha_{3m}$
- angle vector: $\alpha(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$
- order the angle vectors lexicographically $(\alpha(\mathcal{T}) > \alpha(\mathcal{T}') \Leftrightarrow \exists i \in \{1, ..., 3m\}: a_i > a'_i \text{ und } \forall j < i: a_j = a'_j)$

Optimal Triangulation

• triangulation is optimal, if it is maximal (wrt this order) $(\mathcal{T} \text{ optimal} \Leftrightarrow \mathcal{T} \geq \mathcal{T}' \text{ for all triangulations } \mathcal{T}')$

Questions For Today

- How can we recognize an optimal triangulation?
- Can we compute an optimal triangulation?
- Is the optimal triangulation unique?

Idea

- iteratively improve triangulation by local improvements
- yields a local optimum
- hope: it is also a global optimum

Idea

- iteratively improve triangulation by local improvements
- yields a local optimum
- hope: it is also a global optimum

Edge Flip

- remove an (inner) edge
- insert a new diagonal

Idea

- iteratively improve triangulation by local improvements
- yields a local optimum
- hope: it is also a global optimum

Edge Flip

- remove an (inner) edge
- insert a new diagonal

Observations

is not feasible for every edge

Idea

- iteratively improve triangulation by local improvements
- yields a local optimum
- hope: it is also a global optimum

Edge Flip

- remove an (inner) edge
- insert a new diagonal

Observations

- is not feasible for every edge
- we are interested in the four angles at the flipped edge

Idea

- iteratively improve triangulation by local improvements
- yields a local optimum
- hope: it is also a global optimum

Edge Flip

- remove an (inner) edge
- insert a new diagonal

Observations

- is not feasible for every edge
- we are interested in the four angles at the flipped edge
- we call an edge forbidden if flipping increases the smallest of those angles
- let *e* in \mathcal{T} be a forbidden edge and let $\mathcal{T}' = flip(\mathcal{T}, e)$; then: $\alpha(\mathcal{T}') > \alpha(\mathcal{T})$

Idea

- iteratively improve triangulation by local improvements `
- yields a local optimum
- hope: it is also a global optimum

Edge Flip

- remove an (inner) edge
- insert a new diagonal

Observations

- is not feasible for every edge
- we are interested in the four angles at the flipped edge
- we call an edge forbidden if flipping increases the smallest of those angles
- let *e* in \mathcal{T} be a forbidden edge and let $\mathcal{T}' = flip(\mathcal{T}, e)$; then: $\alpha(\mathcal{T}') > \alpha(\mathcal{T})$

Does this terminate?

Thales's Theorem The line segments from a point on a circle to the endpoints of a diameter form a right angle.

Thales's Theorem The line segments from a point on a circle to the endpoints of a diameter form a right angle.

- fix an arbitrary chord of the circle (endpoints: *a* and *b*)
- also fix one of the two circular segment

Thales's Theorem The line segments from a point on a circle to the endpoints of a diameter form a right angle.

- fix an arbitrary chord of the circle (endpoints: *a* and *b*)
- also fix one of the two circular segment
- the line segments from every point on the circular arc to a and b form the same angle

Thales's Theorem The line segments from a point on a circle to the endpoints of a diameter form a right angle.

- fix an arbitrary chord of the circle (endpoints: *a* and *b*)
- also fix one of the two circular segment
- the line segments from every point on the circular arc to a and b form the same angle
- for points in the interior, the angle is bigger

Thales's Theorem The line segments from a point on a circle to the endpoints of a diameter form a right angle.

- fix an arbitrary chord of the circle (endpoints: *a* and *b*)
- also fix one of the two circular segment
- the line segments from every point on the circular arc to a and b form the same angle
- for points in the interior, the angle is bigger
- for points in the exterior, the angle is smaller (on the same side of *ab*)

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that *a*, *b*, *c*, *d* are in convex position. The circumcircle of $\triangle abc$ contains *d* if and only if *ab* is forbidden.

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that *a*, *b*, *c*, *d* are in convex position. The circumcircle of $\triangle abc$ contains *d* if and only if *ab* is forbidden.

