

Computational Geometry Orthogonal Range Queries: Fractional Cascading

Thomas Bläsius

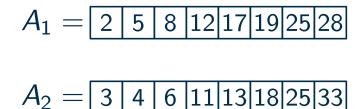
Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$

 $A_{1} = \begin{bmatrix} 2 & 5 & 8 & 12 & 17 & 19 & 25 & 28 \end{bmatrix}$ $A_{2} = \begin{bmatrix} 3 & 4 & 6 & 11 & 13 & 18 & 25 & 33 \end{bmatrix}$ $A_{3} = \begin{bmatrix} 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \end{bmatrix}$

Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$



- $A_3 = \begin{bmatrix} 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \end{bmatrix}$

Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$
- Is $\ell + \log n$ Possible In General?

 $A_1 = 2 5 8 12 17 19 25 28$

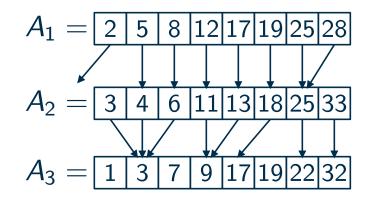
 $A_2 = 3 | 4 | 6 | 11 | 13 | 18 | 25 | 33$

 $A_3 = \begin{bmatrix} 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \end{bmatrix}$

Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

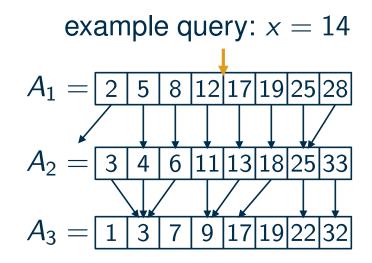
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

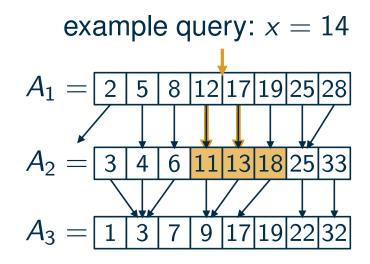
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

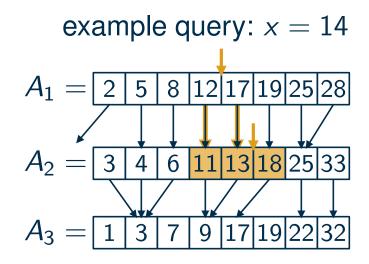
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

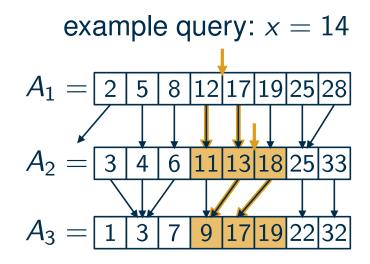
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

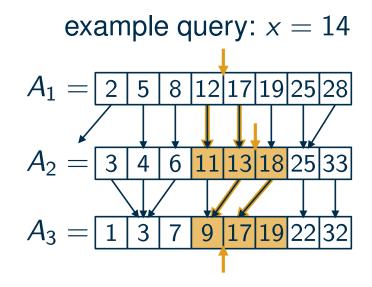
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

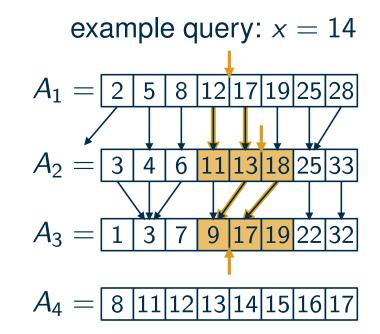
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

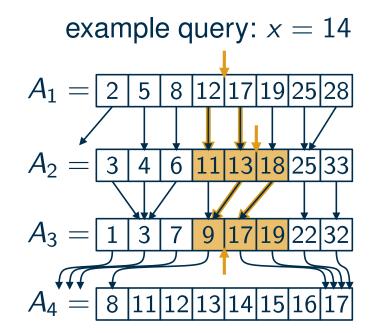
Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

Is $\ell + \log n$ Possible In General?



Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

Is $\ell + \log n$ Possible In General?

- hope: search x in A_1 , find x in A_2 , ..., A_ℓ via pointers
- problem: position of x in A_i may not help to find position in A_{i+1}

example query: x = 14 $A_1 = 2581217192528$ $A_2 = 3461113182533$ $A_3 = 137917192232$ $A_4 = 811121314151617$

Situation

- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

Is $\ell + \log n$ Possible In General?

- hope: search x in A_1 , find x in A_2 , ..., A_ℓ via pointers
- problem: position of x in A_i may not help to find position in A_{i+1}

Observation

• $A_i \supseteq A_{i+1} \Rightarrow$ position in A_i determines position in A_{i+1}

example query: x = 14 $A_1 = 2581217192528$ $A_2 = 3461113182533$ $A_3 = 137917192232$ $A_4 = 811121314151617$

Situation

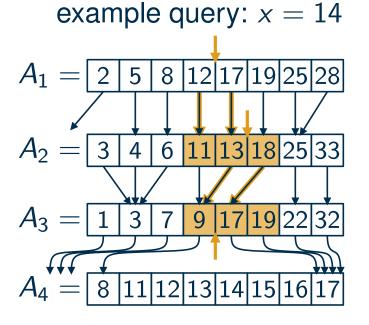
- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

Is $\ell + \log n$ Possible In General?

