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Overview

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
origami
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs
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Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s

union of all cells is the Voronoi diagram Vor(S)

planar subdivision of the plane
boundary between cells are called edges
endpoints of these edges are vertices

Goal For Today: compute Vor(S)
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Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

s ′

perpendicular bisector of s and s ′



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes

s ′



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

s ′

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane

s1

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines

s1

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear

s1

s2

s3

s1⊥s2

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear
⇒ s1⊥s2 intersects s1⊥s3

s1

s2

s3

s1⊥s2

s1⊥s3

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
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Connectedness
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V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear
⇒ s1⊥s2 intersects s1⊥s3 ⇒ contradiction

s1

s2

s3

s1⊥s2

s1⊥s3

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.

Theorem (vertices of Vor(S))
The point p ∈ R2 is a vertex of Vor(S) if and
only if at least three sites lie on the circle CS(p).



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.

Which similar statement holds for edges?
Theorem (vertices of Vor(S))
The point p ∈ R2 is a vertex of Vor(S) if and
only if at least three sites lie on the circle CS(p).



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach
region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
some region above the sweep line: known area

region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
some region above the sweep line: known area
some gray area in between

region of seen sites ̸= region in which Vor(S) is computed
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Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}
the boundary between known area and gray area is called beach line
each piece of the curve belongs to one site
next slide: each piece is a parabola
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p

‘
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Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py
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When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?
parabolas of three points intersect
intersection has same distance to the three
sites and to the sweep line
no other site is closer
we call this a circle event
position defined by the sites corresponding to
three consecutive parabola pieces

Why not?
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What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Open Questions
How do we manage the beach line?

How do we get the Voronoi diagram in the end?

sites with same y -coordinate
vertices with degree > 3

what else?
How do we manage the events?

Why?

Special Cases
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Answer: 3 (one site and two circle events)
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instead: store a representation of the intersection points that is
independent of ‘’s exact position
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‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6)

Circle Event

(s6; s2)(s3; s5)

belongs to two consecutive intersection points (here: (s5; s3) and (s3; s2))

remove the two and insert the new one (here: (s5; s2))

(s5; s2)

Data Structure: search (for x), insert, and delete → search tree (O(log n) per operation)
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perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen
at site event: remove circle event of split parabola (if it exists)
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Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

Infinite Edges
some half edges do not end, as their parabola pieces never disappear
empty queue → some final clean up remaining intersections in beach line

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)

(depending on how your doubly-connected edge list deals with infinite edges)
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Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection
a vertex should be created
special handling: create vertex and half edges
no special handling: split one parabola → circle event → new vertex

Collinear Sites With Consecutive Parabola Pieces
careful, when computing the circle

exception: initial site events (no parabola above exists)
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Wrap-Up

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.
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Wrap-Up

What Else Is There?
there are various variants

higher dimensions
different metrics
weighted sites
sites that are more complicated than just points (e.g., line segments)
Voronoi diagrams of higher order: What are the k closest sites?

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.
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Wrap-Up

What Else Is There?
there are various variants

higher dimensions
different metrics
weighted sites
sites that are more complicated than just points (e.g., line segments)

visualization:
Voronoi diagrams of higher order: What are the k closest sites?

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.

http://www.raymondhill.net/voronoi/rhill-voronoi.html

http://www.raymondhill.net/voronoi/rhill-voronoi.html

