AT

Computational Geometry
Orthogonal Range Queries: Fractional Cascading

Thomas Blasius

Searching In Many

Situation
m consider £ sorted arrays A4, ...,

= find the position of x in all arrays
= obvious solution: O(£log n)

Arrays

Ay with < n elements each

12

17

19|25|28

11

13

18)25|33

17

19|22|32

AKIT

Searching In Many Arrays

Situation

consider £ sorted arrays Ay, ..., A, with < n elements each
find the position of x in all arrays

obvious solution: O(£log n)

last lecture: O(£ + logn)if Ay D Ay D --- D A

12

17

19|25|28

11

13

18)25|33

17

19|22|32

AKIT

Searching In Many Arrays

Situation
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays Aq
= obvious solution: O(£log n)

= last lecture: O(£ + logn)if Ay DA, D --- D A, Ay =

Is £ + log n Possible In General? Az =

12

17

19|25|28

11

13

18)25|33

17

19|22|32

AKIT

Searching In Many Arrays

Situation

m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A1 =|2|5]|812|17|19|25/28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]4]6|11]13]18]25/33
Is £ + log n Possible In General? Az = 13\1/7 9/1‘7/19 22|32
m hope: search x in Ay, find xin Ay, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situatic_)n . example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]4]6|11]13]18]25/33
Is £ + log n Possible In General? Az = 13\1/7 9/1‘7/19 22|32
m hope: search x in Ay, find xin Ay, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situatic_)n . example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25|33
Is £ + log n Possible In General? Az = 13\1/7 9/1‘7/19 22|32
m hope: search xin Aq, find xin A,, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situatic_)n . example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25|33
Is £ + log n Possible In General? Az = 13\1/7 9/1‘7/19 22|32
m hope: search xin Aq, find xin A,, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situatic_)n . example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
m hope: search xin Aq, find xin A,, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situatic_)n . example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each

= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
m hope: search xin Aq, find xin A,, ..., Ay via pointers

AKIT

Searching In Many Arrays

Situation example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each pie quety. x =
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D A, D --- D A, Ay = W\If 112‘3/18 25|33
Is £ + log n Possible In General? A3 =|1|3|7[9]17]19(22|32
m hope: search xin Aq, find xin A,, ..., Ay via pointers

Ay =|8|11|12[13|14[15|16(17

AKIT

Searching In Many Arrays

Situation example query: x = 14
m consider £ sorted arrays A4, ..., Ay with < n elements each pie quety. x =
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /
m last lecture: O(£ + logn) if Ay D Ay D -+ D Ay Ax = W\If 112‘3/18 2533
Is £ + log n Possible In General? A3 =|1|3|7[9]17]19(22|32
= hope: search x in Ay, find x in A,, .. ., A, via pointers T |
A4 =|8[11]12(13|14|15(16(17

AKIT

Searching In Many Arrays

Situation _
m consider £ sorted arrays A4, ..., Ay with < n elements each example query: x = 14
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /

m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
= hope: search x in Ay, find x in A,, .. ., A, via pointers T |
= problem: position of x in A; may not help to find position in A;,; A4 =[8[11]12]13]14)1516]17

AKIT

Searching In Many Arrays

Situation _
m consider £ sorted arrays A4, ..., Ay with < n elements each example query: x = 14
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /

m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
= hope: search x in Ay, find x in A,, .. ., A, via pointers T |
= problem: position of x in A; may not help to find position in A;,; A4 =[8[11]12]13]14)1516]17

Observation
m A; O A;.1 = position in A; determines position in A;. 1

AKIT

Searching In Many Arrays

Situation _
m consider £ sorted arrays A4, ..., Ay with < n elements each example query: x = 14
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /

m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
= hope: search x in Ay, find x in A, ..., A via pointers T |
= problem: position of x in A; may not help to find position in A;,; A4 =[8[11]12]13]14)1516]17

Observation
m A; O A;.1 = position in A; determines position in A;. 1

= A; contains many elements from A;, 1 = position in A; roughly determines position in A;, 1

AKIT

Searching In Many Arrays

Situation _
m consider £ sorted arrays A4, ..., Ay with < n elements each example query: x = 14
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /

m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
= hope: search x in Ay, find x in A,, .. ., A, via pointers T |
= problem: position of x in A; may not help to find position in A;,; A4 =[8[11]12]13]14)1516]17