- hope: search x in A_1 , find x in A_2 , ..., A_ℓ via pointers
- problem: position of x in A_i may not help to find position in A_{i+1}

Observation

- $A_i \supseteq A_{i+1} \Rightarrow$ position in A_i determines position in A_{i+1}
- A_i contains many elements from $A_{i+1} \Rightarrow$ position in A_i roughly determines position in A_{i+1}



Situation

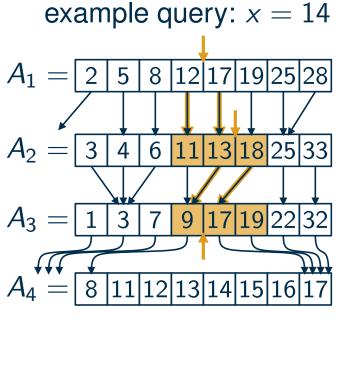
- consider ℓ sorted arrays A_1, \ldots, A_ℓ with $\leq n$ elements each
- find the position of x in all arrays
- obvious solution: $O(\ell \log n)$
- last lecture: $O(\ell + \log n)$ if $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_\ell$

Is $\ell + \log n$ Possible In General?

- hope: search x in A_1 , find x in A_2 , ..., A_ℓ via pointers
- problem: position of x in A_i may not help to find position in A_{i+1}

Observation

- $A_i \supseteq A_{i+1} \Rightarrow$ position in A_i determines position in A_{i+1}
- A_i contains many elements from $A_{i+1} \Rightarrow$ position in A_i roughly determines position in A_{i+1}
- idea: insert some elements from A_{i+1} into A_i



Shared Elements
 new array A'₃: insert every other element from A₄ into A₃

$$A_{3} = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32} \qquad A'_{3} = \boxed{1 \ 3 \ 7 \ 8 \ 9 \ 12 \ 14 \ 16 \ 17 \ 19 \ 22 \ 32}$$
$$A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17} \qquad A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}$$

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies

$$A_{3} = \begin{bmatrix} 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \end{bmatrix} \qquad A'_{3} = \begin{bmatrix} 1 & 3 & 7 & 8 & 9 & 12 & 14 & 16 & 17 & 19 & 22 & 32 \\ A_{4} = \begin{bmatrix} 8 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} 8 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \end{bmatrix}$$

Shared Elements

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies

How?

• pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)

$$A_{3} = \boxed{1\ 3\ 7\ 9\ 17\ 19\ 22\ 32}} \qquad A_{3}' = \underbrace{1\ 3\ 7\ 8\ 9\ 12\ 14\ 16\ 17\ 19\ 22\ 32}}_{A_{4}} = \boxed{8\ 11\ 12\ 13\ 14\ 15\ 16\ 17}} \qquad A_{4} = \underbrace{8\ 11\ 12\ 13\ 14\ 15\ 16\ 17}}_{B\ 11\ 12\ 13\ 14\ 15\ 16\ 17}$$

Shared Elements

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies

How?

- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- **pointers** from elements in A_4 to prev / next in $A'_3 \setminus A_4$

Why do we need that?

$$A_{3} = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32}} \qquad A_{3}' = \underbrace{1 \ 3 \ 7 \ 8 \ 9 \ 12 \ 14 \ 16 \ 17 \ 19 \ 22 \ 32}}_{A_{4}} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}} \qquad A_{4} = \underbrace{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}}_{B \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}$$

Shared Elements

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies

How?

- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- pointers from elements in A_4 to prev / next in $A'_3 \setminus A_4 \Rightarrow$ position in A'_3 gives position in A_3

Why do we need that?

$$A_{3} = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32}} \qquad A_{3}' = \boxed{1 \ 3 \ 7 \ 8 \ 9 \ 12 \ 14 \ 16 \ 17 \ 19 \ 22 \ 32}} \\ A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}} \qquad A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}}$$

Shared Elements

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies

How?

- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- pointers from elements in A_4 to prev / next in $A'_3 \setminus A_4 \Rightarrow$ position in A'_3 gives position in A_3
- cascade the process for all previous A_i

Why do we need that?

$$A_{3} = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32} \qquad A_{3}' = \underbrace{1 \ 3 \ 7 \ 8 \ 9 \ 12 \ 14 \ 16 \ 17 \ 19 \ 22 \ 32}_{A_{4}} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17} \qquad A_{4} = \underbrace{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}_{B}$$

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies
- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- pointers from elements in A_4 to prev / next in $A'_3 \setminus A_4 \Rightarrow$ position in A'_3 gives position in A_3
- cascade the process for all previous A_i

$$A_1 = 2 5 8 12 17 19 25 28$$

$$A_{2} = \boxed{3 \ 4 \ 6 \ 11 \ 13 \ 18 \ 25 \ 33}} \qquad A_{2}' = \\A_{3} = \boxed{1 \ 3 \ 7 \ 9 \ 17 \ 19 \ 22 \ 32}} \qquad A_{3}' = \boxed{1 \ 3 \ 7 \ 8 \ 9 \ 12 \ 14 \ 16 \ 17 \ 19 \ 22 \ 32}} \\A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}} \qquad A_{4} = \boxed{8 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}}$$

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies
- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- pointers from elements in A_4 to prev / next in $A'_3 \setminus A_4 \Rightarrow$ position in A'_3 gives position in A_3
- cascade the process for all previous A_i

$$A_1 = 2 5 8 12 17 19 25 28$$

$$A_2 = 3 4 6 11 13 18 25 33$$
 $A'_2 =$
 $A_3 = 1 3 7 9 17 19 22 32$
 $A'_3 =$

$$A_4 = 8 11 12 13 14 15 16 17$$

$$A'_{2} = 1 3 4 6 7 9 11 13 14 17 18 22 25 33$$

$$A'_{3} = 1 3 7 8 9 12 14 16 17 19 22 32$$

$$A_{4} = 8 11 12 13 14 15 16 17$$

- new array A'_3 : insert every other element from A_4 into A_3
- store pointers to copies
- pointers from $A'_3 \setminus A_4$ to prev / next element from $A_4 \Rightarrow$ position in A'_3 gives position in A_4 (±1)
- pointers from elements in A_4 to prev / next in $A'_3 \setminus A_4 \Rightarrow$ position in A'_3 gives position in A_3
- cascade the process for all previous A_i