Proof: *d* in circumcircle of $\triangle abc \Rightarrow ab$ forbidden

• note: the circumcircle of $\triangle abd$ then contains c

h

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that *a*, *b*, *c*, *d* are in convex position. The circumcircle of $\triangle abc$ contains *d* if and only if *ab* is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at ab is smaller than corresponding angle at cd

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles
 - \Rightarrow minimum angle at *cd* is bigger \Rightarrow *ab* is forbidden

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

а

b

Proof: *d* in circumcircle of $\triangle abc \Rightarrow ab$ forbidden

- note: the circumcircle of $\triangle abd$ then contains c
- consider bijection between angles at a and b, and "opposite" angles at c and d of the flipped edge
- claim: each angle at *ab* is smaller than corresponding angle at *cd*
- follows from Thales's theorem, when looking at the proper triangles
 - \Rightarrow minimum angle at *cd* is bigger \Rightarrow *ab* is forbidden

Other Direction

similar argument by looking at the minimum angle

Forbidden Edges And Empty Circles

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Lemma

Let $\triangle abc$ and $\triangle abd$ be two triangles such that a, b, c, d are in convex position. The circumcircle of $\triangle abc$ contains d if and only if ab is forbidden.

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

• lemma: forbidden edge \Rightarrow circumcircle contains vertex

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- \blacksquare lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of a triangle containing x

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- Iemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of a triangle containing *x*
- lemma: x is adjacent \Rightarrow forbidden edge

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

7

- lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of a triangle containing *x*
- lemma: x is adjacent \Rightarrow forbidden edge
- problem: non-adjacent vertex x

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of a triangle containing *x*
- lemma: x is adjacent \Rightarrow forbidden edge
- problem: non-adjacent vertex x
 - consider triangle closer to x
 - circumcircle still contains x
 - iterate \rightarrow at some point we should have x as neighbor

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of a triangle containing *x*
- lemma: x is adjacent \Rightarrow forbidden edge
- problem: non-adjacent vertex x
 - consider triangle closer to x
 - circumcircle still contains x
 - iterate \rightarrow at some point we should have x as neighbor
- cleaner argument: consider extreme situation, show contradiction

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- Iemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of $\triangle abc$ containing x such that $\angle axb$ is maximal (without loss of generality: x lies next to ab)

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- \blacksquare lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of △abc containing x such that ∠axb is maximal (without loss of generality: x lies next to ab)
- consider the other triangle $\triangle abd$ with side ab

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of △abc containing x such that ∠axb is maximal (without loss of generality: x lies next to ab)
- consider the other triangle $\triangle abd$ with side ab
- circumcircle of $\triangle abd$ also contains x

Lemma

Theorem

A triangulation has a forbidden edge if and only if the circumcircle of a face contains a vertex.

Proof

- \blacksquare lemma: forbidden edge \Rightarrow circumcircle contains vertex
- todo: circumcircle contains vertex \Rightarrow forbidden edge
- consider the circumcircle of △abc containing x such that ∠axb is maximal (without loss of generality: x lies next to ab)
- consider the other triangle $\triangle abd$ with side ab
- circumcircle of $\triangle abd$ also contains x
- $\angle dxb$ is bigger than $\angle axb$ \Rightarrow contradiction $(\text{or } \angle axd)$

Lemma

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

Implications For Locally Optimal Triangulations

for every triangle, the center of the circumcircle is a Voronoi vertex

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex ⇒ the triangulation is the dual graph of the Voronoi diagram

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex ⇒ the triangulation is the dual graph of the Voronoi diagram

Equivalent:

- no forbidden edges
- Iocally optimal
- the circumcircle of each triangle is empty

Implications For Locally Optimal Triangulations

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex ⇒ the triangulation is the dual graph of the Voronoi diagram

Conversely: Consider The Dual Of The Voronoi Diagram forms a triangulation (assumption: no four vertices lie on the same circle)

Equivalent:

- no forbidden edges
- Iocally optimal

the circumcircle of each triangle is empty

Implications For Locally Optimal Triangulations

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex the triangulation is the dual graph of the Voronoi diagram

Conversely: Consider The Dual Of The Voronoi Diagram

- forms a triangulation (assumption: no four vertices lie on the same circle)
- \blacksquare circumcircle of each face is empty \Rightarrow locally optimal triangulation

Equivalent:

- no forbidden edges
- locally optimal

the circumcircle of each triangle is empty

Implications For Locally Optimal Triangulations

- for every triangle, the center of the circumcircle is a Voronoi vertex
- the triangle edges correspond to the Voronoi edges incident to the Voronoi vertex the triangulation is the dual graph of the Voronoi diagram

Conversely: Consider The Dual Of The Voronoi Diagram

- forms a triangulation (assumption: no four vertices lie on the same circle)
- \blacksquare circumcircle of each face is empty \Rightarrow locally optimal triangulation

Don't we need to show that there are no edge crossings?