Observation
m A; O A;.1 = position in A; determines position in A;. 1

= A; contains many elements from A;, 1 = position in A; roughly determines position in A;, 1
= [dea: insert some elements from A;, 1 into A;

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

17

19

22

32

11

12

13

14

15

16

17

12

14

16

17

19

22

32

11

12

13

14

15

16

17

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

= store pointers to copies

17

19

22

32

11

12

13

14

15

16

17

12

14

16

17

19

22

32

11

12

13

14

15

16

17

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

® store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)

A A
1(3|1718

0 [12(14(16(17{19(22(32

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

® store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
o -from elements in A4 to prev / next in A \ Ay

Why do we need that?
(N
137

"

Az =|1|3]|7]9]17]19[22(32 A/3= 3|9 [12[14(16(1/({19(22(32
A, =|8[11(12|13|14[15(16|17 Ay = 8 (11({12|13|14|15|16(17

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

® store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= [BOIREEFS from elements in A4 to prev / next in A3 \ As= position in A} gives position in As

Why do we need that?
(N
137

"

Az =|1|3]|7]9]17]19[22(32 A/3= 3|9 [12[14(16(1/({19(22(32
A, =|8[11(12|13|14[15(16|17 Ay = 8 (11({12|13|14|15|16(17

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

® store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= [BOIREEFS from elements in A4 to prev / next in A3 \ As= position in A} gives position in As

= cascade the process for all previous A; Why do we need that?
(N)
1137

Y

Az =|1|3]|7]9]17]19[22(32 A/3= 3|9 [12[14(16(1/({19(22(32
A, =|8[11(12|13|14[15(16|17 Ay = 8 (11({12|13|14|15|16(17

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

m store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= pointers from elements in A, to prev / next in A3 \ As= position in A% gives position in A3

= cascade the process for all previous A;

A1 =|2|5|8|12{17]19(25|28

Ax =|3|4|6|11]13]|18[25|33 A, =

Az =|1|3]|7]9]17]19[22(32 A'3: 113|718]|9|12|14|16|17|19|22|32

A, =|8[11(12|13|14[15(16|17 Ay = ’_8/11121314151617

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

m store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= pointers from elements in A, to prev / next in A3 \ As= position in A% gives position in A3

= cascade the process for all previous A;

A1 =|2|5|8|12{17]19(25|28

A, =|3|4|6|11|13]18(25|33 A'2: 113|467 [9]|11|13|14(17(18|22|25|33
, \ / /
Az =|1|3]|7]9]17]19[22(32 A; = 113|718]|9|12|14|16|17|19|22|32

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

m store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= pointers from elements in A, to prev / next in A3 \ As= position in A% gives position in A3

= cascade the process for all previous A;

A; =[2]5]8]12[17|19|2528 Al =i 2 5%8 12]14]17[1819|25[25/28
A =|3]4]6|11/13[18]25|33 A, = 3 ?ﬁg 13|14/17(18]22|25/33
Az =[1]3[7]9]17]19]22|32 AL = 1/3]7]8]9]1214]16[17]|19]22|32

A, =|8[11(12|13|14[15(16|17 Ay = ’_8/11121314151617

AKIT

Fractional Cascading — Running Time

Cost For The Search

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

l: O log (| A
= O(1) for every subsequent array — O(¥) }tota (£ + log(|A1]))

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

|: | A
= O(1) for every subsequent array — O(¥) }tota O(¢ + log(|A1]))

How Large is A;? (assumption: |A;| = n for all i)

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

|: | A
= O(1) for every subsequent array — O(¥) }tota O(¢ + log(|A1]))

How Large is A;? (assumption: |A;| = n for all i)
= A, | =(5+1)n

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

|: | A
= O(1) for every subsequent array — O(¥) }tota O(¢ + log(|A1]))

How Large is A;? (assumption: |A;| = n for all i)
= A, | =(5+1)n
= A, Ll =(5+35+1)n

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

|: | A
= O(1) for every subsequent array — O(¥) }tota O(¢ + log(|A1]))

How Large is A;? (assumption: |A;| = n for all i)
= A, | =(5+1)n

" Aol = (G 2+ D

VAR o

AKIT

Fractional Cascading — Running Time

Cost For The Search

= one search in A} — O(log(|A%]))
= O(1) for every subsequent array — O(¥)

How Large is A;?

