

Computational Geometry Voronoi Diagram: Fortunes Algorithm

Thomas Bläsius

Overview

Basic Toolbox

- convex hull
- line intersection
- triangulation
- plane intersection

Advanced Toolbox

- Voronoi diagrams
- Delaunay triangulations
- origami
- complexity

Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location

Related Topics

- What is geometry?
- hyperbolic geometry
- geometric graphs

Situation

- given: set *S* of sites
- Which points are closest to which site? (assuming Euclidean distances)

Situation

- given: set S of sites
- Which points are closest to which site? (assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions

• Voronoi cell $\mathcal{V}(s)$ of $s \in S$: set of points closer to s than to any other site

Situation

3

- given: set S of sites
- Which points are closest to which site? (assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions

- Voronoi cell $\mathcal{V}(s)$ of $s \in S$: set of points closer to s than to any other site
- union of all cells is the Voronoi diagram Vor(S)

Situation

- given: set S of sites
- Which points are closest to which site? (assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions

- Voronoi cell $\mathcal{V}(s)$ of $s \in S$: set of points closer to s than to any other site
- union of all cells is the Voronoi diagram Vor(S)
- planar subdivision of the plane

Situation

- given: set S of sites
- Which points are closest to which site? (assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions

0

0

0

- Voronoi cell $\mathcal{V}(s)$ of $s \in S$: set of points closer to s than to any other site
- union of all cells is the Voronoi diagram Vor(S)
- planar subdivision of the plane
- boundary between cells are called edges
- endpoints of these edges are vertices

Situation

- given: set S of sites
- Which points are closest to which site? (assuming Euclidean distances)

Voronoi-Diagramm – Some Definitions

- Voronoi cell $\mathcal{V}(s)$ of $s \in S$: set of points closer to s than to any other site
- union of all cells is the Voronoi diagram Vor(S)
- planar subdivision of the plane
- boundary between cells are called edges
- endpoints of these edges are vertices

Goal For Today: compute Vor(*S*)

Points Belonging To The Cell Of *s*

• Why does *p* not lie in the cell of *s*?

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p

perpendicular bisector of s and s'

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of s is the intersection of half planes

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

• not all sites collinear \Rightarrow Vor(S) is connected

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

- not all sites collinear \Rightarrow Vor(S) is connected
- proof: assume it is disconnected
 - \Rightarrow there is a site $s_1 \in S$, such that $\mathcal{V}(s_1)$ separates the plane

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

- not all sites collinear \Rightarrow Vor(S) is connected
- proof: assume it is disconnected
 - \Rightarrow there is a site $s_1 \in S$, such that $\mathcal{V}(s_1)$ separates the plane
 - $\mathcal{V}(s_1)$ convex \Rightarrow must be bounded by two parallel lines

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

- not all sites collinear \Rightarrow Vor(S) is connected
- proof: assume it is disconnected
 - \Rightarrow there is a site $s_1 \in S$, such that $\mathcal{V}(s_1)$ separates the plane
 - $\mathcal{V}(s_1)$ convex \Rightarrow must be bounded by two parallel lines
 - let $s_1 \perp s_2$ be one of these lines and let $s_3 \in S$ be non-collinear

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

- not all sites collinear \Rightarrow Vor(S) is connected
- proof: assume it is disconnected
 - \Rightarrow there is a site $s_1 \in S$, such that $\mathcal{V}(s_1)$ separates the plane
 - $\mathcal{V}(s_1)$ convex \Rightarrow must be bounded by two parallel lines
 - let $s_1 \perp s_2$ be one of these lines and let $s_3 \in S$ be non-collinear
 - \Rightarrow $s_1 \perp s_2$ intersects $s_1 \perp s_3$

Points Belonging To The Cell Of *s*

- Why does *p* not lie in the cell of *s*?
- s' is closer $p \Leftrightarrow s \perp s'$ separates s from p
- the cell of *s* is the intersection of half planes
- this already yields a (slow) algorithm

How slow exactly?

