
1

Computational Geometry

Thomas Bläsius

Point Location & Persistence – Where am I? And When?

Thomas Bläsius – Computational Geometry2

Where am I?

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry2

Where am I?

Static Variant
the graph G does not change

answer queries for many points p ∈ R2

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry2

Where am I?

Static Variant
the graph G does not change

answer queries for many points p ∈ R2

develop data structure for G, such that
every query is fast
data structure can be build efficiently
data structure requires little space

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry2

Where am I?

Static Variant
the graph G does not change

answer queries for many points p ∈ R2

develop data structure for G, such that
every query is fast
data structure can be build efficiently
data structure requires little space

Problem: Point Location
In which face of a geometric graph does a given point p lie?

What are possible applications?

Thomas Bläsius – Computational Geometry3

Data Structures And Time Travel

What Can We Typically Do With A Data Structure? Example: Priority Queue

applying an operation → new state insert, delete-min
queries to the data structure in its current state get-min

Thomas Bläsius – Computational Geometry3

Data Structures And Time Travel

What Can We Typically Do With A Data Structure? Example: Priority Queue

applying an operation → new state insert, delete-min
queries to the data structure in its current state get-min

DS

point in time: 1

DS

2

DS

3

DS

t

DS

k − 1

DS

k

op op op

query

Thomas Bläsius – Computational Geometry3

Data Structures And Time Travel

What Can We Typically Do With A Data Structure? Example: Priority Queue

applying an operation → new state insert, delete-min
queries to the data structure in its current state get-min

DS

point in time: 1

DS

2

DS

3

DS

t

DS

k − 1

DS

k

op op op

query

Partial Persistence
remember previous states of the data structure
allow queries to arbitrary points in time

query

Thomas Bläsius – Computational Geometry3

Data Structures And Time Travel

What Can We Typically Do With A Data Structure? Example: Priority Queue

applying an operation → new state insert, delete-min
queries to the data structure in its current state get-min

DS DS DS DS DS DS

op op op

Partial Persistence
remember previous states of the data structure
allow queries to arbitrary points in time

Full Persistence
also allow operations in the past
time is then no longer linear but branches

DS DS DS

op op
op

DS DS

op op

DS DS

op op

DS DS

op

op

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

The Pointer Machine Model

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

parent:

l-child:
r-child:
value:

B

parent:

l-child:
r-child:
value:

D
parent:

l-child:
r-child:
value:

E
parent:

l-child:
r-child:
value:

F

parent:

l-child:
r-child:
value:

C

parent:

l-child:
r-child:
value:

G

parent:

l-child:
r-child:
value:

A

The Pointer Machine Model
constant number of different node types, each with a constant number of fields

Example: Binary Search Tree

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

parent:

l-child:
r-child:
value:

B

parent:

l-child:
r-child:
value:

D

⊥
⊥

parent:

l-child:
r-child:
value:

E
parent:

l-child:
r-child:
value:

F

parent:

l-child:
r-child:
value:

C

parent:

l-child:
r-child:
value:

G

⊥
⊥

⊥
⊥

⊥
⊥

3

5

6

9

13

16

17

parent:

l-child:
r-child:
value:

A
⊥
B

A
D
E

B B C

A
F
G

C

C

The Pointer Machine Model
constant number of different node types, each with a constant number of fields
each field contains one of the following

a data element (e.g., a number)
a pointer to another node or the NULL pointer

Example: Binary Search Tree

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

parent:

l-child:
r-child:
value:

B

parent:

l-child:
r-child:
value:

D

⊥
⊥

parent:

l-child:
r-child:
value:

E
parent:

l-child:
r-child:
value:

F

parent:

l-child:
r-child:
value:

C

parent:

l-child:
r-child:
value:

G

⊥
⊥

⊥
⊥

⊥
⊥

3

5

6

9

13

16

17

parent:

l-child:
r-child:
value:

A
⊥
B

root

A
D
E

B B C

A
F
G

C

C

The Pointer Machine Model
constant number of different node types, each with a constant number of fields
each field contains one of the following

a data element (e.g., a number)
a pointer to another node or the NULL pointer

a constant number of pointers to entry nodes

Example: Binary Search Tree

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

parent:

l-child:
r-child:
value:

B

parent:

l-child:
r-child:
value:

D

⊥
⊥

parent:

l-child:
r-child:
value:

