

Computational Geometry

Point Location & Persistence – Where am I? And When?

Thomas Bläsius

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- the graph *G* does not change
- answer queries for many points $p \in \mathbb{R}^2$

Problem: Point Location

In which face of a geometric graph does a given point *p* lie?

Static Variant

- the graph *G* does not change
- answer queries for many points $p \in \mathbb{R}^2$
- develop data structure for G, such that
 - every query is fast
 - data structure can be build efficiently
 - data structure requires little space

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- the graph *G* does not change
- answer queries for many points $p \in \mathbb{R}^2$
- develop data structure for G, such that
 - every query is fast
 - data structure can be build efficiently
 - data structure requires little space

What are possible applications?

What Can We Typically Do With A Data Structure?

- queries to the data structure in its current state
- applying an operation \rightarrow new state

Example: Priority Queue get-min insert, delete-min

What Can We Typically Do With A Data Structure?

- queries to the data structure in its current state
- \blacksquare applying an operation \rightarrow new state

Example: Priority Queue get-min insert, delete-min

What Can We Typically Do With A Data Structure?

- queries to the data structure in its current state
- \blacksquare applying an operation \rightarrow new state

Example: Priority Queue get-min insert, delete-min

Partial Persistence

- remember previous states of the data structure
- allow queries to arbitrary points in time

What Can We Typically Do With A Data Structure?

- queries to the data structure in its current state
- \blacksquare applying an operation \rightarrow new state

Example: Priority Queue get-min insert, delete-min

Partial Persistence

- remember previous states of the data structure
- allow queries to arbitrary points in time

Full Persistence

- also allow operations in the past
- time is then no longer linear but branches

The Pointer Machine Model

The Pointer Machine Model

constant number of different node types, each with a constant number of fields

Example: Binary Search Tree

			A			
			parent:			
			I-child:			
			r-child:			
		_	value:			_
	В				С	
	parent:				parent:	
	I-child:				I-child:	
	r-child:				r-child:	
	value:				value:	
D	1	E		F	1	(
parent:	7	parent:		parent:	1	paren
I-child:		I-child:		I-child:]	I-child
r-child:		r-child:		r-child:]	r-child
value:	7	value:		value:]	value:

The Pointer Machine Model

- constant number of different node types, each with a constant number of fields
- each field contains one of the following
 - a data element (e.g., a number)
 - a pointer to another node or the NULL pointer

Example: Binary Search Tree

The Pointer Machine Model

- constant number of different node types, each with a constant number of fields
- each field contains one of the following
 - a data element (e.g., a number)
 - a pointer to another node or the NULL pointer
- a constant number of pointers to entry nodes

The Pointer Machine Model

- constant number of different node types, each with a constant number of fields
- each field contains one of the following
 - a data element (e.g., a number)
 - a pointer to another node or the NULL pointer
- a constant number of pointers to entry nodes

So Essentially

- a directed graph with constant out-degree
- and constant memory per node

Example: Binary Search Tree

The Pointer Machine Model

- constant number of different node types, each with a constant number of fields
- each field contains one of the following
 - a data element (e.g., a number)
 - a pointer to another node or the NULL pointer
- a constant number of pointers to entry nodes

So Essentially

Theorem

- a directed graph with constant out-degree
- and constant memory per node

Example: Binary Search Tree

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent with (amortized) constant overhead.

Observation

5

we don't know what queries and operations the DS has

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations
- O(1) slow-down for each atomic query/operation $\Rightarrow O(1)$ slow-down overall

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations
- O(1) slow-down for each atomic query/operation $\Rightarrow O(1)$ slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations
- O(1) slow-down for each atomic query/operation $\Rightarrow O(1)$ slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations
- O(1) slow-down for each atomic query/operation $\Rightarrow O(1)$ slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Timestamps

is incremented after each complete operation (not after queries)

Observation

- we don't know what queries and operations the DS has
- but: each is a sequence of atomic queries/operations
- O(1) slow-down for each atomic query/operation $\Rightarrow O(1)$ slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Timestamps

- is incremented after each complete operation (not after queries)
- entry nodes before: constant number of pointers to entry nodes
- now: for every timestamp a constant number of pointers to entry nodes

(e.g., constant number of arrays with one pointer per timestamp)

Atomic Operation

- operation: C.value = 1
- current timestamp: 28

С	
parent:	А
I-child:	F
r-child:	G
value:	16

Atomic Operation

idea: every node stores its own diff in an additional "mod" field

- operation: C.value = 1
- current timestamp: 28

С		mod:
parent:	А	
I-child:	F	
r-child:	G	
value:	16	

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

- operation: C.value = 1
- current timestamp: 28

С		mod:
parent:	Α	
I-child:	F	
r-child:	G	
value:	16	
1		
¥		
С		mod: (28, value, 1)
parent:	Α	
I-child:	F	
r-child:	G	
value:	16	