Connectedness

- not all sites collinear \Rightarrow Vor(S) is connected
- proof: assume it is disconnected
 - \Rightarrow there is a site $s_1 \in S$, such that $\mathcal{V}(s_1)$ separates the plane
 - $\mathcal{V}(s_1)$ convex \Rightarrow must be bounded by two parallel lines
 - let $s_1 \perp s_2$ be one of these lines and let $s_3 \in S$ be non-collinear
 - \Rightarrow $s_1 \perp s_2$ intersects $s_1 \perp s_3 \Rightarrow$ contradiction

Theorem (proof: exercise) The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

5

Theorem (proof: exercise) The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

Theorem (proof: exercise) The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

Which Points Are Vertices Of Vor(*S*)?

• at each a vertex $v: \ge 3$ cells meet

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v
- not every circle through \geq 3 sites has vertex as center

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v
- not every circle through \geq 3 sites has vertex as center
- the circle cannot have any sites in its interior

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v
- not every circle through \geq 3 sites has vertex as center
- the circle cannot have any sites in its interior
- $C_S(p) =$ largest circle around p, with no site from S in its interior

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

Which Points Are Vertices Of Vor(*S*)?

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v
- not every circle through \geq 3 sites has vertex as center
- the circle cannot have any sites in its interior
- $C_S(p) =$ largest circle around p, with no site from S in its interior

Theorem(vertices of Vor(S))The point $p \in \mathbb{R}^2$ is a vertex of Vor(S) if andonly if at least three sites lie on the circle $C_S(p)$.

Theorem

(proof: exercise)

The Voronoi diagram of $n \ge 3$ sites has at most 2n - 5 vertices and at most 3n - 6 edges.

Which Points Are Vertices Of Vor(*S*)?

- at each a vertex $v: \ge 3$ cells meet
- v has equal distance to these sites \Rightarrow circle with center v
- not every circle through \geq 3 sites has vertex as center
- the circle cannot have any sites in its interior
- $C_S(p) =$ largest circle around p, with no site from S in its interior

Theorem(vertices of Vor(S))The point $p \in \mathbb{R}^2$ is a vertex of Vor(S) if andonly if at least three sites lie on the circle $C_S(p)$.

Which similar statement holds for edges?

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

6

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(*S*) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(*S*) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

parts above the sweep line depend on sites below the sweep line

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

- parts above the sweep line depend on sites below the sweep line
- that (hopefully) happens only slightly above the sweep line!?!

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

- parts above the sweep line depend on sites below the sweep line
- that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

• region of seen sites \neq region in which Vor(S) is computed

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

- parts above the sweep line depend on sites below the sweep line
- that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

- region of seen sites \neq region in which Vor(S) is computed
- below the sweep line: unknown area

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

- parts above the sweep line depend on sites below the sweep line
- that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

- region of seen sites \neq region in which Vor(S) is computed
- below the sweep line: unknown area
- some region above the sweep line: known area

General Approach: Sweep Line

- move sweep line from top to bottom
- at every point in time: know Vor(S) above the sweep line

Problem

- parts above the sweep line depend on sites below the sweep line
- that (hopefully) happens only slightly above the sweep line!?!

Adjusted Sweep-Line Approach

- region of seen sites \neq region in which Vor(S) is computed
- below the sweep line: unknown area
- some region above the sweep line: known area
- some gray area in between

Where Does The Known Area End?

• consider a point $p \in \mathbb{R}^2$ above ℓ

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, *p* is part of the gray area

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, *p* is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$
- the boundary between known area and gray area is called beach line

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$
- the boundary between known area and gray area is called beach line
- each piece of the curve belongs to one site

- consider a point $p \in \mathbb{R}^2$ above ℓ
- case 1: p is closer to ℓ than to any site above ℓ
 - there could be a site s below ℓ , such that $p \in \mathcal{V}(s)$
 - thus, p is part of the gray area
- case 2: p is closer to a site s above ℓ as to ℓ
 - there is no site below ℓ that is closer to p
 - thus, we know the Voronoi cell of p
- known area: $\{p \in \mathbb{R}^2 \mid \exists s \in S \; \operatorname{dist}(p, s) \leq \operatorname{dist}(p, \ell)\}$
- the boundary between known area and gray area is called beach line
- each piece of the curve belongs to one site
- next slide: each piece is a parabola

Relevant Coordinates

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- *y*-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

