AT

Computational Geometry

Point Location & Persistence — Where am |? And When?

Thomas Blasius

Where am |?

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Static Variant
= the graph G does not change

= answer queries for many points p € R?
m develop data structure for G, such that
- every query is fast
- data structure can be build efficiently
- data structure requires little space

What are possible applications?

AKIT

Data Structures And Time Travel

What Can We Typically Do With A Data Structure? Example: Priority Queue
m queries to the data structure in its current state get-min
= applying an operation — new state insert, delete-min

Partial Persistence Full Persistence
= remember previous states of the data structure ® also allow operations in the past
= allow queries to arbitrary points in time = time is then no longer linear but branches

AKIT

Pointer Machine Data Structures

The Pointer Machine Model
= constant number of different node types, each with a constant number of fields

= each field contains one of the following

- a data element (e.g., a number) Example: Binary Search Tree
- a pointer to another node or the NULL pointer A__fe—roo
parent: |
= a constant number of pointers to entry nodes chid__B
r-cniia:
So Essentially - e 2 -
m g directed graph with constant out-degree =L . SWHE
I-child: D [-child: F
r-child: E r-child: G
= and constant memory per node / e _ 5\ / o _ 16\
Theorem (partial persistence for everyone)

Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent with (amortized) constant overhead.

AKIT

Queries, Operations, and Timestamps

Observation
= we don’t know what queries and operations the DS has

= put: each is a sequence of atomic queries/operations
= O(1) slow-down for each atomic query/operation = O(1) slow-down overall

Atomic Query: read field of the current node or follow a pointer to another node

Atomic Operation: change a field of the current node (data or pointer)

Timestamps

= js incremented after each complete operation (not after queries)

= entry nodes before: constant number of pointers to entry nodes

= now: for every timestamp a constant number of pointers to entry nodes

(e.g., constant number of arrays with one pointer per timestamp)

AKIT

Nodes With A History

Atomic Operation
= [dea: every node stores its own diff in an additional “mod” field

= instead of applying atomic operation: store (timestamp, field, new value) in mod

Atomic Query: take mod field into account Example Operation
m example query at time t: C.value = operation: C.value = 1
- yields 16, if t < 28 = current timestamp: 28
- yields 1, if t > 28 et '
I-child: F
Problem: one modification per node is not enough ohig:_G
value:
Idea |
m store multiple modifications (we’ll think later about how many exactly) c Trod v |
= all mod fields occupied — create new node in the current state e
= adjust pointers to point to new node — we need back-pointers s ©

AKIT

An Atomic Operation

Case 1: There Is An Empty Mod Field example: C.value =3 | C.next =E | C.value = 42
= insert change into a mod field
_ , _ . [A Cold |backi: Afback2: B [D]
= if pointer is changed: update back-pointer next D |modi: (4, valus, 3)
| B value: 16| mod2: (5, next, E)/: E

Case 2: All Mod Fields Occupied \ T

next: mod1:
= copy node: old Node v, — new Node v, ew value: 42| modz:

= apply all modifications to v,ew (including current operation)

= update nodes pointing to voiq to instead pointt0 vaew | this creates new atomic operations:
- this is why we need the back-pointers > A.next = Cpew | B.next = Cpew
- we have to make this change persistent this recursion may cascade!

y,
= remove back-pointers to v, 4, add back-pointers to vyew

- note: back-pointers are only needed for the present time

AKIT

Example: Singly Linked List

hefd
A |backl: 1|back: L List Operations
val: 5| mod1: (4, val, 3) - .
net B[mod2. @ next. B) set value of node X to x: set(X, x)
‘[® insert new node with value y after X: ins(X, y)
B back1: Alback2: L B/ |backi: Al|back2: L time operation atomic operation
val: 16| modi: (6, val, 8) val: 8| mod1:
next: C|mod2: (7, next, D) next: E|mod2: 6 set(B, 8) B.val = 8
/ / 7 ins(B,7) D = newNode(7)
: backi & [backe. L D.next = B.next
ackl: B aACKZ: .
val: 4| modi: (8, next, D) B.next =D
next: | | mod2: 8 inS(B, 4) E = neWNode(4)

/ /’ E.next = B.next
B.next = E
D [backi: 1 [back2: E

Y
val: 7| modf: (7, next, C) B.nextBack.next = B
next: _L|mod2:

/ /. recursive call!

C |backi: 1]back2: D

val. 9| mod1: (3, val, 1) What would have happened, if A.mod2 was already occupied?

next: _|mod2:
AIT

What Is Happening Here?
|

B [backi: L[back2: L R [backi: L|back2: L How many new nodes are created
val: 0| mod1: (1, val, 3) val: 3| mod1: (2, val, 5) . L
child: E|mod2: child: E|mod2: (4, val, 3) by the Operatlon K'Val - 2?
E |backi: B[back2: R A |backl: 1 |back2: L
val: 5| mod1: (3, val, 0) val: 7| mod1: (7, val, 5)
child: K| mod2: (5, val, 7) child: K| mod2: (8, val, 2)

K |backi: E|[back2: A
val: 1| modi: (6, val, 8)
child: _L [mod2: (9, val, 3)

AKIT

What Is Happening Here?