$$A_1 = \begin{bmatrix} 2 & 5 & 8 & 12 & 17 & 19 & 25 & 28 \\ 2 & 5 & 8 & 12 & 17 & 19 & 25 & 28 \\ A_2 = \begin{bmatrix} 3 & 4 & 6 & 11 & 13 & 18 & 25 & 33 \\ 3 & 4 & 6 & 11 & 13 & 18 & 25 & 33 \\ A_3 = \begin{bmatrix} 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \\ 1 & 3 & 7 & 9 & 17 & 19 & 22 & 32 \\ A_4 = \begin{bmatrix} 8 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 8 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 8 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \end{array}$$

Cost For The Search

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

• $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

- $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$
- $|A'_{\ell-2}| = (\frac{1}{4} + \frac{1}{2} + 1)n$

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

- $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$
- $|A'_{\ell-2}| = (\frac{1}{4} + \frac{1}{2} + 1)n$
- $|A'_{\ell-3}| = (\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1)n$

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

• $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$

• $|A'_1| \le 2n$

- $|A'_{\ell-2}| = (\frac{1}{4} + \frac{1}{2} + 1)n$
- $|A'_{\ell-3}| = (\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1)n$

 \Rightarrow search takes $O(\ell + \log n)$ time

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

• $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$

• $|A'_1| \le 2n$

- $|A'_{\ell-2}| = (\frac{1}{4} + \frac{1}{2} + 1)n$
- $|A'_{\ell-3}| = (\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1)n$

 \Rightarrow search takes $O(\ell + \log n)$ time

Memory Consumption

- only a constant factor overhead
- also true if not all arrays have the same size

Cost For The Search

- one search in A'_1 → O(log(|A'_1|))
 O(1) for every subsequent array → O(l)
 total: O(l + log(|A'_1|))

How Large is A'_1 ?

(assumption: $|A_i| = n$ for all *i*)

• $|A'_{\ell-1}| = (\frac{1}{2} + 1)n$

• $|A'_1| \le 2n$

- $|A'_{\ell-2}| = (\frac{1}{4} + \frac{1}{2} + 1)n$
- $|A'_{\ell-3}| = (\frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1)n$

 \Rightarrow search takes $O(\ell + \log n)$ time

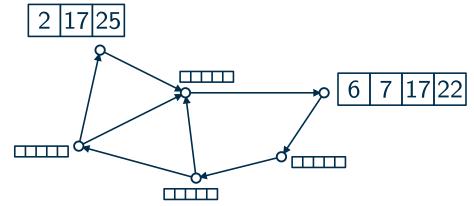
Memory Consumption

- only a constant factor overhead
- also true if not all arrays have the same size

Precomputation Time

linear in the input

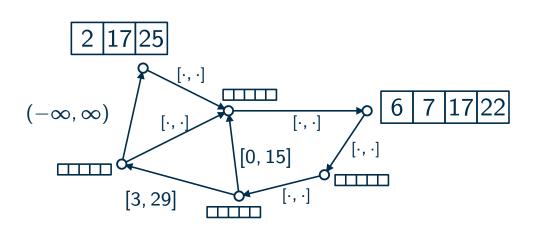
General Fractional Cascading Now With A Directed Graph G = (V, E)• sorted array A_v for every vertex v



General Fractional Cascading

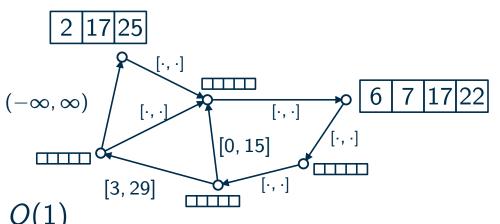
Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e



Now With A Directed Graph G = (V, E)

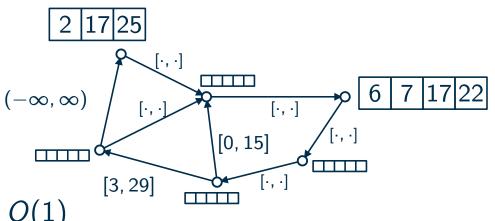
- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$



Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

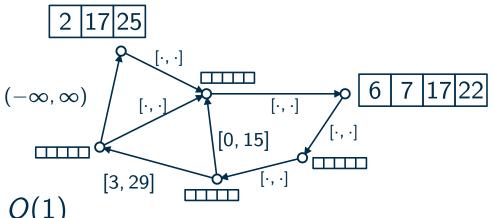


Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure



Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

• choose a number x and $u \in V$

[0, 15]

 $\left[\cdot, \cdot\right]$

0

■ asks where *x* lies in *A*_{*u*}

2 |17|25

[3, 29]

 $(-\infty,\infty)$

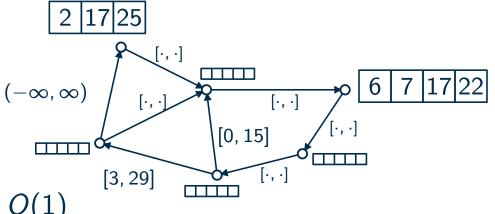
Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

answers the question



- choose a number x and $u \in V$
- asks where x lies in A_u

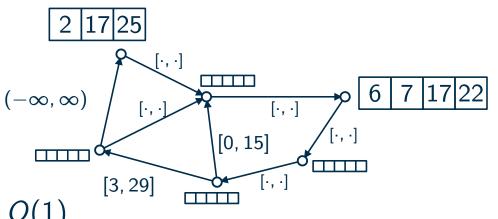
Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

answers the question



- choose a number x and $u \in V$
- asks where x lies in A_u
- choose edge uv with $x \in I_{uv}$
- asks where x lies in A_v