A;Z—l :(
A2—2 :(
A2—3 :(
All <2n

(assumption: |A;| = nfor all /)

= search takes O(£ + log n) time

} total: O(£ + log(]A%]))

AKIT

Fractional Cascading — Running Time

Cost For The Search
= one search in A} — O(log(|A}]))

|: | A
= O(1) for every subsequent array — O(¥) }tota O(¢ + log(|A1]))

How Large is A;? (assumption: |A;| = n for all i)
= Ay | = (5 +1)n

= A L= (g +3z+1)n

Ao = (334340

= Al <2n = search takes O({ + log n) time

Memory Consumption
= only a constant factor overhead

= also true if not all arrays have the same size

AKIT

Fractional Cascading — Running Time

Cost For The Search

= one search in A} — O(log(|A%]))
= O(1) for every subsequent array — O(¥)

} total: O(£ + log(]A%]))

How Large is A;? (assumption: |A;| = n for all i)

A;z 1 :(%+1)”
Ay_s :(%4'%"‘1)”
A sl=(G+3+35+1)n

= Al <2n = search takes O({ + log n) time
Memory Consumption Precomputation Time
= only a constant factor overhead = |inear in the input

= also true if not all arrays have the same size

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E) S — 617117122
= sorted array A, for every vertex v

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)

17|22

= sorted array A, for every vertex v
= an interval I for every edge e

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)

17|22

= sorted array A, for every vertex v
= an interval I for every edge e
= for every number xand v € V: [{uv € E | xe€ I, }| € O(1)

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)

17|22

= sorted array A, for every vertex v
= an interval I for every edge e
= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)

17|22

= sorted array A, for every vertex v
= an interval I for every edge e
= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob
® precomputes a data structure

B \
'y

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)

17|22

= sorted array A, for every vertex v
= an interval I for every edge e
= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob
® precomputes a data structure

g \

m asks where x liesin A,

m choose anumberxand u €V

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
= sorted array A, for every vertex v

= an interval I for every edge e
= for every number xand v € V: [{uv € E | x e I,,}| € O(1)

A Game Between Alice And Bob

® precomputes a data structure ® choose a number x and v € V

m asks where x liesin A,
= answers the question

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
m sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob

® precomputes a data structure ® choose a number x and v € V

m asks where x liesin A,
= answers the question
m choose edge uv withx € I,

m asks where x liesin A,

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
m sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob

® precomputes a data structure ® choose a number x and v € V

m asks where x liesin A,
= answers the question
m choose edge uv withx € I,

m asks where x liesin A,

= answers the question

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
m sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

A Game Between Alice And Bob
- ® precomputes a data structure

L ® choose a number x and u € V
=
e

m asks where x liesin A,

= answers the question
m choose edge uv withx € I,

m asks where x liesin A,

= answers the question

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
= sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

How is this a generalization?
A Game Between Alice And Bob

m choose anumberxand u €V
m asks where x liesin A,

3, 29]]

® precomputes a data structure

= answers the question

) A = choose edge uv with x € I,
m answers the question iterate . ® asks where x liesin A,

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
= sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

How is this a generalization?
A Game Between Alice And Bob

® precomputes a data structure ® choose a number x and v € V
m asks where x liesin A,

3, 29]]

= answers the question

A ® choose edge uvwithx € 1,,,
iterate . ® asks where x lies in A,

= answers the question

Similar Guarantee To The Path Setting (without proof) (s = GesamtgroBe der Arrays)
= precomputation: O(s) time and O(s) space = query: O(log s) for the first, then O(1)

AKIT

Back To The Range Queries

AKIT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:
direction:

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the -—> O(-) direction:

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
= walk down in O (g Watrees — O (R 168

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the -—> O(-) direction:

« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)

X X [33, b3]
V4

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

X X [33, b3]
Z

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

Idea: Do The z-Search Even Earlier
= search z-array in root of X¥ifé€ — O(log n)

X X [33, b3]
Z

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

Idea: Do The z-Search Even Earlier
= search z-array in root of X¥ifé€ — O(log n)

= walk down the [X5if€€ — O(I6gH) time

X X [33, b3]
Z

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

Idea: Do The z-Search Even Earlier
= search z-array in root of X¥ifé€ — O(log n)