Relevant Coordinates

$$s = (s_x, s_y)$$

$$\bullet p = (p_x, p_y)$$

• *y*-Koordinate von ℓ : ℓ_y

Distances

- dist $(s, p) = \sqrt{(p_x s_x)^2 + (p_y s_y)^2}$ and dist $(\ell, p) = p_y \ell_y$
- *p* lies on the beach line \Leftrightarrow dist(s, p) =dist (ℓ, p)

Relevant Coordinates

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- *y*-Koordinate von ℓ : ℓ_y

Distances

- dist $(s, p) = \sqrt{(p_x s_x)^2 + (p_y s_y)^2}$ and dist $(\ell, p) = p_y \ell_y$
- *p* lies on the beach line \Leftrightarrow dist(s, p) =dist (ℓ, p)

$$(p_x - s_x)^2 + (p_y - s_y)^2 = (p_y - \ell_y)^2$$

Relevant Coordinates

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- *y*-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) = dist (ℓ, p)

$$(p_x - s_x)^2 + (p_y - s_y)^2 = (p_y - \ell_y)^2$$
$$(p_x - s_x)^2 + p_y^2 - 2p_y s_y + s_y^2 = p_y^2 - 2p_y \ell_y + \ell_y^2$$

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- y-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) =dist (ℓ, p)

$$(p_{x} - s_{x})^{2} + (p_{y} - s_{y})^{2} = (p_{y} - \ell_{y})^{2}$$
$$(p_{x} - s_{x})^{2} + \frac{p_{y}^{2}}{p_{y}^{2}} - 2p_{y}s_{y} + \frac{s_{y}^{2}}{s_{y}^{2}} = \frac{p_{y}^{2}}{p_{y}^{2}} - 2p_{y}\ell_{y} + \ell_{y}^{2}$$
$$(p_{x} - s_{x})^{2} + \frac{s_{y}^{2}}{p_{y}^{2}} - \ell_{y}^{2} = 2p_{y}s_{y} - 2p_{y}\ell_{y}$$

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- y-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) = dist (ℓ, p)

$$(p_x - s_x)^2 + (p_y - s_y)^2 = (p_y - \ell_y)^2$$

$$(p_x - s_x)^2 + p_y^2 - 2p_y s_y + s_y^2 = p_y^2 - 2p_y \ell_y + \ell_y^2$$

$$(p_x - s_x)^2 + s_y^2 - \ell_y^2 = 2p_y s_y - 2p_y \ell_y$$

$$\frac{(p_x - s_x)^2}{2s_y - 2\ell_y} + \frac{s_y^2 - \ell_y^2}{2s_y - 2\ell_y} = p_y$$

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- y-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) = dist (ℓ, p)

$$(p_x - s_x)^2 + (p_y - s_y)^2 = (p_y - \ell_y)^2$$

$$(p_x - s_x)^2 + p_y^2 - 2p_y s_y + s_y^2 = p_y^2 - 2p_y \ell_y + \ell_y^2$$

$$(p_x - s_x)^2 + s_y^2 - \ell_y^2 = 2p_y s_y - 2p_y \ell_y$$

$$\frac{(p_x - s_x)^2}{2s_y - 2\ell_y} + \frac{s_y^2 - \ell_y^2}{2s_y - 2\ell_y} = p_y$$

$$\frac{(p_x - s_x)^2}{2s_y - 2\ell_y} + \frac{s_y + \ell_y}{2} = p_y$$

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- y-Koordinate von ℓ : ℓ_y

Distances

transla

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) = dist (ℓ, p)

$$(p_{x} - s_{x})^{2} + (p_{y} - s_{y})^{2} = (p_{y} - \ell_{y})^{2}$$

$$(p_{x} - s_{x})^{2} + p_{y}^{2} - 2p_{y}s_{y} + s_{y}^{2} = p_{y}^{2} - 2p_{y}\ell_{y} + \ell_{y}^{2}$$

$$(p_{x} - s_{x})^{2} + s_{y}^{2} - \ell_{y}^{2} = 2p_{y}s_{y} - 2p_{y}\ell_{y}$$

$$\frac{(p_{x} - s_{x})^{2}}{2s_{y} - 2\ell_{y}} + \frac{s_{y}^{2} - \ell_{y}^{2}}{2s_{y} - 2\ell_{y}} = p_{y}$$
tion in x-direction
$$\frac{(p_{x} - s_{x})^{2}}{2s_{y} - 2\ell_{y}} + \frac{s_{y} + \ell_{y}}{2} = p_{y}$$
translation in x-direction