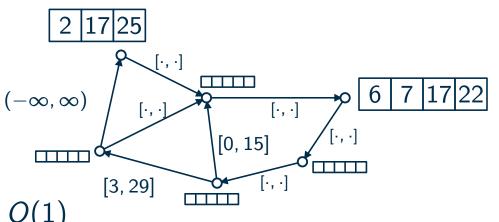
Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

- answers the question
- answers the question



- choose a number x and $u \in V$
- asks where x lies in A_u
- choose edge uv with $x \in I_{uv}$
- asks where x lies in A_v

Now With A Directed Graph G = (V, E)

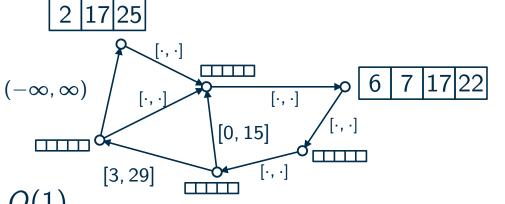
- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

- answers the question
- answers the question

- choose a number x and $u \in V$
- asks where x lies in A_u
- choose edge uv with $x \in I_{uv}$
- asks where x lies in A_v



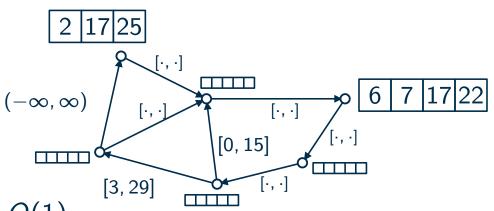
Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

precomputes a data structure

- answers the question
- answers the question



How is this a generalization?

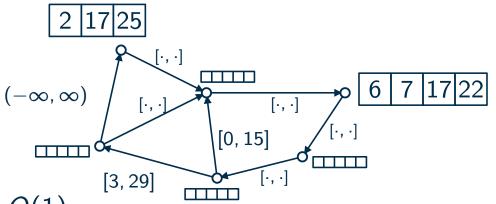
- choose a number x and $u \in V$
- asks where x lies in A_u
- choose edge uv with $x \in I_{uv}$
- asks where x lies in A_v

Now With A Directed Graph G = (V, E)

- sorted array A_v for every vertex v
- an interval I_e for every edge e
- for every number x and $u \in V$: $|\{uv \in E \mid x \in I_{uv}\}| \in O(1)$

A Game Between Alice And Bob

- precomputes a data structure
- answers the question
- answers the question

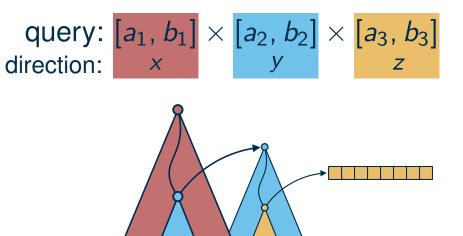


How is this a generalization?

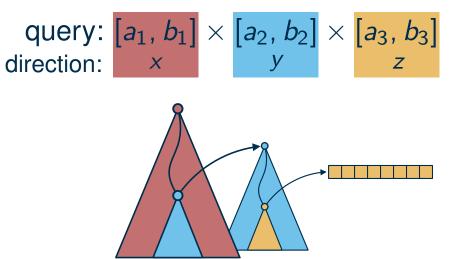
- choose a number x and $u \in V$
- asks where x lies in A_u
- choose edge uv with $x \in I_{uv}$
- asks where x lies in A_v

Similar Guarantee To The Path Setting (without proof) (s = Gesamtgröße der Arrays)precomputation: O(s) time and O(s) space query: $O(\log s)$ for the first, then O(1)

Query In 3D Range Tree (Simple Variant)



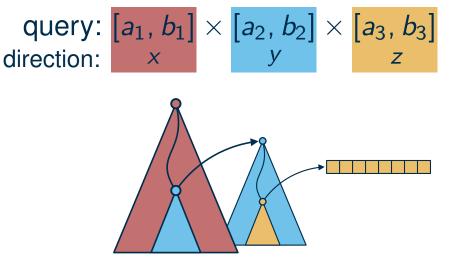
Query In 3D Range Tree (Simple Variant) walk down the x-tree $\rightarrow O(\log n)$



Query In 3D Range Tree (Simple Variant)

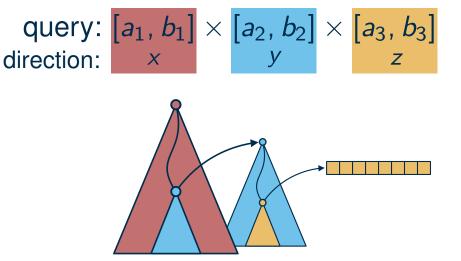
• walk down the x-tree $\rightarrow O(\log n)$

• walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$



Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

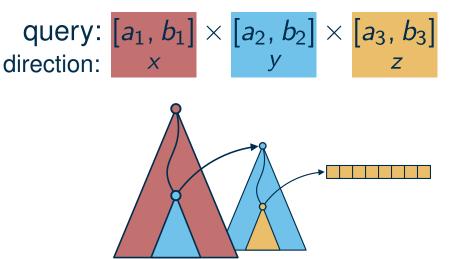


Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

Last Lecture: Do z-Search Earlier

• walk down the x-tree $\rightarrow O(\log n)$ time

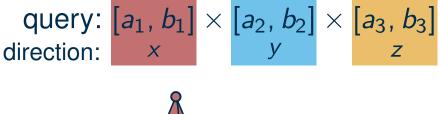


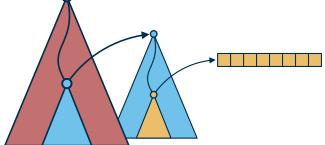
Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$



