
1

Computational Geometry

Thomas Bläsius

Voronoi Diagram: Fortunes Algorithm



Thomas Bläsius – Computational Geometry2

Overview

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
origami
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s

union of all cells is the Voronoi diagram Vor(S)



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s

union of all cells is the Voronoi diagram Vor(S)

planar subdivision of the plane



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s

union of all cells is the Voronoi diagram Vor(S)

planar subdivision of the plane
boundary between cells are called edges
endpoints of these edges are vertices



Thomas Bläsius – Computational Geometry3

Who Uses Which Mailbox?

Situation
given: set S of sites
Which points are closest to which site?

(assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions
Voronoi cell V(s) of s ∈ S: set of points closer to s than to any other site

s

union of all cells is the Voronoi diagram Vor(S)

planar subdivision of the plane
boundary between cells are called edges
endpoints of these edges are vertices

Goal For Today: compute Vor(S)



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

s ′

perpendicular bisector of s and s ′



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes

s ′



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

s ′

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane

s1

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines

s1

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear

s1

s2

s3

s1⊥s2

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear
⇒ s1⊥s2 intersects s1⊥s3

s1

s2

s3

s1⊥s2

s1⊥s3

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry4

Basic Properties

s

Points Belonging To The Cell Of s

p
Why does p not lie in the cell of s?
s ′ is closer p ⇔ s⊥s ′ separates s from p

the cell of s is the intersection of half planes
this already yields a (slow) algorithm

Connectedness

s ′

proof: assume it is disconnected
⇒ there is a site s1 ∈ S, such that V(s1) separates the plane
V(s1) convex ⇒ must be bounded by two parallel lines
let s1⊥s2 be one of these lines and let s3 ∈ S be non-collinear
⇒ s1⊥s2 intersects s1⊥s3 ⇒ contradiction

s1

s2

s3

s1⊥s2

s1⊥s3

not all sites collinear ⇒ Vor(S) is connected (viewing Vor(S) as the union of edges, i.e., the geometric “graph”)

How slow exactly?



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.

Theorem (vertices of Vor(S))
The point p ∈ R2 is a vertex of Vor(S) if and
only if at least three sites lie on the circle CS(p).



Thomas Bläsius – Computational Geometry5

Basic Properties (2)

Which Points Are Vertices Of Vor(S)?
at each a vertex v : ≥ 3 cells meet
v has equal distance to these sites ⇒ circle with center v
not every circle through ≥ 3 sites has vertex as center
the circle cannot have any sites in its interior
CS(p) = largest circle around p, with no site from S in its interior

Theorem (proof: exercise)
The Voronoi diagram of n ≥ 3 sites has at most 2n − 5 vertices and at most 3n − 6 edges.

Which similar statement holds for edges?
Theorem (vertices of Vor(S))
The point p ∈ R2 is a vertex of Vor(S) if and
only if at least three sites lie on the circle CS(p).



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach
region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
some region above the sweep line: known area

region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry6

Sweep-Line Algo

General Approach: Sweep Line
move sweep line from top to bottom
at every point in time: know Vor(S) above the sweep line

Problem
parts above the sweep line depend on sites below the sweep line
that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

below the sweep line: unknown area
some region above the sweep line: known area
some gray area in between

region of seen sites ̸= region in which Vor(S) is computed



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

p
‘



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)

s



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area s



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}
the boundary between known area and gray area is called beach line



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}
the boundary between known area and gray area is called beach line
each piece of the curve belongs to one site



Thomas Bläsius – Computational Geometry7

Known Area

Where Does The Known Area End?
consider a point p ∈ R2 above ‘

case 1: p is closer to ‘ than to any site above ‘
p

‘
there could be a site s below ‘, such that p ∈ V(s)
thus, p is part of the gray area

case 2: p is closer to a site s above ‘ as to ‘
p

‘

s

s
there is no site below ‘ that is closer to p

thus, we know the Voronoi cell of p

known area: {p ∈ R2 | ∃s ∈ S dist(p; s) ≤ dist(p; ‘)}
the boundary between known area and gray area is called beach line
each piece of the curve belongs to one site
next slide: each piece is a parabola



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

parabola

translation in y -direction

translation in x-direction

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py



Thomas Bläsius – Computational Geometry8

Shape Of The Beach Line

Relevant Coordinates

s
p

‘

s = (sx ; sy )

p = (px ; py )

y -Koordinate von ‘: ‘y

Distances
dist(s; p) =

p
(px − sx)2 + (py − sy )2 and dist(‘; p) = py − ‘y

p lies on the beach line ⇔ dist(s; p) = dist(‘; p)

parabola

translation in y -direction

translation in x-direction

(px − sx)
2 + (py − sy )