= walk down the [X5if€€ — O(I6gH) time
= walk down in OIS Atrees — O (ER o)

6 Thomas Blasius — Computational Geometry ﬂ(IT

X X [33, b3]
Z

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

X X [33, b3]
Z

Idea: Do The z-Search Even Earlier Observation
= search z-array in root of X¥ifé€ — O(log n) = getting rid of log n seems easy
= walk down the [X5if€€ — O(I6gH) time = getting rid of log n seems hard

= walk down in O(ISEH) WAiFees — O (BERIGEH)

6 Thomas Blasius — Computational Geometry ﬂ(IT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

X X [33, b3]
Z

Idea: Do The z-Search Even Earlier Observation
= search z-array in root of X¥ifé€ — O(log n) = getting rid of log n seems easy
= walk down the [X5if€€ — O(I6gH) time = getting rid of log n seems hard

= walk down in O(I6gH) y-trees — O(I6gHilog n) = goal: 2D DS with query time O(log n)

6 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries | aoal 20 05 it avery ime Ofios)

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries | aoal 20 05 it avery ime Ofios)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

b3

as

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4 V4

Alternative Perspective o114 l
bs = shoot a ray from each point upwards Y
23 = ray from (b,, b3) to the left . x
o

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

Alternative Perspective 114 l
bs = shoot a ray from each point upwards Y
23 = ray from (b,, b3) to the left

® ntersecting rays yield desired points

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar b2

Find All Intersecting Rays l l 1
= collect the intersecting rays from left to right l 1
— X

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar bs Yy
Find All Intersecting Rays _l_ | 1
= collect the intersecting rays from left to right l
— X
[
e
L

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar b2

Find All Intersecting Rays _l_ | 1
= collect the intersecting rays from left to right l
— > X

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar bs Yy
Find All Intersecting Rays _l_ l 1
= collect the intersecting rays from left to right l 1
> X
[
e
L

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar bs Yy
Find All Intersecting Rays _l_]| 1
= collect the intersecting rays from left to right l 1
> X
®
e
®

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar b2

Find All Intersecting Rays _l_ 1
= collect the intersecting rays from left to right l 1

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])
Alternative Perspective ZL ¢ I l l J
y

bs = shoot a ray from each point upwards

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

as

ar b2

Find All Intersecting Rays _l_ 1
= collect the intersecting rays from left to right 1
p’x

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

ar b2

Find All Intersecting Rays _l_]| 1
= collect the intersecting rays from left to right _L 1

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

da» b2

Find All Intersecting Rays -l_ 1
= collect the intersecting rays from left to right _Lﬂ

= we basically walk from cell to cell

7 Thomas Blasius — Computational Geometry ﬁ(IT

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

V4

bs = shoot a ray from each point upwards Y

= ray from (b,, b3) to the left
® ntersecting rays yield desired points

Alternative Perspective 114 l lJ

as

a by y
Find All Intersecting Rays -l_ 1
= collect the intersecting rays from left to right _Lﬂ
= we basically walk from cell to cell |
= each cells knows its right neighbors sorted by z = O(k log n) — o |
®

7 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries goal: 2D DS with query time O(log n)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])
ZA
Alternative Perspective 114 I l l J

N

= shoot a ray from each point upwards y
= ray from (b,, b3) to the left
® ntersecting rays yield desired points

b3

as3—

K y
Find All Intersecting Rays -l_ 1
m collect the intersecting rays from left to right _L
. Can we do logn + k?
= we basically walk from cell to cell |
= each cells knows its right neighbors sorted by z = O(k log n) —— |
®

AKIT

One-Sided 2D Range Queries goal: 2D DS with query time O(log n)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])
ZA
Alternative Perspective 114 I l l J

N

= shoot a ray from each point upwards y
= ray from (b,, b3) to the left
® ntersecting rays yield desired points

b3

as3—

K y
Find All Intersecting Rays -l_ 1
m collect the intersecting rays from left to right _L
. Can we do logn + k?
= we basically walk from cell to cell |
= each cells knows its right neighbors sorted by z = O(k log n) o |
Fractional Cascading! °

AKIT

One-Sided 2D Range Queries goal: 2D DS with query time O(log n)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

ZA

) Alternative Perspective 114 l
ba = shoot a ray from each point upwards y l J
a5 = ray from (b,, b3) to the left