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- operation: C.value = 1
- current timestamp: 28

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- example query at time t: C.value
 - yields 16, if t < 28
 - yields 1, if $t \ge 28$

- operation: C.value = 1
- current timestamp: 28

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- example query at time t: C.value
 - yields 16, if t < 28
 - yields 1, if $t \ge 28$

Problem: one modification per node is not enough

- operation: C.value = 1
- current timestamp: 28

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- example query at time t: C.value
 - yields 16, if *t* < 28
 - yields 1, if $t \ge 28$

Problem: one modification per node is not enough

Idea

store multiple modifications (we'll think later about how many exactly)

- operation: C.value = 1
- current timestamp: 28

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- example query at time t: C.value
 - yields 16, if t < 28
 - yields 1, if $t \ge 28$

Problem: one modification per node is not enough

Idea

- store multiple modifications (we'll think later about how many exactly)
- \blacksquare all mod fields occupied \rightarrow create new node in the current state

- operation: C.value = 1
- current timestamp: 28

Atomic Operation

- idea: every node stores its own diff in an additional "mod" field
- instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account

- example query at time t: C.value
 - yields 16, if *t* < 28
 - yields 1, if $t \ge 28$

Problem: one modification per node is not enough

Idea

- store multiple modifications (we'll think later about how many exactly)
- \blacksquare all mod fields occupied \rightarrow create new node in the current state
- \blacksquare adjust pointers to point to new node \rightarrow we need back-pointers

- operation: C.value = 1
- current timestamp: 28

Case 1: There Is An Empty Mod Field

example: C.value = $3 \mid C.next = E \mid C.value = 42$

Case 1: There Is An Empty Mod Field

insert change into a mod field

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers

example: C.value = 3 | C.next = E | C.value = 42

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers
 - we have to make this change persistent

example: C.value = 3 | C.next = E | C.value = 42

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers
 - we have to make this change persistent

example: C.value = 3 | C.next = E | C.value = 42

this creates new atomic operations: A.next = C_{new} | B.next = C_{new}

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers
 - we have to make this change persistent

example: C.value = 3 | C.next = E | C.value = 42

this creates new atomic operations: A.next = C_{new} | B.next = C_{new} this recursion may cascade!

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers
 - we have to make this change persistent
- remove back-pointers to vold, add back-pointers to vnew

example: C.value = 3 | C.next = E | C.value = 42

this creates new atomic operations: A.next = C_{new} | B.next = C_{new} this recursion may cascade!

Case 1: There Is An Empty Mod Field

- insert change into a mod field
- if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

- copy node: old Node $v_{old} \rightarrow$ new Node v_{new}
- apply all modifications to v_{new} (including current operation)
- update nodes pointing to v_{old} to instead point to v_{new}
 - this is why we need the back-pointers
 - we have to make this change persistent
- remove back-pointers to vold, add back-pointers to vnew
 - note: back-pointers are only needed for the present time

example: C.value = 3 | C.next = E | C.value = 42

this creates new atomic operations: A.next = C_{new} | B.next = C_{new} this recursion may cascade!

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7)
		D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7)
		D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7)
		D.next = B.next
		B.next = D
8	ins(B, 4)	E = newNode(4)
		E.next = B.next
		B.next=E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7)
		D.next = B.next
		B.next = D
8	8 ins(B, 4)	E = newNode(4)
		E.next = B.next
		B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7)
		B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4)
		E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4)
		E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4)
		E.next = B.next
		B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E next = B next
		B.next = B.next

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E
		B.nextBack.next = B'
re	ecursive call!	*

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E
		B.nextBack.next = B'
re	ecursive call!	*

List Operations

- set value of node X to x: set(X, x)
- insert new node with value y after X: ins(X, y)

time	operation	atomic operation
6	set(B, 8)	B.val = 8
7	ins(B, 7)	D = newNode(7) D.next = B.next B.next = D
8	ins(B, 4)	E = newNode(4) E.next = B.next B.next = E
		B.nextBack.next = B'
re	cursive call!	*

What would have happened, if A.mod2 was already occupied?

What Is Happening Here?

How many new nodes are created by the operation K.val = 2?

What Is Happening Here?