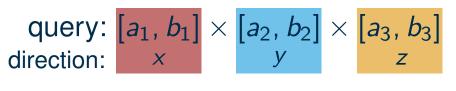


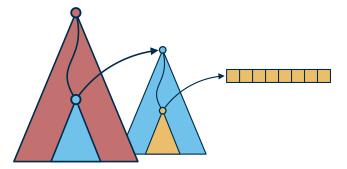
Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$





Query In 3D Range Tree (Simple Variant)

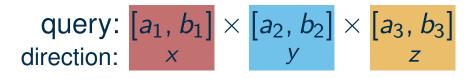
- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

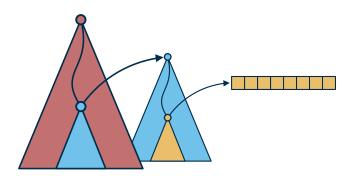
Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$

Idea: Do The z-Search Even Earlier

• search *z*-array in root of *x*-tree $\rightarrow O(\log n)$





Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

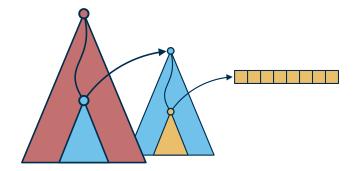
Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$

Idea: Do The z-Search Even Earlier

- search *z*-array in root of *x*-tree $\rightarrow O(\log n)$
- walk down the x-tree $\rightarrow O(\log n)$ time

query: $\begin{bmatrix} a_1, b_1 \end{bmatrix} \times \begin{bmatrix} a_2, b_2 \end{bmatrix} \times \begin{bmatrix} a_3, b_3 \end{bmatrix}$ direction:xyz



Query In 3D Range Tree (Simple Variant)

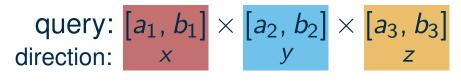
- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

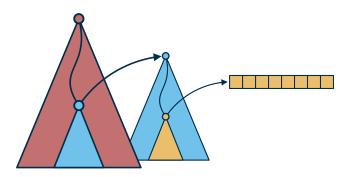
Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$

Idea: Do The z-Search Even Earlier

- search *z*-array in root of *x*-tree $\rightarrow O(\log n)$
- walk down the x-tree $\rightarrow O(\log n)$ time
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$





6

Query In 3D Range Tree (Simple Variant)

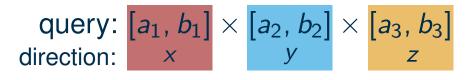
- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

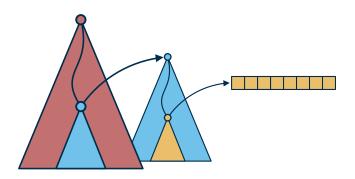
Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$

Idea: Do The z-Search Even Earlier

- search *z*-array in root of *x*-tree $\rightarrow O(\log n)$
- walk down the x-tree $\rightarrow O(\log n)$ time
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$





Observation

- getting rid of log n seems easy
- getting rid of log n seems hard

Query In 3D Range Tree (Simple Variant)

- walk down the x-tree $\rightarrow O(\log n)$
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$
- search in $O(\log n \log n)$ *z*-arrays $\rightarrow O(\log n \log n \log n)$

Last Lecture: Do z-Search Earlier

- walk down the x-tree $\rightarrow O(\log n)$ time
- search in *z*-arrays in roots of $O(\log n)$ *y*-trees $\rightarrow O(\log n \log n)$
- walk down in $O(\log n)$ y-trees (and follow z-array pointers) $\rightarrow O(\log n \log n)$

Idea: Do The z-Search Even Earlier

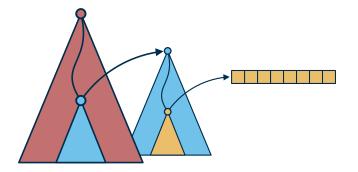
- search *z*-array in root of *x*-tree $\rightarrow O(\log n)$
- walk down the x-tree $\rightarrow O(\log n)$ time
- walk down in $O(\log n)$ y-trees $\rightarrow O(\log n \log n)$

Observation

- getting rid of log n seems easy
- getting rid of log n seems hard
- goal: 2D DS with query time O(log n)

6

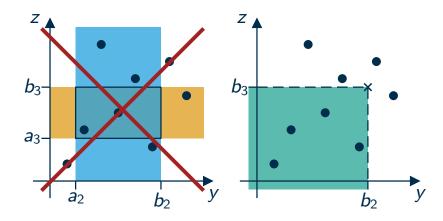
query: $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ direction:xyz



goal: 2D DS with query time $O(\log n)$

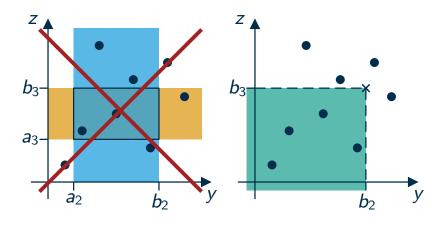
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



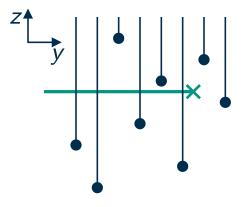
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



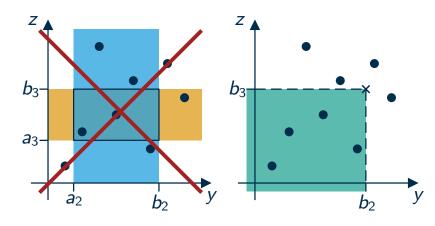
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left