S g ® ntersecting rays yield desired points
Find All Intersecting Rays | ‘
m collect the intersecting rays from left to right

. Can we do logn + k? —e
= we basically walk from cell to cell |
= each cells knows its right neighbors sorted by z = O(k log n) —*
Fractional Cascading! e

One-Sided 2D Range Queries goal: 2D DS with query time O(log n)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

ZA

) Alternative Perspective 114 l
bs = shoot a ray from each point upwards y l J
a3 = ray from (b,, b3) to the left

S g ® ntersecting rays yield desired points
Find All Intersecting Rays
m collect the intersecting rays from left to right I.ljﬁ_

. Can we do logn + k?
= we basically walk from cell to cell
= each cells knows its right neighbors sorted by z = O(k log n) [o
Fractional Cascading! °

Count The Cells

How many cells do we get (with and without fractional cascading)?

0O
me
> @
N0

oo

AKIT

Count The Cells

How many cells d ' ?
o we get (with and without fractional cascading)
g "

me
> @

e
P

0o

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

0o

e

me

A~ 00O N | O

> @

10

P

11

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

1 9 10| 11
——————y——
6
@
7 A
- ——————" N
8
@
R 4
@
B 2

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

10

11

ok

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

1 3 9 10 | 11
| |ee———
6
12 14 O
7 A
- ——————" N
15 8
| f——
13 4
@
B 2

AKIT

General Framework vs. Specific Situation

Useful Way Of Thinking
= mental shortcut: multiple searches for the same number — fractional cascading probably helps
m gpecific situation: problem-specific argument often easier than pressing it into the framework

AKIT

General Framework vs. Specific Situation

Useful Way Of Thinking

= mental shortcut: multiple searches for the same number — fractional cascading probably helps
m gpecific situation: problem-specific argument often easier than pressing it into the framework

1 3

5

9

10

11

N~ 00 N O

3

5

9 10| 11

12| 14 o
/
_——————
15 8
| f—
13 £
2

AKIT

General Framework vs. Specific Situation

Useful Way Of Thinking
= mental shortcut: multiple searches for the same number — fractional cascading probably helps
m gpecific situation: problem-specific argument often easier than pressing it into the framework

D)o@ o) —~(8) 001 0o Wo o uN
N

15

-

® EE@OE
® @

AKIT

One-Sided 3D Range Queries

one search in z direction

Seen So Far: queries (—o9, ba| x (—o0, bs] can be answered in O(log n + k) (DS1)
output size

AKIT

One-Sided 3D Range Queries

one search in z direction

Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size
New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ...

AKIT

One-Sided 3D Range Queries

one search in z direction

Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ...

= binary search tree for XSdlifection

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ...

= binary search tree for XSdlifection

m every node stores (DS1) for the corresponding points

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture

= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points
(DS1)

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size
New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture

= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture
= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?
= yes, but ...

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture
= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?
m yes, but... Fractional Cascading!

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture
= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?
m yes, but... Fractional Cascading!

= search once in z-direction in the root of the K&ifee
= follow pointers for the z-positions while walking down the X&ifee

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture
= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?
m yes, but... Fractional Cascading!

= search once in z-direction in the root of the K&ifee
= follow pointers for the z-positions while walking down the X&ifee
= save the first search in (DS1) = total running time O(log n + k)

AKIT

One-Sided — Two-Sided

11 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided — Two-Sided

Plan
= use (DS2) as black box

11 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided — Two-Sided

Plan
= use (DS2) as black box

= y-inverted variant — [a,, 00) queries
= query [a2, 00) and (—oo, bo| to get [az, bo]

11 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided — Two-Sided

Lemma (DS2)
For n points in R3, we can answer queries of the form [a;, b;] x (—o0, by] x (—o0, bs] in
O(log n + k) time after O(nlog n) preprocessing with O(nlog n) memory.

Plan Why can’t we just use the intersection of two queries?
= use (DS2) as black box a1, b1] X [0, bo] X (a3, bs] =

= y-inverted variant — [a, co) queries [a1, 1] X (=00, b2] X (—o00,B3] N
= query [a;, 00) and (—oo, by] to get [az, by] [a1,b1] % [a2,00) X [a3 00)

AKIT

One-Sided — Two-Sided

Lemma (DS2)
For n points in R3, we can answer queries of the form [a;, b;] x (—o0, by] x (—o0, bs] in
O(log n + k) time after O(nlog n) preprocessing with O(nlog n) memory.