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

case 2 sometimes spawns in-degree many new atomic operations

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

- case 2 sometimes spawns in-degree many new atomic operations
- \blacksquare this can cascade \rightarrow unbounded tree of additional atomic operations

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

- case 2 sometimes spawns in-degree many new atomic operations
- \blacksquare this can cascade \rightarrow unbounded tree of additional atomic operations

But

case 1: cheap but fills a mod field

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

- case 2 sometimes spawns in-degree many new atomic operations
- \blacksquare this can cascade \rightarrow unbounded tree of additional atomic operations

But

- case 1: cheap but fills a mod field
- case 2: expensive but frees up mod fields
 - before: all mod fields of vold occupied
 - after: all mod fields of vnew free

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

- case 2 sometimes spawns in-degree many new atomic operations
- \blacksquare this can cascade \rightarrow unbounded tree of additional atomic operations

But

- case 1: cheap but fills a mod field
- case 2: expensive but frees up mod fields
 - before: all mod fields of v_{old} occupied
 - after: all mod fields of vnew free

note: \textit{v}_{old} will never again be relevant for operations \rightarrow we call the newest copy of a node <code>active</code>

(Almost) Everything Is Constant

- case 1: mod field empty \rightarrow obviously O(1) time
- case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

- case 2 sometimes spawns in-degree many new atomic operations
- \blacksquare this can cascade \rightarrow unbounded tree of additional atomic operations

But

- case 1: cheap but fills a mod field
- case 2: expensive but frees up mod fields
 - before: all mod fields of v_{old} occupied
 - after: all mod fields of vnew free

note: v_{old} will never again be relevant for operations \rightarrow we call the newest copy of a node **active**

amortized analysis: let case-1 operations pay for case-2 operations

OF

Amortized Analysis

Accounting/Potential Method

- case-1 operations pay into account
- case-2 operations withdraw to cover cost

Amortized Analysis

Accounting/Potential Method

- case-1 operations pay into account
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost \rightarrow withdraw x
- plan: account balance = #(occupied mod fields in active nodes)

Accounting/Potential Method

- case-1 operations pay into account
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

deposit 1

withdraw x

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

• n_i nodes with k occupied mod fields now empty \rightarrow withdraw kn_i

withdraw x

Accounting/Potential Method

- case-1 operations pay into account \rightarrow
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

- **n**_i nodes with k occupied mod fields now empty \rightarrow withdraw kn_i
- occupy one mod filed in each leaf

Some Variables n_{ℓ} : #leaves in the tree n_i : #inner nodes k: #mod fields d: in-degree in the DS

deposit 1

withdraw x

deposit n_l

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

- n_i nodes with k occupied mod fields now empty \rightarrow withdraw k n_i
- occupy one mod filed in each leaf

Bounding The Amortized Cost Of A Case-2 Operation

actual cost account balance change

Some Variables n_{ℓ} : #leaves in the tree n_i : #inner nodes k: #mod fields d: in-degree in the DS

withdraw x

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

- n_i nodes with k occupied mod fields now empty \rightarrow withdraw k n_i
- occupy one mod filed in each leaf

Bounding The Amortized Cost Of A Case-2 Operation

 $\underbrace{n_{\ell} + n_{i}}_{\text{actual cost}} + \underbrace{n_{\ell} - kn_{i}}_{\text{actual cost}} = 2n_{\ell} + n_{i} - kn_{i}$

Some Variables n_{ℓ} : #leaves in the tree n_i : #inner nodes k: #mod fields d: in-degree in the DS

withdraw x

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

- n_i nodes with k occupied mod fields now empty \rightarrow withdraw k n_i
- occupy one mod filed in each leaf

Bounding The Amortized Cost Of A Case-2 Operation

Some Variables n_{ℓ} : #leaves in the tree n_i : #inner nodes k: #mod fields d: in-degree in the DS

withdraw x

deposit n_l

Accounting/Potential Method

- case-1 operations pay into account $\rightarrow \qquad \text{deposit 1}$
- case-2 operations withdraw to cover cost
- plan: account balance = #(occupied mod fields in active nodes)

How Much Can A Case-2 Operation Withdraw?

- n_i nodes with k occupied mod fields now empty \rightarrow withdraw k n_i
- occupy one mod filed in each leaf

Bounding The Amortized Cost Of A Case-2 Operation

Some Variables n_{ℓ} : #leaves in the tree n_i : #inner nodes k: #mod fields d: in-degree in the DS

withdraw x

deposit n_l

Cost Of An Atomic Operation

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

Cost Of An Atomic Operation

Theorem

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent, such that every atomic operation has amortized constant time and space overhead. Every query has constant overhead.

Cost Of An Atomic Operation

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent, such that every atomic operation has amortized constant time and space overhead. Every query has constant overhead.

Remarks

Theorem

• operation consists of x atomic operations $\rightarrow \Theta(x)$ additional space

Cost Of An Atomic Operation

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent, such that every atomic operation has amortized constant time and space overhead. Every query has constant overhead.

Remarks

Theorem

- operation consists of x atomic operations $\rightarrow \Theta(x)$ additional space
- binary search tree: improvement to O(1) memory per operation is possible

Cost Of An Atomic Operation

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent, such that every atomic operation has amortized constant time and space overhead. Every query has constant overhead.