E
parent:

l-child:
r-child:
value:

F

parent:

l-child:
r-child:
value:

C

parent:

l-child:
r-child:
value:

G

⊥
⊥

⊥
⊥

⊥
⊥

3

5

6

9

13

16

17

parent:

l-child:
r-child:
value:

A
⊥
B

root

A
D
E

B B C

A
F
G

C

C

The Pointer Machine Model
constant number of different node types, each with a constant number of fields
each field contains one of the following

a data element (e.g., a number)
a pointer to another node or the NULL pointer

a constant number of pointers to entry nodes

So Essentially
a directed graph with constant out-degree
and constant memory per node

Example: Binary Search Tree

Thomas Bläsius – Computational Geometry4

Pointer Machine Data Structures

parent:

l-child:
r-child:
value:

B

parent:

l-child:
r-child:
value:

D

⊥
⊥

parent:

l-child:
r-child:
value:

E
parent:

l-child:
r-child:
value:

F

parent:

l-child:
r-child:
value:

C

parent:

l-child:
r-child:
value:

G

⊥
⊥

⊥
⊥

⊥
⊥

3

5

6

9

13

16

17

parent:

l-child:
r-child:
value:

A
⊥
B

root

A
D
E

B B C

A
F
G

C

C

The Pointer Machine Model
constant number of different node types, each with a constant number of fields
each field contains one of the following

a data element (e.g., a number)
a pointer to another node or the NULL pointer

a constant number of pointers to entry nodes

So Essentially
a directed graph with constant out-degree
and constant memory per node

Example: Binary Search Tree

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent with (amortized) constant overhead.

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations
O(1) slow-down for each atomic query/operation ⇒ O(1) slow-down overall

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations
O(1) slow-down for each atomic query/operation ⇒ O(1) slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations
O(1) slow-down for each atomic query/operation ⇒ O(1) slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations
O(1) slow-down for each atomic query/operation ⇒ O(1) slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Timestamps
is incremented after each complete operation (not after queries)

Thomas Bläsius – Computational Geometry5

Queries, Operations, and Timestamps

Observation
we don’t know what queries and operations the DS has
but: each is a sequence of atomic queries/operations
O(1) slow-down for each atomic query/operation ⇒ O(1) slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Timestamps
is incremented after each complete operation (not after queries)
entry nodes before: constant number of pointers to entry nodes
now: for every timestamp a constant number of pointers to entry nodes

(e.g., constant number of arrays with one pointer per timestamp)

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation

Example Operation
operation: C.value = 1

current timestamp: 28

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)
parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account

parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account
example query at time t: C.value

yields 16, if t < 28

yields 1, if t ≥ 28

parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account
example query at time t: C.value

yields 16, if t < 28

yields 1, if t ≥ 28

Problem: one modification per node is not enough

parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account
example query at time t: C.value

yields 16, if t < 28

yields 1, if t ≥ 28

Problem: one modification per node is not enough

Idea
store multiple modifications (we’ll think later about how many exactly)

parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account
example query at time t: C.value

yields 16, if t < 28

yields 1, if t ≥ 28

Problem: one modification per node is not enough

Idea
store multiple modifications (we’ll think later about how many exactly)

all mod fields occupied → create new node in the current state parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry6

Nodes With A History

parent:

l-child:
r-child:
value:

C

16

A
F
G

Atomic Operation
idea: every node stores its own diff in an additional “mod” field
instead of applying atomic operation: store (timestamp, field, new value) in mod

Example Operation
operation: C.value = 1

current timestamp: 28
mod:

mod: (28, value, 1)

Atomic Query: take mod field into account
example query at time t: C.value

yields 16, if t < 28

yields 1, if t ≥ 28

Problem: one modification per node is not enough

Idea
store multiple modifications (we’ll think later about how many exactly)

all mod fields occupied → create new node in the current state
adjust pointers to point to new node → we need back-pointers

parent:

l-child:
r-child:
value:

C

16

A
F
G

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field

next:
value:

C

16

D mod1:
mod2:

back1: back2:A BA

B

D

E

example: C.value = 3 | C.next = E | C.value = 42

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field

next:
value:

C

16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)

example: C.value = 3 | C.next = E | C.value = 42

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer next:

value:

C

16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied

next:
value:

C

16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)
update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)
update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers
we have to make this change persistent

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)
update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers
we have to make this change persistent

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

|{
z} this creates new atomic operations:

A.next = Cnew | B.next = Cnew

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)
update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers
we have to make this change persistent

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

|{
z} this creates new atomic operations:

A.next = Cnew | B.next = Cnew

this recursion may cascade!