2 = (py − ‘y )
2

(px − sx)
2 + p2

y − 2py sy + s2y = p2
y − 2py ‘y + ‘2y

(px − sx)
2 + s2y − ‘2y = 2py sy − 2py ‘y

(px − sx)
2

2sy − 2‘y
+

s2y − ‘2y
2sy − 2‘y

= py

(px − sx)
2

2sy − 2‘y
+

sy + ‘y
2

= py

parabola with vertex at the center between s and ‘

larger dist(s; ‘) yields a wider parabola



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

s1
s2

s3



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s

s1
s2

s3
s



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3
s



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3
s



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3
s



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3
s

splits parabola of current BL above s



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3
s

splits parabola of current BL above s

Event: Parabola Piece Disappears



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?
parabolas of three points intersect



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?
parabolas of three points intersect
intersection has same distance to the three
sites and to the sweep line



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?
parabolas of three points intersect
intersection has same distance to the three
sites and to the sweep line
no other site is closer Why not?



Thomas Bläsius – Computational Geometry9

When Does The Beach Line Change?

Sweep-Line Algo
sweep-line status: state of the beach line
events: points in time, when BL changes
What does “change” mean hear?

beach line changes all the time
sequence of corresponding sites
rarely changes

s1
s2

s3

Event: New Site s
new parabola is inserted into the BL

s1
s2

s3

splits parabola of current BL above s

Event: Parabola Piece Disappears
How do we know when this happens?
parabolas of three points intersect
intersection has same distance to the three
sites and to the sweep line
no other site is closer
we call this a circle event
position defined by the sites corresponding to
three consecutive parabola pieces

Why not?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

(without proof: these are the only situa-
tions, in which the beach line changes)



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

(without proof: these are the only situa-
tions, in which the beach line changes)



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Why?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Open Questions
How do we manage the beach line?

Why?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Open Questions
How do we manage the beach line?
How do we manage the events?

Why?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Open Questions
How do we manage the beach line?

How do we get the Voronoi diagram in the end?
How do we manage the events?

Why?



Thomas Bläsius – Computational Geometry10

What Do We Already Know?

Event Points: Beach Line Changes
site event → insert new parabola piece
circle event → remove parabola piece

Finding Circle Events
every beach line change: new triples of consecutive parabola pieces → maybe new circle event

Voronoi Diagram
circle event → new vertex of the Voronoi diagram
every vertex is found this way

(without proof: these are the only situa-
tions, in which the beach line changes)

Open Questions
How do we manage the beach line?

How do we get the Voronoi diagram in the end?

sites with same y -coordinate
vertices with degree > 3

what else?
How do we manage the events?

Why?

Special Cases



Thomas Bläsius – Computational Geometry11

How Many Events Are In The Queue?

b

r

e
a

k



Thomas Bläsius – Computational Geometry11

How Many Events Are In The Queue?

b

r

e
a

k

Answer: 3 (one site and two circle events)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece

‘



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

(s3; s5)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event

s6

(s3; s5)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points

s6

(s3; s5)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6) (s6; s2)(s3; s5)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6)

Circle Event

(s6; s2)(s3; s5)

belongs to two consecutive intersection points (here: (s5; s3) and (s3; s2))



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6)

Circle Event

(s6; s2)(s3; s5)

belongs to two consecutive intersection points (here: (s5; s3) and (s3; s2))

remove the two and insert the new one (here: (s5; s2))

(s5; s2)



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6)

Circle Event

(s6; s2)(s3; s5)

belongs to two consecutive intersection points (here: (s5; s3) and (s3; s2))

remove the two and insert the new one (here: (s5; s2))

(s5; s2)

Data Structure: search (for x), insert, and delete



Thomas Bläsius – Computational Geometry12

Managing The Beach Line

s1 s2s3

s4 s5

Observation
parabolas can be split into multiple pieces
knowing the site does not uniquely identify the parabola piece
instead: store a representation of the intersection points that is
independent of ‘’s exact position

(s4; s3)
(s1; s4)

(s5; s3)
(s3; s2)

‘

Site Event
find x-coordinate of the new site in the set of intersection points
insert two new intersection points

s6

(s2; s6)

Circle Event

(s6; s2)(s3; s5)

belongs to two consecutive intersection points (here: (s5; s3) and (s3; s2))

remove the two and insert the new one (here: (s5; s2))

(s5; s2)

Data Structure: search (for x), insert, and delete → search tree (O(log n) per operation)



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event
perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen
at site event: remove circle event of split parabola (if it exists)

perpendicular bisectors diverge → parabola piece grows → no circle event



Thomas Bläsius – Computational Geometry13

Managing The Events

Observation
we know all site events from the start
circle events: defined by adjacent intersection points on the beach line
not every pair of adjacent intersections yields a circle event
whether we have a circle event can be determined based on the corresponding sites

s1
s2

s3

s1
s2 s3

perpendicular bisectors converge → parabola piece shrinks → circle event

False Alarm
some circle events to not actually happen
at site event: remove circle event of split parabola (if it exists)

perpendicular bisectors diverge → parabola piece grows → no circle event

no problem: use search tree for the event queue → O(log n) per operation



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan
compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex
circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