Plan Why can’t we just use the intersection of two queries?

= use (DS2) as black box a1, b1] X [0, bo] X (a3, bs] =

= y-inverted variant — [a, co) queries [a1, 1] X (=00, b2] X (—o0o,b3] N
= query [a;, 00) and (—oo, by] to get [az, by] [a1,b1] % [a2,00) X [a3 00)

Lemma (DS3)
For n point in R3, we can answer queries of the form [a;, b;] x [a, bs] X (—o0, b3] in O(log n+ k)

time after O(nlog” n) preprocessing with O(nlog® n) memory.

AT

One-Sided — Two-Sided

Lemma (DS2)
For n points in R3, we can answer queries of the form [a;, b;] x (—o0, by] x (—o0, bs] in
O(log n + k) time after O(nlog n) preprocessing with O(nlog n) memory.

Plan Why can’t we just use the intersection of two queries?
= use (DS2) as black box a1, b1] X [0, bo] X (a3, bs] =

= y-inverted variant — [a, co) queries [a1, 1] X (=00, b2] X (—o0o,b3] N

= query [a;, 00) and (—oo, by] to get [az, by] [a1,b1] % [a2,00) X [a3 00)

Theorem (DS4)
For n point in R3, we can answer queries of the form [ay, b;] x [a2, bo] X [a3, bs] in O(log n+ k)
time after O(nlog> n) preprocessing with O(nlog> n) memory.

AT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction
m search for a, and b, splits at v to vy, and v,

Ve

a»

b>

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction
m search for a, and b, splits at v to vy, and v,

= queries in instances of (DS2): [a,, 0c0) on points in T, and (—oo, by] on points in T,

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction

m search for a, and b, splits at v to vy, and v,
= queries in instances of (DS2): [a,, 0c0) on points in T, and (—oo, by] on points in T,

= running time: O(log n) for search in y-tree plus O(log n + k) for two queries in (DS2)

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction
m search for a, and b, splits at v to vy, and v,

= queries in instances of (DS2): [a,, 0c0) on points in T, and (—oo, by] on points in T,
= running time: O(log n) for search in y-tree plus O(log n + k) for two queries in (DS2)
= memory: O(log n) - (memory for DS2)

AKIT

Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction
= (DS2) allows [a;, 00) and (—oo0, by] queries
= goal: build data structure, that allows [ay, bo| queries

Binary Search Tree In y-Direction
m search for a, and b, splits at v to vy, and v,

= queries in instances of (DS2): [a,, 0c0) on points in T, and (—oo, by] on points in T,
= running time: O(log n) for search in y-tree plus O(log n + k) for two queries in (DS2)
= memory: O(log n) - (memory for DS2)

Lemma (DS3)
For n point in R3, we can answer queries of the form [a;, by] x [a2, bo] X (—0o0, b3] in O(log n+ k)
time after O(nlog® n) preprocessing with O(nlog® n) memory.

AKIT

Two-Sided Query In)i-Direction

Simplified Perspective: Ignore x And ‘%Direction
O (DSR?aIIows [ay> 00) and (—oo, b§’] queries
= goal: build data structure, that allows [ax, bﬁ] queries

Binary Search Tree In 3Z(-Direction
m search for ag’and bg’splits at v to v, and v,

= gueries in instances of (DS'R?: [ag, 00) on points in T; and (—oo, bg] on points in T,

3
= running time: O(log n) for search in X-tree plus O(log n + k) for two queries in (DS2)

= memory: O(log n) - (memory for DSR)?

Lemima Theorem (DS&)
For n point in R, we can answer queries of the form [a1, b1 x [a2, bo] X (760 bs] in O(log n+k)

time after O(n log® n) preprocessing with O(n log 3n) memory.