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if \mathcal{T} is locally maximal, then \mathcal{T} is the Delaunay triangulation

Implications

the locally maximal triangulation is unique (it is the Delaunay triangulation)

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if \mathcal{T} is locally maximal, then \mathcal{T} is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- \blacksquare if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in $O(n \log n)$ time (e.g., using the beach-line algo)

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- \blacksquare if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in $O(n \log n)$ time (e.g., using the beach-line algo) Multiple Points On A Circle

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- \hfill if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

Implications

the locally maximal triangulation is unique (it is the Delaunay triangulation)

0

0

0

0

0

0

0

0

0

- the Delaunay triangulation is globally maximal
- it can be computed in $O(n \log n)$ time (e.g., using the beach-line algo) Multiple Points On A Circle
- Voronoi vertex has higher degree

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in O(n log n) time (e.g., using the beach-line algo)
 Multiple Points On A Circle
- Voronoi vertex has higher degree
- dual is not a triangulation

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in O(n log n) time (e.g., using the beach-line algo)
 Multiple Points On A Circle
- Voronoi vertex has higher degree
- dual is not a triangulation
- multiple triangulations possible

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in O(n log n) time (e.g., using the beach-line algo)
 Multiple Points On A Circle
- Voronoi vertex has higher degree
- dual is not a triangulation
- multiple triangulations possible

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in O(n log n) time (e.g., using the beach-line algo)
 Multiple Points On A Circle
- Voronoi vertex has higher degree
- dual is not a triangulation
- multiple triangulations possible

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if ${\mathcal T}$ is locally maximal, then ${\mathcal T}$ is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in O(n log n) time (e.g., using the beach-line algo)
 Multiple Points On A Circle
- Voronoi vertex has higher degree
- dual is not a triangulation
- multiple triangulations possible

The dual graph of the Voronoi diagram is called **Delaunay triangulation**.

Just Seen

- the Delaunay triangulation is locally maximal
- if \mathcal{T} is locally maximal, then \mathcal{T} is the Delaunay triangulation

- the locally maximal triangulation is unique (it is the Delaunay triangulation)
- the Delaunay triangulation is globally maximal
- it can be computed in $O(n \log n)$ time (e.g., using the beach-line algo) **Multiple Points On A Circle**
- Voronoi vertex has higher degree
- dual is not a triangulation
- (more on this on the exercise sheet) multiple triangulations possible

Wrap-Up

Seen Today

- the Delaunay triangulation has nice properties
 - lexicographically maximal angle vector
 - dual of the Voronoi diagram

Wrap-Up

Seen Today

- the Delaunay triangulation has nice properties
 - lexicographically maximal angle vector
 - dual of the Voronoi diagram
- proof technique: local optimum unique \Rightarrow must be the global optimum

Wrap-Up

Seen Today

- the Delaunay triangulation has nice properties
 - lexicographically maximal angle vector
 - dual of the Voronoi diagram
- proof technique: local optimum unique \Rightarrow must be the global optimum

What Else Is There?

the Delaunay triangulation has other nice properties (e.g., the MST is part of the triangulation)

Wrap-Up

Seen Today

- the Delaunay triangulation has nice properties
 - lexicographically maximal angle vector
 - dual of the Voronoi diagram
- proof technique: local optimum unique \Rightarrow must be the global optimum

What Else Is There?

- the Delaunay triangulation has other nice properties (e.g., the MST is part of the triangulation)
- different optimization criteria: minimizing the total edge length is NP-hard

Exam Scheduling

Monday	Tuesday	Wednesday	Thursday	Friday	
28				1	
4				8	August
11				15	
18				22	
25				29	
1				5	
8				12	September
15				19	
22				26	
29				3	
6				10	October
13				17	
20				24	
27				31	

Help Us Improve

Evaluation

- survey open until 18:00
- link also in discord
- exercise sessions are evaluated separately

 $\tt https://onlineumfrage.kit.edu/evasys/online.php?p=G4MUD$