Remarks

Theorem

- operation consists of x atomic operations $\rightarrow \Theta(x)$ additional space
- binary search tree: improvement to O(1) memory per operation is possible
- theorem can be generalized to full persistence

Cost Of An Atomic Operation

- amortized constant time overhead
- amortized constant additional memory

Cost Of An Atomic Query

constant time overhead

(partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made partially persistent, such that every atomic operation has amortized constant time and space overhead. Every query has constant overhead.

Remarks

Theorem

- operation consists of x atomic operations $\rightarrow \Theta(x)$ additional space
- binary search tree: improvement to O(1) memory per operation is possible
- theorem can be generalized to full persistence

Where does our approach fail for full persistence?

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph *G* is fixed
- answer query for many points $p \in \mathbb{R}^2$

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph *G* is fixed
- answer query for many points $p \in \mathbb{R}^2$

Run Sweep-Line Algorithm For Line Intersection

• time p_y : find edge *e* left of *p* in $O(\log n)$ (predecessor on sweep-line)

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph G is fixed
- answer query for many points $p \in \mathbb{R}^2$

- time p_y : find edge *e* left of *p* in $O(\log n)$ (predecessor on sweep-line)
- output face next to e (to the right) in O(1)

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph *G* is fixed
- answer query for many points $p \in \mathbb{R}^2$

- time p_y : find edge *e* left of *p* in $O(\log n)$ (predecessor on sweep-line)
- output face next to e (to the right) in O(1)
- use persistent search tree for sweep-line status

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph G is fixed
- answer query for many points $p \in \mathbb{R}^2$

- time p_y : find edge *e* left of *p* in $O(\log n)$ (predecessor on sweep-line)
- output face next to e (to the right) in O(1)
- use persistent search tree for sweep-line status
 - "Where is $p = (p_x, p_y)$?" turns into
 - "Where was p_x at time p_y ?"

Problem: Point Location In which face of a geometric graph does a given point *p* lie?

Static Variant

- graph G is fixed
- answer query for many points $p \in \mathbb{R}^2$

Run Sweep-Line Algorithm For Line Intersection

- time p_y : find edge *e* left of *p* in $O(\log n)$ (predecessor on sweep-line)
- output face next to e (to the right) in O(1)
- use persistent search tree for sweep-line status
 - "Where is $p = (p_x, p_y)$?" turns into
 - "Where was p_x at time p_y ?"

Query: $O(\log n)$ **Precomputation:** $O(n \log n)$ **Memory:** O(n)

Bringing Order Into Chaos

make faces y-monotone

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

Finding The Position Of *p* With A Binary Search Tree On Paths

decision at each tree node

How can we decide whether to walk left or right down the tree?

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before
- query time: $O(\log n)$ binary searches $\rightarrow O(\log^2 n)$

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before
- query time: $O(\log n)$ binary searches $\rightarrow O(\log^2 n)$
- fractional cascading \rightarrow **queries** in $O(\log n)$

Bringing Order Into Chaos

- make faces y-monotone
- order faces from left to right
- split graph into paths using this order

p in face $i \Leftrightarrow p$ between paths *i* and i + 1 goal: find two consecutive paths with *p* in between

- decision at each tree node
 - find relevant y-position in the path \rightarrow path edge e
 - walk left/right in the tree if p lies left/right of e
 - e non-existent \rightarrow same decision as in step before
- query time: $O(\log n)$ binary searches $\rightarrow O(\log^2 n)$
- fractional cascading \rightarrow **queries** in $O(\log n)$
- precomputation $O(n \log n)$ and memory O(n)

What Have We Learned Today?

time travel is real and actually useful

What Have We Learned Today?

- time travel is real and actually useful
- nice amortized analysis with accounting/potential

What Have We Learned Today?

- time travel is real and actually useful
- nice amortized analysis with accounting/potential
- different solutions for point-location

What Have We Learned Today?

- time travel is real and actually useful
- nice amortized analysis with accounting/potential
- different solutions for point-location
- using our toolbox: line intersection, triangulation, fractional cascading

What Have We Learned Today?

- time travel is real and actually useful
- nice amortized analysis with accounting/potential
- different solutions for point-location
- using our toolbox: line intersection, triangulation, fractional cascading

What Else Is There?

 additional equally good approaches for point location: www.csun.edu/~ctoth/Handbook/chap38.pdf (including a randomized algorithm with similar analysis as for our 2D-LP)

What Have We Learned Today?

- time travel is real and actually useful
- nice amortized analysis with accounting/potential
- different solutions for point-location
- using our toolbox: line intersection, triangulation, fractional cascading

What Else Is There?

- additional equally good approaches for point location: www.csun.edu/~ctoth/Handbook/chap38.pdf (including a randomized algorithm with similar analysis as for our 2D-LP)
- dynamic variants
- retroactive data structures: allow operations in the past affecting the present state