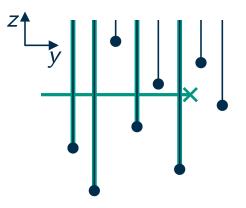
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



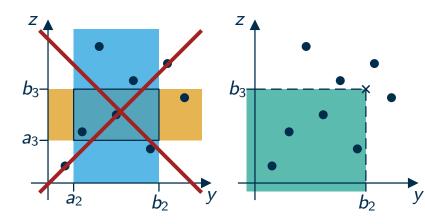
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

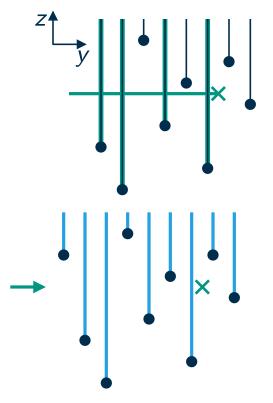
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

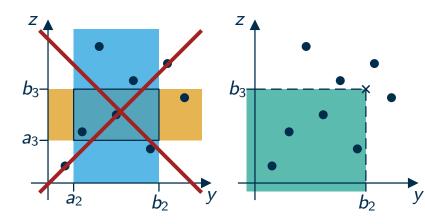
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

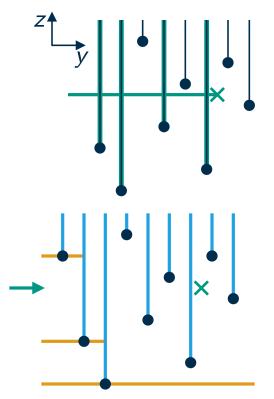
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

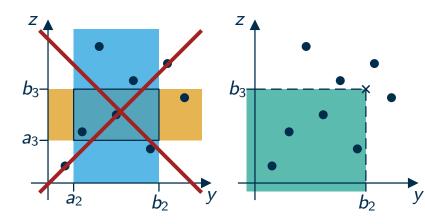
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

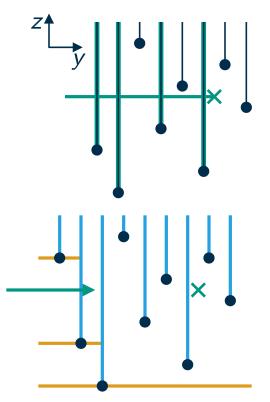
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

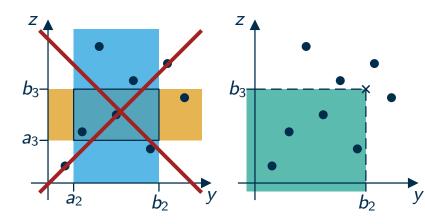
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

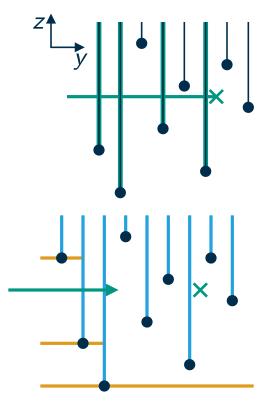
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

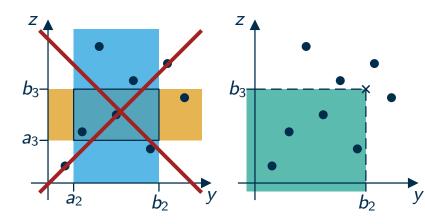
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

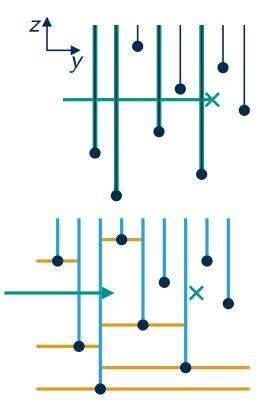
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

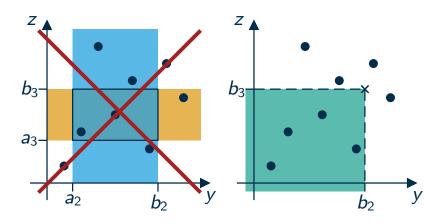
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



One-Sided Queries: Half The Sides, Half The Trouble

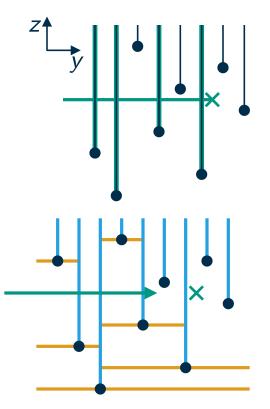
• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



collect the intersecting rays from left to right

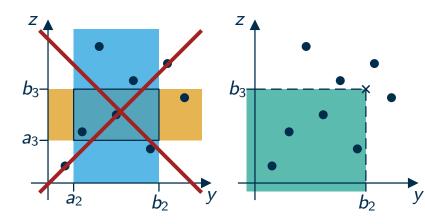
Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



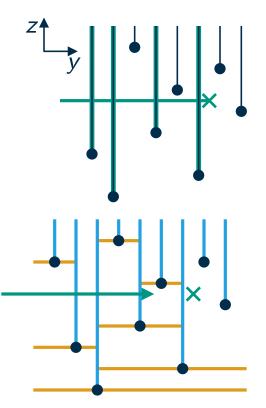
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points