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)

remove back-pointers to vold, add back-pointers to vnew

update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers
we have to make this change persistent

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

|{
z} this creates new atomic operations:

A.next = Cnew | B.next = Cnew

this recursion may cascade!

Thomas Bläsius – Computational Geometry7

An Atomic Operation

Case 1: There Is An Empty Mod Field
insert change into a mod field
if pointer is changed: update back-pointer

Case 2: All Mod Fields Occupied
copy node: old Node vold → new Node vnew

apply all modifications to vnew (including current operation)

remove back-pointers to vold, add back-pointers to vnew

update nodes pointing to vold to instead point to vnew

this is why we need the back-pointers
we have to make this change persistent

next:
value: 16

D mod1:
mod2:

back1: back2:A BA

B

D

E
(4, value, 3)
(5, next, E)

example: C.value = 3 | C.next = E | C.value = 42

next:
value:

Cnew

42

E mod1:
mod2:

back1: back2:A B

Cold

|{
z} this creates new atomic operations:

A.next = Cnew | B.next = Cnew

this recursion may cascade!

note: back-pointers are only needed for the present time

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

D

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1: B

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

D

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

D⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

D⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

D⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

D⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

D⊥

E

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

D⊥

E

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

next:
val:

B′
8

E
mod1:
back1:

mod2:

⊥

B′

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

⊥back2:

D⊥

E⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

next:
val:

B′
8

E
mod1:
back1:

mod2:

⊥

B′

B.nextBack.next = B′

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

recursive call!

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

⊥back2:

D⊥

E⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

next:
val:

B′
8

E
mod1:
back1:

mod2:

⊥

B′

B.nextBack.next = B′

(8, next, B′)

A

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

recursive call!

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

⊥back2:

D⊥

E⊥

Thomas Bläsius – Computational Geometry8

Example: Singly Linked List

next:
val:

A
5

B

next:
val:

B
16

C

next:
val:

E
4

⊥

next:
val:

D
7

⊥

next:
val:

C
9

⊥

mod1:
back1:

(4, val, 3)
⊥

operationtime atomic operation

set(B; 8) B.val = 8

ins(B; 7)

ins(B; 4)

D = newNode(7)

D.next = B.next
B.next = D

E = newNode(4)

E.next = B.next
B.next = E

6

7

8

head

mod2:

mod1:
A

mod2:

mod1:
back1:

mod2:
(3, val, 1)

(6, val, 8)

mod1:
back1:

mod2:
(7, next, C)

(7, next, D)

⊥B

mod1:
back1:

mod2:

⊥
(8, next, D)

next:
val:

B′
8

E
mod1:
back1:

mod2:

⊥

B′

B.nextBack.next = B′

(8, next, B′)

A

List Operations
set value of node X to x : set(X; x)
insert new node with value y after X: ins(X; y)

recursive call!

back2:⊥

back1: back2: ⊥

back2: ⊥

⊥back2:

⊥back2:

⊥back2:

D⊥

E⊥

What would have happened, if A.mod2 was already occupied?

Thomas Bläsius – Computational Geometry9

What Is Happening Here?

child:
val:

B
0

E
mod1:
back1:

(1, val, 3)
⊥

mod2:

back2:⊥

child:
val:

R
3

E
mod1:
back1:

(2, val, 5)
⊥

mod2:

back2:⊥

child:
val:

E
5

K
mod1:
back1:

(3, val, 0)
R

mod2:

back2:B

child:
val:

K
1

⊥
mod1:
back1:

(6, val, 8)
A

mod2:

back2:E

child:
val:

A
7

K
mod1:
back1:

(7, val, 5)
⊥

mod2:

back2:⊥

(4, val, 3)

(5, val, 7) (8, val, 2)

(9, val, 3)

How many new nodes are created
by the operation K.val = 2?