}

child: K’ | mod2:

K |backi: I [back2: L

How many new nodes are created

by the operation K.val = 27

B |backi: I [back2: L back1: 1 |back2: L
val: 0| mod1: (1, val, 3) val: 3| modf1: (2, val, 5)
child: E[mod2: (10, child, E’) child: E[mod2: (4, val, 3)
R’ backi: 1 |back2: L
val: 3| modi:
child: E’|mod2:
backl: I [back2: L A |backl: 1 |back2: L
val: mod1: (3, val, 0) val: 7| modi: (7, val, 5)
mod2: (5, val, 7) child: K| mod2: (8, val, 2)
E/ [backi: B|back2: R’ A’ |backi: 1 [back2:
val: 7| mod1: val: 2| mod1:

child: K’ | mod2:

val: 1| modi:

K/ back1: E’|back2: A’

(6, val, 8) val:

child: _L | mod2:

2| mod1:

(9, val, 3) child: _L | mod2:

AKIT

Running Time Of An Atomic Operation

(Almost) Everything Is Constant
= case 1: mod field empty — obviously O(1) time

= case 2: copy node of size O(1), apply O(1) modifications, update O(1) back pointers

Problem @

m case 2 sometimes spawns in-degree many new atomic operations

= this can cascade — unbounded tree of additional atomic operations @ @ @
But

m case 1: cheap but fills a mod field

m case 2: expensive but frees up mod fields @ @ @ @ @

- before: all mod fields of v, 4 occupied
- after: all mod fields of v,.,, free
= amortized analysis: let case-1 operations pay for case-2 operations

note: voig Will never again be relevant for operations
— we call the newest copy of a node active

AKIT

Amortized Analysis

Some Variables
ng. #leaves in the tree

Accounting/Potential Method n;: #inner nodes
= case-1 operations pay into account — deposit 1 k: #¥mod fields

m case-2 operations withdraw to cover cost — withdraw x
= plan: account balance = #(occupied mod fields in active nodes)

0P,

® n; nodes with |k occupied mod fields now empty — withdraw kn; @ @ @

How Much Can A Case-2 Operation Withdraw?

= occupy one mod filed in each leaf — deposit nyg

P P ©9 ©p ©P

Bounding The Amortized Cost Of A Case-2 Operation

ng+n; + ng—lKn; =2ng +ni —[kn; < 2@n; +n; —fkn; =0
~—— — 4

actual cost ~ account balance change as g < dn; using [k|= 2@ + 1 mod fields

AKIT

Wrap-Up: Persistence

Cost Of An Atomic Operation Cost Of An Atomic Query
m amortized constant time overhead m constant time overhead

= amortized constant additional memory

Theorem (partial persistence for everyone)
Every data structure in the pointer machine model with constant in-degree can be made par-
tially persistent, such that every atomic operation has amortized constant time and space
overhead. Every query has constant overhead.

Remarks
= operation consists of x atomic operations — ©(x) additional space

= binary search tree: improvement to O(1) memory per operation is possible
= theorem can be generalized to full persistence

Where does our approach fail for full persistence?

AKIT

Where am |?

Problem: Point Location
In which face of a geometric graph does a given point p lie?

Static Variant
m graph G is fixed

= answer query for many points p € R?

Run Sweep-Line Algorithm For Line Intersection
= time p,: find edge e left of p in O(log n) (predecessor on sweep-line)
= output face next to e (to the right) in O(1)

m use persistent search tree for sweep-line status Query: O(log n)
- “Where is p = (px, py)?” turns into Precomputation: O(nlog n)
- “Where was py at time p,?” Memory: O(n)

AKIT

s There A Solution Withouth Time Travel?

Bringing Order Into Chaos
= make faces y-monotone

m order faces from left to right >
= split graph into paths using this order |

p in face i & p between paths/iand/+ 1
goal: find two consecutive paths with p in between

Finding The Position Of p With A Binary Search Tree On Paths
® decision at each tree node

- find relevant y-position in the path — path edge e
- walk left/right in the tree if p lies left/right of e
- e non-existent — same decision as in step before

= query time: O(log n) binary searches — O(log® n)
= fractional cascading — queries in O(log n)
= precomputation O(nlog n) and memory O(n)

AKIT

Wrap-Up

What Have We Learned Today?
= time travel is real and actually useful

= nice amortized analysis with accounting/potential
m different solutions for point-location
= yusing our toolbox: line intersection, triangulation, fractional cascading

What Else Is There?

= additional equally good approaches for point location: www.csun.edu/~ctoth/Handbook/chap38. pdf
(including a randomized algorithm with similar analysis as for our 2D-LP)

= dynamic variants
m retroactive data structures: allow operations in the past affecting the present state

AKIT

https://www.csun.edu/~ctoth/Handbook/chap38.pdf