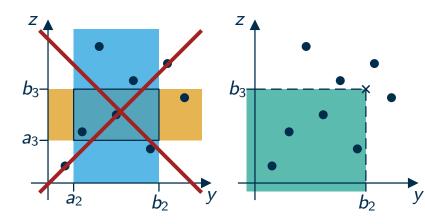


Find All Intersecting Rays

collect the intersecting rays from left to right

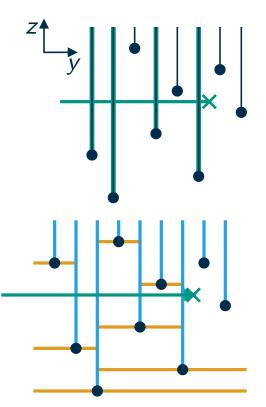
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

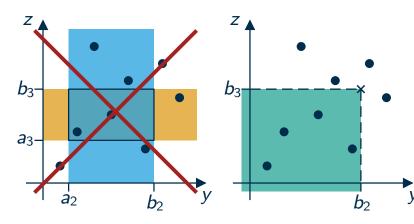
- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



collect the intersecting rays from left to right

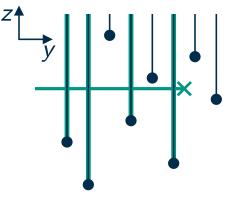
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)

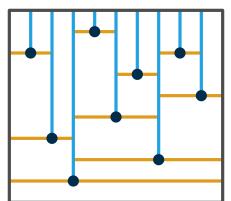


Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points

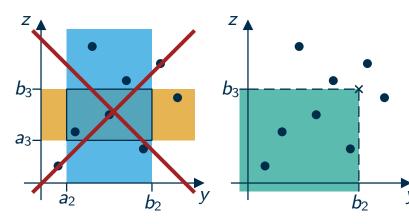


- collect the intersecting rays from left to right
- we basically walk from cell to cell



One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)

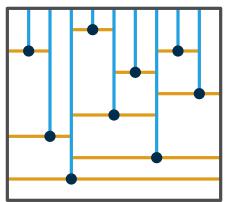


Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points

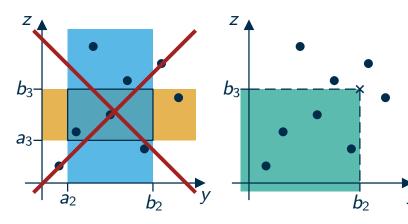
Find All Intersecting Rays

- collect the intersecting rays from left to right
- we basically walk from cell to cell
- each cells knows its right neighbors sorted by $z \Rightarrow O(k \log n)$



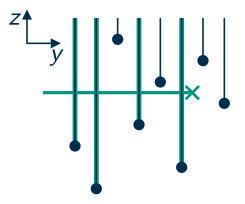
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

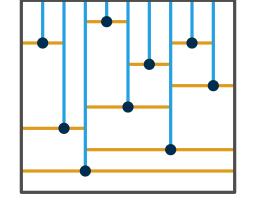
- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



Find All Intersecting Rays

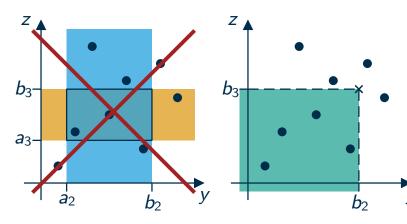
- collect the intersecting rays from left to right
- we basically walk from cell to cell
- each cells knows its right neighbors sorted by $z \Rightarrow O(k \log n)$

Can we do $\log n + k$?



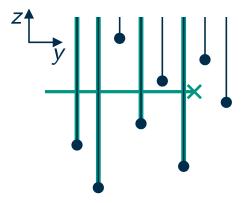
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points

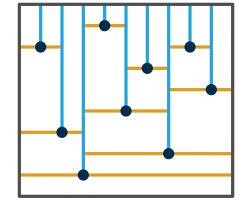


Find All Intersecting Rays

- collect the intersecting rays from left to right
- we basically walk from cell to cell

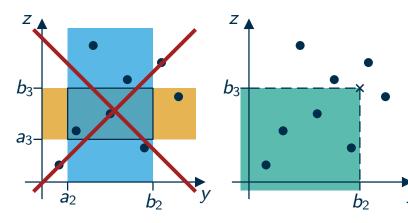
- Can we do $\log n + k$?
- each cells knows its right neighbors sorted by $z \Rightarrow O(k \log n)$

Fractional Cascading!



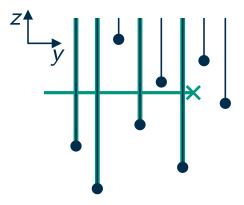
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points



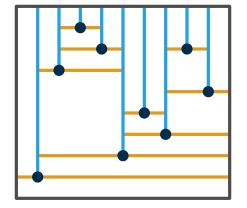
Find All Intersecting Rays

- collect the intersecting rays from left to right
- we basically walk from cell to cell

Can we do $\log n + k$?

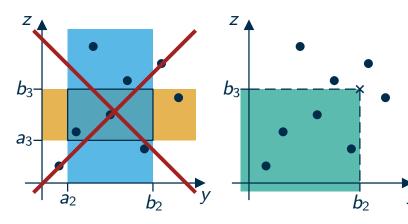
• each cells knows its right neighbors sorted by $z \Rightarrow O(k \log n)$

Fractional Cascading!