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- *y*-Koordinate von ℓ : ℓ_y

Distances

• dist
$$(s, p) = \sqrt{(p_x - s_x)^2 + (p_y - s_y)^2}$$
 and dist $(\ell, p) = p_y - \ell_y$

• *p* lies on the beach line \Leftrightarrow dist(s, p) = dist (ℓ, p)

$$(p_{x} - s_{x})^{2} + (p_{y} - s_{y})^{2} = (p_{y} - \ell_{y})^{2}$$

$$(p_{x} - s_{x})^{2} + p_{y}^{2} - 2p_{y}s_{y} + s_{y}^{2} = p_{y}^{2} - 2p_{y}\ell_{y} + \ell_{y}^{2}$$

$$(p_{x} - s_{x})^{2} + s_{y}^{2} - \ell_{y}^{2} = 2p_{y}s_{y} - 2p_{y}\ell_{y}$$

$$\frac{(p_{x} - s_{x})^{2}}{2s_{y} - 2\ell_{y}} + \frac{s_{y}^{2} - \ell_{y}^{2}}{2s_{y} - 2\ell_{y}} = p_{y}$$
translation in x-direction
$$\frac{(p_{x} - s_{x})^{2}}{2s_{y} - 2\ell_{y}} + \frac{s_{y} + \ell_{y}}{2} = p_{y}$$
translation in y-direction

- $s = (s_x, s_y)$
- $p = (p_x, p_y)$
- y-Koordinate von ℓ : ℓ_y

- parabola with vertex at the center between s and l
- larger dist (s, ℓ) yields a wider parabola

- sweep-line status: state of the beach line
- events: points in time, when BL changes

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

new parabola is inserted into the BL

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

new parabola is inserted into the BL

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

new parabola is inserted into the BL

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

How do we know when this happens?

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

- How do we know when this happens?
- parabolas of three points intersect

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

- How do we know when this happens?
- parabolas of three points intersect
- intersection has same distance to the three sites and to the sweep line

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

- How do we know when this happens?
- parabolas of three points intersect
- intersection has same distance to the three sites and to the sweep line
- no other site is closer

Why not?

Sweep-Line Algo

- sweep-line status: state of the beach line
- events: points in time, when BL changes
- What does "change" mean hear?
 - beach line changes all the time
 - sequence of corresponding sites rarely changes

Event: New Site *s*

- new parabola is inserted into the BL
- splits parabola of current BL above s

Event: Parabola Piece Disappears

- How do we know when this happens?
- parabolas of three points intersect
- intersection has same distance to the three sites and to the sweep line
- no other site is closer
- we call this a circle event
- position defined by the sites corresponding to three consecutive parabola pieces

Why not?

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- circle event \rightarrow remove parabola piece

(without proof: these are the only situations, in which the beach line changes)

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- circle event \rightarrow remove parabola piece

Finding Circle Events

(without proof: these are the only situations, in which the beach line changes)

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- \blacksquare circle event \rightarrow remove parabola piece

Finding Circle Events

(without proof: these are the only situations, in which the beach line changes)

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Voronoi Diagram

10

- circle event \rightarrow new vertex of the Voronoi diagram
- every vertex is found this way

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- \blacksquare circle event \rightarrow remove parabola piece

Finding Circle Events

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Voronoi Diagram

- \blacksquare circle event \rightarrow new vertex of the Voronoi diagram
- every vertex is found this way

Open Questions

• How do we manage the beach line?

(without proof: these are the only situations, in which the beach line changes)

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- \blacksquare circle event \rightarrow remove parabola piece

Finding Circle Events

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Voronoi Diagram

- \blacksquare circle event \rightarrow new vertex of the Voronoi diagram
- every vertex is found this way

Open Questions

- How do we manage the beach line?
- How do we manage the events?