Thomas Bläsius – Computational Geometry9

What Is Happening Here?

child:
val:

B
0

E
mod1:
back1:

(1, val, 3)
⊥

mod2:

back2:⊥

child:
val:

R
3

E
mod1:
back1:

(2, val, 5)
⊥

mod2:

back2:⊥

child:
val:

E
5

K
mod1:
back1:

(3, val, 0)
R

mod2:

back2:B

child:
val:

K
1

⊥
mod1:
back1:

(6, val, 8)
A

mod2:

back2:E

child:
val:

A
7

K
mod1:
back1:

(7, val, 5)
⊥

mod2:

back2:⊥

(4, val, 3)

(5, val, 7) (8, val, 2)

(9, val, 3)

How many new nodes are created
by the operation K.val = 2?

child:
val:

K′
2

⊥
mod1:
back1: A′

mod2:

back2:E′

child:
val:

A′
2

K′
mod1:
back1: ⊥

mod2:

back2:⊥

child:
val:

E′
7

K′
mod1:
back1: R′

mod2:

back2:B

child:
val:

R′
3

E′
mod1:
back1: ⊥

mod2:

back2:⊥

(10, child, E′)

⊥⊥

⊥ ⊥

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

OP

OP OP OP

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

this can cascade → unbounded tree of additional atomic operations

OP

OP OP OP

OP OP OP OP OP

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

this can cascade → unbounded tree of additional atomic operations

But
case 1: cheap but fills a mod field

OP

OP OP OP

OP OP OP OP OP

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

this can cascade → unbounded tree of additional atomic operations

But

before: all mod fields of vold occupied
after: all mod fields of vnew free

case 1: cheap but fills a mod field
case 2: expensive but frees up mod fields

OP

OP OP OP

OP OP OP OP OP

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

this can cascade → unbounded tree of additional atomic operations

But

before: all mod fields of vold occupied
after: all mod fields of vnew free

case 1: cheap but fills a mod field
case 2: expensive but frees up mod fields

|{z
} note: vold will never again be relevant for operations

→ we call the newest copy of a node active

OP

OP OP OP

OP OP OP OP OP

Thomas Bläsius – Computational Geometry10

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
case 1: mod field empty → obviously O(1) time
case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

case 2 sometimes spawns in-degree many new atomic operations
Problem

this can cascade → unbounded tree of additional atomic operations

But

before: all mod fields of vold occupied
after: all mod fields of vnew free

case 1: cheap but fills a mod field
case 2: expensive but frees up mod fields

amortized analysis: let case-1 operations pay for case-2 operations

|{z
} note: vold will never again be relevant for operations

→ we call the newest copy of a node active

OP

OP OP OP

OP OP OP OP OP

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

→ deposit 1

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

→ deposit 1
→ withdraw x

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields→ deposit 1

→ withdraw x

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty → withdraw kni

→ deposit 1
→ withdraw x

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

occupy one mod filed in each leaf

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty
→ deposit n‘

→ withdraw kni

→ deposit 1
→ withdraw x

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

occupy one mod filed in each leaf

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty

n‘ + ni + n‘ − kni = 2n‘ + ni − kni ≤ 2dni + ni − kni = 0

→ deposit n‘

→ withdraw kni

actual cost account balance change

Bounding The Amortized Cost Of A Case-2 Operation

→ deposit 1
→ withdraw x

| {z } | {z }

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

occupy one mod filed in each leaf

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty

n‘ + ni + n‘ − kni = 2n‘ + ni − kni ≤ 2dni + ni − kni = 0

→ deposit n‘

→ withdraw kni

actual cost account balance change

Bounding The Amortized Cost Of A Case-2 Operation

→ deposit 1
→ withdraw x

| {z } | {z }

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

occupy one mod filed in each leaf

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty

n‘ + ni + n‘ − kni = 2n‘ + ni − kni ≤ 2dni + ni − kni = 0

→ deposit n‘

→ withdraw kni

actual cost account balance change

Bounding The Amortized Cost Of A Case-2 Operation

as n‘ ≤ dni

→ deposit 1
→ withdraw x

| {z } | {z }

Thomas Bläsius – Computational Geometry11

Amortized Analysis

Accounting/Potential Method
case-1 operations pay into account
case-2 operations withdraw to cover cost
plan: account balance = #(occupied mod fields in active nodes)

OP

OP OP OP

OP OP OP OP OP

How Much Can A Case-2 Operation Withdraw?