AKIT

The Big Picture

(DS4)

-X [az, bz] X [33, b3]

precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]
precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

B search for a3, bz in z-tree
B split — two (DS3) queries

z-free

a3 bs

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]
precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

B search for a3, bz in z-tree
B split — two (DS3) queries

(DS3)

->< [a2, bo] x (—o0, bs]

precomp: O(nlog? n)
memory: O(nlog? n)
query: O(log n + k)

z-free

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]

precomp: O(nlog> n) y-tree

memory: O(nlog? n)

query: O(log n + k)

W search for a3, b3z in z-tree p 5,
B split — two (DS3) queries (DS3)

->< [a2, bo] x (—o0, bs]
precomp: O(nlog? n)
memory: O(nlog? n)

query: O(log n + k)

B search forlag, b2 In y-itree
pin B B splits — two (DS2) queries

z-free

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]
precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

B search for a3, bz in z-tree
B split — two (DS3) queries

z-free

y-tree

al2 52
(DS3)
->< [a2, bo] x (—o0, bs]
precomp: O(nlog? n)
memory: O(nlog? n)
query: O(log n + k)
B search forlag, b2 In y-itree
B splits — two (DS2) queries

(DS2)

->< (—o00, by] x (—o0, bs3]
precomp: O(nlog n)
memory: O(nlog n)
query: O(log n + k)

AKIT

The Big Picture

b os2
X [32, bz] X [a3, b3]
-1

precomp: O(nlog> n) y-iee [a1, b] (_go bf] x (=00, bs]
memory: O(nlog® n) ::::::Typ'.O((nnloogni;)
query: O(log n + k) query: O.(Iog . f K
L h f in z-)

sea.trc okl tr.ee az by B search for z in the root
B split — two (DS3) queries (DS3) el

[, B1] x [0, bo] % (g°°' bs] ® follow z-pointers
S-tree precomp: O(nlog” n)

® each x-subtree: (DS1) query
memory: O(nlog? n) (with initial z-pos)

query: O(log n + k)

B search forlag, b2 In y-itree
| i ;

a3 ba splits — two (DS2) queries

AKIT

The Big Picture

(DS4)
-X [az, bz] X [33, b3] tree (DSZ)
precomp: O(nlog? n) Y m*;;—an%igs;m bs]
memory: O(nlog? n) memory'.O(n 08 1)
query: O(log n + k) query: O.(Iog n -+ k)
u . - T T :
sea.arch for tr.ee a by ® search for z in the root
B split — two (DS3) queries (DS3) m walk down-
a1, Bi] <[22, b] (;°°' bs] m follow z-pointers (DS1)
Z-tree precomp: O(nlog” n) B each x-subtree: (DS1) query | (=00, b2] x (=00, b3]
memory: O(nlog? n) (with initial z-pos) query: O(k)
query: O(Iog n -+ k) precomp: O(n) (if points are sorted)
® search forlag, bs in y-tree memory: O(n)
1 1 . i i
pin B splits — two (DS2) queries

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]
precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

B search for a3, bz in z-tree
B split — two (DS3) queries

z-free

y-tree

al2 52
(DS3)
->< [a2, bo] x (—o0, bs]
precomp: O(nlog? n)
memory: O(nlog? n)
query: O(log n + k)
B search forlag, b2 In y-itree
B splits — two (DS2) queries

(DS2)

->< (—o00, by] x (—o0, bs3]
precomp: O(nlog n)
memory: O(nlog n)
query: O(log n + k)

B search for z in the root

® walk down -

B follow z-pointers

® each x-subtree: (DS1) query

(with initial z-pos)

FITH

@
! @
(DS1)
(=00, b2 x (—o0, b3]
query: O(k)

precomp: O(n) it points are sorted)
memory: O(n)

® initial z-position known

® walk in y-direction

B decide for cell by z-query
B output intersected rays

AKIT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

AKIT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers
= clever geometric solution for simplified queries (—oo, by] x (—o0, bs]

AKIT

Wrap-Up

What Have We Learned Today?

m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

AKIT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

14 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

What else is there?
= many applications of fractional cascading

14 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

What else is there?
= many applications of fractional cascading

= dynamic range queries: inserting and deleting points

14 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

What else is there?
= many applications of fractional cascading

= dynamic range queries: inserting and deleting points
= O(log n- (log n/loglog n)?=3 + k) queries with O(n - (log n/ log log n)?~3) memory

14 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

What else is there?
= many applications of fractional cascading

= dynamic range queries: inserting and deleting points
= O(log n- (log n/loglog n)?=3 + k) queries with O(n - (log n/ log log n)?~3) memory
m even better results with some bit-hacking in the word RAM model

14 Thomas Blasius — Computational Geometry ﬂ(IT