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- \blacksquare circle event \rightarrow remove parabola piece

Finding Circle Events

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Voronoi Diagram

- \blacksquare circle event \rightarrow new vertex of the Voronoi diagram
- every vertex is found this way

Open Questions

- How do we manage the beach line?
- How do we manage the events?
- How do we get the Voronoi diagram in the end?

Event Points: Beach Line Changes

- \blacksquare site event \rightarrow insert new parabola piece
- \blacksquare circle event \rightarrow remove parabola piece

Finding Circle Events

• every beach line change: new triples of consecutive parabola pieces \rightarrow maybe new circle event

Voronoi Diagram

- \blacksquare circle event \rightarrow new vertex of the Voronoi diagram
- every vertex is found this way

Open Questions

- How do we manage the beach line?
- How do we manage the events?
- How do we get the Voronoi diagram in the end?

Special Cases

Why?

- sites with same y-coordinate
- vertices with degree > 3
- what else?

(without proof: these are the only situations, in which the beach line changes)

How Many Events Are In The Queue?

How Many Events Are In The Queue?

Answer: 3 (one site and two circle events)

Managing The Beach Line

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece

Managing The Beach Line

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of ℓ 's exact position

Site Event

find x-coordinate of the new site in the set of intersection points

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

- find x-coordinate of the new site in the set of intersection points
- insert two new intersection points

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

- find x-coordinate of the new site in the set of intersection points
- insert two new intersection points

Circle Event

■ belongs to two consecutive intersection points (here: (*s*₅, *s*₃) and (*s*₃, *s*₂))

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

- find x-coordinate of the new site in the set of intersection points
- insert two new intersection points

Circle Event

- belongs to two consecutive intersection points (here: (*s*₅, *s*₃) and (*s*₃, *s*₂))
- remove the two and insert the new one

(here: (*s*₅, *s*₂))

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

- find x-coordinate of the new site in the set of intersection points
- insert two new intersection points

Circle Event

- belongs to two consecutive intersection points (here: (*s*₅, *s*₃) and (*s*₃, *s*₂))
- remove the two and insert the new one (here: (s₅, s₂))

Data Structure: search (for *x*), insert, and delete

Observation

- parabolas can be split into multiple pieces
- knowing the site does not uniquely identify the parabola piece
- instead: store a representation of the intersection points that is independent of *l*'s exact position

Site Event

- find x-coordinate of the new site in the set of intersection points
- insert two new intersection points

Circle Event

- belongs to two consecutive intersection points (here: (*s*₅, *s*₃) and (*s*₃, *s*₂))
- remove the two and insert the new one (here: (s₅, s₂))

Data Structure: search (for *x*), insert, and delete \rightarrow search tree ($O(\log n)$ per operation)

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

- some circle events to not actually happen
- at site event: remove circle event of split parabola (if it exists)

Observation

- we know all site events from the start
- circle events: defined by adjacent intersection points on the beach line
- not every pair of adjacent intersections yields a circle event
- whether we have a circle event can be determined based on the corresponding sites
- \blacksquare perpendicular bisectors converge \rightarrow parabola piece shrinks \rightarrow circle event
- \blacksquare perpendicular bisectors diverge \rightarrow parabola piece grows \rightarrow no circle event

False Alarm

- some circle events to not actually happen
- at site event: remove circle event of split parabola (if it exists)
- no problem: use search tree for the event queue $\rightarrow O(\log n)$ per operation

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

14

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

• compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- site event: new parabola \rightarrow new intersections \rightarrow new half edges

Already Seen

- point p is vertex $\Leftrightarrow p$ is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- \blacksquare circle event: new vertex \rightarrow attach corresponding half edges to vertex

new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Infinite Edges

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Infinite Edges

• some half edges do not end, as their parabola pieces never disappear

Already Seen

- point *p* is vertex \Leftrightarrow *p* is the center for a circle event
- *p* lies on an edge \Leftrightarrow *p* is at some point the intersection of parabola pieces

Plan

- compute doubly-connected edge list of Vor(S) during the sweep (with special handling for infinite edges)
- \blacksquare site event: new parabola \rightarrow new intersections \rightarrow new half edges
- circle event: new vertex \rightarrow attach corresponding half edges to vertex new intersection \rightarrow new half edge