occupy one mod filed in each leaf

Some Variables
n‘: #leaves in the tree
ni : #inner nodes

d : in-degree in the DS
k : #mod fields

ni nodes with k occupied mod fields now empty

n‘ + ni + n‘ − kni = 2n‘ + ni − kni ≤ 2dni + ni − kni = 0

→ deposit n‘

→ withdraw kni

actual cost account balance change

Bounding The Amortized Cost Of A Case-2 Operation

as n‘ ≤ dni

→ deposit 1
→ withdraw x

using k = 2d + 1 mod fields
| {z } | {z }

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

operation consists of x atomic operations → Θ(x) additional space
Remarks

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

operation consists of x atomic operations → Θ(x) additional space
Remarks

binary search tree: improvement to O(1) memory per operation is possible

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

operation consists of x atomic operations → Θ(x) additional space
Remarks

binary search tree: improvement to O(1) memory per operation is possible
theorem can be generalized to full persistence

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Thomas Bläsius – Computational Geometry12

Wrap-Up: Persistence

Cost Of An Atomic Operation
amortized constant time overhead
amortized constant additional memory

Cost Of An Atomic Query
constant time overhead

operation consists of x atomic operations → Θ(x) additional space
Remarks

binary search tree: improvement to O(1) memory per operation is possible
theorem can be generalized to full persistence

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Where does our approach fail for full persistence?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection
time py : find edge e left of p in O(log n) (predecessor on sweep-line)

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection

output face next to e (to the right) in O(1)

time py : find edge e left of p in O(log n) (predecessor on sweep-line)

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection

use persistent search tree for sweep-line status
output face next to e (to the right) in O(1)

time py : find edge e left of p in O(log n) (predecessor on sweep-line)

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection

use persistent search tree for sweep-line status
output face next to e (to the right) in O(1)

“Where is p = (px ; py)?” turns into
“Where was px at time py?”

time py : find edge e left of p in O(log n) (predecessor on sweep-line)

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry13

Where am I?

Static Variant
graph G is fixed

answer query for many points p ∈ R2

Run Sweep-Line Algorithm For Line Intersection

use persistent search tree for sweep-line status
output face next to e (to the right) in O(1)

“Where is p = (px ; py)?” turns into
“Where was px at time py?”

Precomputation: O(n log n)
Memory: O(n)

Query: O(log n)

time py : find edge e left of p in O(log n) (predecessor on sweep-line)

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone
Bringing Order Into Chaos

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right

1

2 3

6

54

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

How can we decide whether to walk left or right down the tree? p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p
e

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p
e

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

e

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

e

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

query time: O(log n) binary searches → O(log2 n)

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

query time: O(log n) binary searches → O(log2 n)

fractional cascading → queries in O(log n)

p

Thomas Bläsius – Computational Geometry14

Is There A Solution Withouth Time Travel?

make faces y -monotone

split graph into paths using this order

1

2

3

4

5

6

Bringing Order Into Chaos

order faces from left to right |{
z} p in face i ⇔ p between paths i and i + 1

goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
decision at each tree node

find relevant y -position in the path → path edge e

e non-existent → same decision as in step before
walk left/right in the tree if p lies left/right of e

query time: O(log n) binary searches → O(log2 n)

fractional cascading → queries in O(log n)

precomputation O(n log n) and memory O(n)

p

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful
nice amortized analysis with accounting/potential

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful
nice amortized analysis with accounting/potential
different solutions for point-location

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful
nice amortized analysis with accounting/potential
different solutions for point-location
using our toolbox: line intersection, triangulation, fractional cascading

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful
nice amortized analysis with accounting/potential
different solutions for point-location
using our toolbox: line intersection, triangulation, fractional cascading

What Else Is There?
additional equally good approaches for point location:
(including a randomized algorithm with similar analysis as for our 2D-LP)

www.csun.edu/~ctoth/Handbook/chap38.pdf

https://www.csun.edu/~ctoth/Handbook/chap38.pdf

Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
time travel is real and actually useful
nice amortized analysis with accounting/potential
different solutions for point-location
using our toolbox: line intersection, triangulation, fractional cascading

What Else Is There?

dynamic variants
retroactive data structures: allow operations in the past affecting the present state

additional equally good approaches for point location:
(including a randomized algorithm with similar analysis as for our 2D-LP)

www.csun.edu/~ctoth/Handbook/chap38.pdf

https://www.csun.edu/~ctoth/Handbook/chap38.pdf