Infinite Edges

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

Infinite Edges
some half edges do not end, as their parabola pieces never disappear

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)



Thomas Bläsius – Computational Geometry14

Constructing The Voronoi Diagram

Already Seen

p lies on an edge ⇔ p is at some point the intersection of parabola pieces
point p is vertex ⇔ p is the center for a circle event

Plan

site event: new parabola → new intersections → new half edges
circle event: new vertex → attach corresponding half edges to vertex

Example

circle event: new intersection → new half edge

Infinite Edges
some half edges do not end, as their parabola pieces never disappear
empty queue → some final clean up remaining intersections in beach line

compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)

(depending on how your doubly-connected edge list deals with infinite edges)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection
a vertex should be created

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection
a vertex should be created
special handling: create vertex and half edges
no special handling: split one parabola → circle event → new vertex

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection
a vertex should be created
special handling: create vertex and half edges
no special handling: split one parabola → circle event → new vertex

Collinear Sites With Consecutive Parabola Pieces

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry15

Special Cases

Events With Equal y -Coordinate
handle in arbitrary order

? ?

Equal x- and y -Coordinate
vertex in Vor(S) with degree > 3

special handling → vertex with degree > 3

no special handling → multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection
a vertex should be created
special handling: create vertex and half edges
no special handling: split one parabola → circle event → new vertex

Collinear Sites With Consecutive Parabola Pieces
careful, when computing the circle

exception: initial site events (no parabola above exists)



Thomas Bläsius – Computational Geometry16

Overview

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line:

s1

s2s3

s4s5s6

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line:

1

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s2) (s2; s1)

1 1

2

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s2) (s2; s1)

1
1

2

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s1) (s1; s2) (s2; s1)

1

1

2

13

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s1) (s1; s2) (s2; s1)

1

1

2

13

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s1) (s1; s2) (s2; s1)

1

1

2

13

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)

1

1

2
3

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)

1

1

2
3

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s2; s4) (s4; s2)

1

1

2

3

42

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s2; s4) (s4; s2)

1

1

2

3

42

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s2; s4) (s4; s2)(s2; s5) (s5; s2)

1

1

2

3
4

22
5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s2; s4) (s4; s2)(s2; s5) (s5; s2)

1

1

2

3
4

22
5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s2; s4) (s4; s2)(s2; s5) (s5; s2)

1

1

2

3
4

2
2
5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s2) (s2; s1)(s4; s2)(s2; s5) (s5; s4)

1

1

2

3
42

5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)

1

1

2

3
4

5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)

1

1

2

3
4

5

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s3)

1

1

2

3

4

5
36

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s3)

1

1

2

3

4

5
36

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line:

1

1

2

3

4

5
36

(s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s3)

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s3; s5) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s3)

1

1

2

3

4

5

36

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s5)

1

1

2

3

4

5
6

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line: (s1; s3) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s5)

1

1

2

3

4

5

6

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line:

1

1

2

3

4

5

6

(s1; s3) (s2; s1)(s4; s2)(s5; s4)(s3; s6) (s6; s5)

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry16

Overview

beach line:

Circle Event (For Intersections (si ; sj ); (sj ; sk))
remove (si ; sj ) and (sj ; sk)

create new vertex v

attach half edge of (si ; sj ) and (sj ; sk) to v

test (si ; sk) with BL-neighbors for circle events

new pair of half edges: one at v , one at (si ; sk)

insert (si ; sk)

Site Event (Site s)
find sx in the beach line

insert two new intersections

new pair of half edges for the intersections

handle false alarm for intersected parabola piece

test new intersections for circle events



Thomas Bläsius – Computational Geometry17

Wrap-Up

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.



Thomas Bläsius – Computational Geometry17

Wrap-Up

What Else Is There?
there are various variants

higher dimensions
different metrics
weighted sites
sites that are more complicated than just points (e.g., line segments)
Voronoi diagrams of higher order: What are the k closest sites?

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.



Thomas Bläsius – Computational Geometry17

Wrap-Up

What Else Is There?
there are various variants

higher dimensions
different metrics
weighted sites
sites that are more complicated than just points (e.g., line segments)

visualization:
Voronoi diagrams of higher order: What are the k closest sites?

Theorem
The Voronoi diagram of n sites can be computed in O(n log n) time using O(n) space.

http://www.raymondhill.net/voronoi/rhill-voronoi.html

http://www.raymondhill.net/voronoi/rhill-voronoi.html