Infinite Edges

- some half edges do not end, as their parabola pieces never disappear
- empty queue → some final clean up remaining intersections in beach line (depending on how your doubly-connected edge list deals with infinite edges)

Example

Events With Equal *y***-Coordinate**

handle in arbitrary order

- handle in arbitrary order
- exception: initial site events (no parabola above exists)

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- \blacksquare special handling \rightarrow vertex with degree >3
- \blacksquare no special handling \rightarrow multiple degree-3 vertices with edges of length 0

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- special handling \rightarrow vertex with degree > 3
- no special handling \rightarrow multiple degree-3 vertices with edges of length 0
 New Parabola Starts At Intersection

Events With Equal y-Coordinate

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- special handling \rightarrow vertex with degree > 3
- no special handling \rightarrow multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection

a vertex should be created

Events With Equal y-Coordinate

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- special handling \rightarrow vertex with degree > 3
- no special handling \rightarrow multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection

- a vertex should be created
- special handling: create vertex and half edges
- \blacksquare no special handling: split one parabola \rightarrow circle event \rightarrow new vertex

Events With Equal *y***-Coordinate**

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- special handling \rightarrow vertex with degree > 3
- no special handling \rightarrow multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection

- a vertex should be created
- special handling: create vertex and half edges
- no special handling: split one parabola \rightarrow circle event \rightarrow new vertex

Collinear Sites With Consecutive Parabola Pieces

Events With Equal *y***-Coordinate**

- handle in arbitrary order
- exception: initial site events (no parabola above exists)
- Equal x- and y-Coordinate
- vertex in Vor(S) with degree > 3
- \blacksquare special handling \rightarrow vertex with degree >3
- \blacksquare no special handling \rightarrow multiple degree-3 vertices with edges of length 0

New Parabola Starts At Intersection

- a vertex should be created
- special handling: create vertex and half edges
- no special handling: split one parabola \rightarrow circle event \rightarrow new vertex

Collinear Sites With Consecutive Parabola Pieces

careful, when computing the circle

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_i, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line:

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line:

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_1) (s_1, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_1) (s_1, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_1) (s_1, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_{\times} in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_5) (s_5, s_2) (s_2, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_5) (s_5, s_2) (s_2, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_5) (s_5, s_2) (s_2, s_4) (s_4, s_2) (s_2, s_1)

beach line: (s_1, s_3) (s_3, s_2) (s_2, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_6) (s_6, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_6) (s_6, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_6) (s_6, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

Circle Event (For Intersections $(s_i, s_j), (s_j, s_k)$)

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line: (s_1, s_3) (s_3, s_6) (s_6, s_3) (s_3, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

beach line: (s_1, s_3) (s_3, s_6) (s_6, s_5) (s_5, s_4) (s_4, s_2) (s_2, s_1)

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Site Event (Site *s*)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

beach line:

Site Event (Site s)

- find s_x in the beach line
- insert two new intersections
- handle false alarm for intersected parabola piece
- test new intersections for circle events
- new pair of half edges for the intersections

- remove (s_i, s_j) and (s_j, s_k)
- insert (s_i, s_k)
- test (s_i, s_k) with BL-neighbors for circle events
- create new vertex v
- attach half edge of (s_i, s_j) and (s_j, s_k) to v
- new pair of half edges: one at v, one at (s_i, s_k)

Theorem The Voronoi diagram of *n* sites can be computed in $O(n \log n)$ time using O(n) space.

Wrap-Up

Theorem

The Voronoi diagram of *n* sites can be computed in $O(n \log n)$ time using O(n) space.

What Else Is There?

- there are various variants
 - higher dimensions
 - different metrics
 - weighted sites
 - sites that are more complicated than just points (e.g., line segments)
 - Voronoi diagrams of higher order: What are the k closest sites?

Wrap-Up

Theorem

The Voronoi diagram of *n* sites can be computed in $O(n \log n)$ time using O(n) space.

What Else Is There?

- there are various variants
 - higher dimensions
 - different metrics
 - weighted sites
 - sites that are more complicated than just points (e.g., line segments)
 - Voronoi diagrams of higher order: What are the *k* closest sites?
- visualization: http://www.raymondhill.net/voronoi/rhill-voronoi.html

