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Ai ⊇ Ai+1 ⇒ position in Ai determines position in Ai+1
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sorted array Av for every vertex v
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2 17 25
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[3; 29]

[0; 15]
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[·; ·]

[·; ·]
[·; ·]
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[·; ·]

A Game Between Alice And Bob
precomputes a data structure choose a number x and u ∈ V

asks where x lies in Au
answers the question

choose edge uv with x ∈ Iuv

asks where x lies in Avanswers the question iterate

(s = Gesamtgröße der Arrays)Similar Guarantee To The Path Setting (without proof)
precomputation: O(s) time and O(s) space query: O(log s) for the first, then O(1)

How is this a generalization?
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