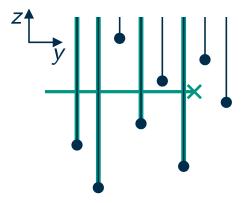
One-Sided Queries: Half The Sides, Half The Trouble

• goal: answer queries of the form $(-\infty, b_2] \times (-\infty, b_3]$ (instead of $[a_2, b_2] \times [a_3, b_3]$)



Alternative Perspective

- shoot a ray from each point upwards
- ray from $\langle b_2, b_3 \rangle$ to the left
- intersecting rays yield desired points

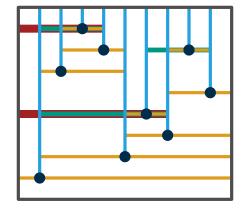


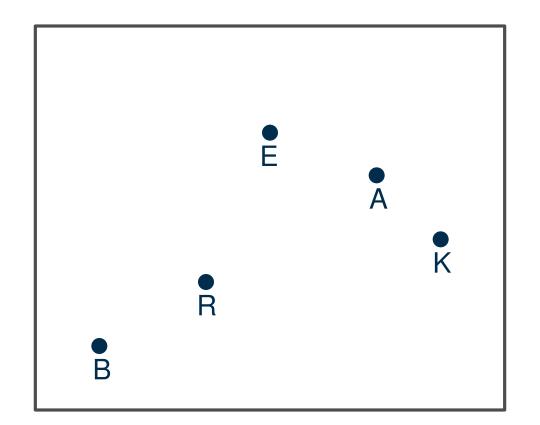
Find All Intersecting Rays

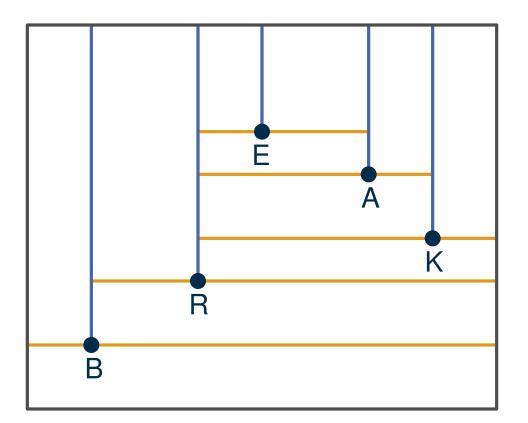
- collect the intersecting rays from left to right
- we basically walk from cell to cell

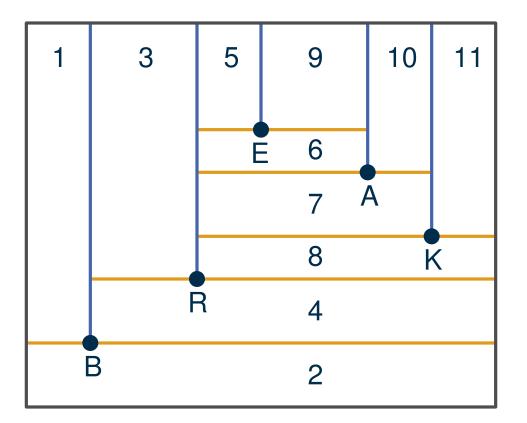
- Can we do $\log n + k$?
- each cells knows its right neighbors sorted by $z \Rightarrow O(k \log n)$

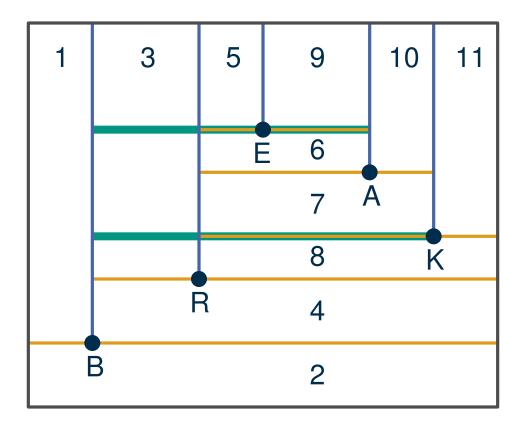
Fractional Cascading!

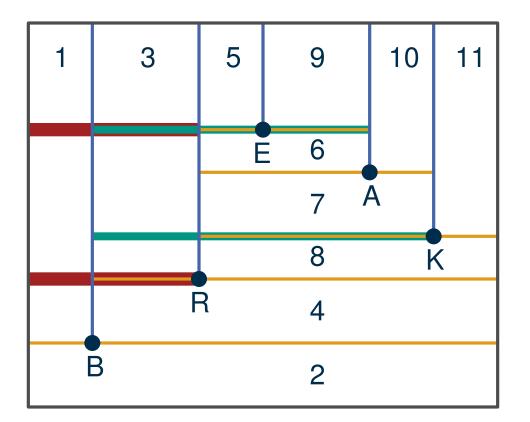


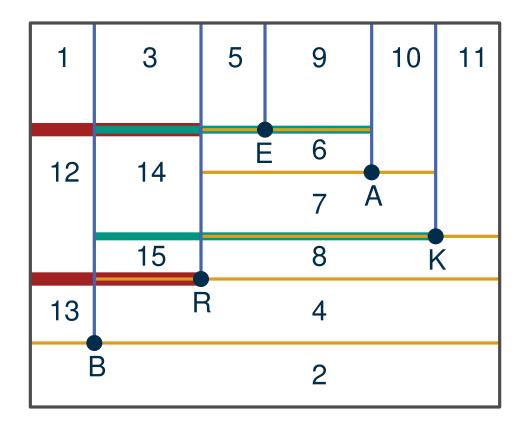












General Framework vs. Specific Situation

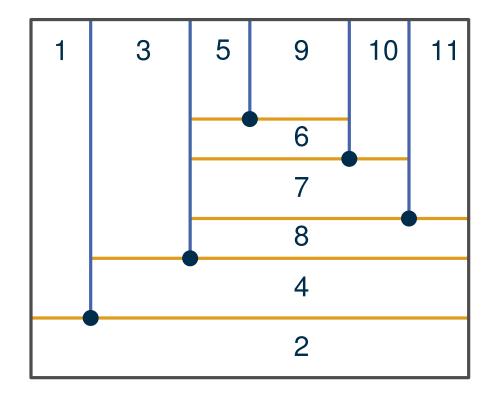
Useful Way Of Thinking

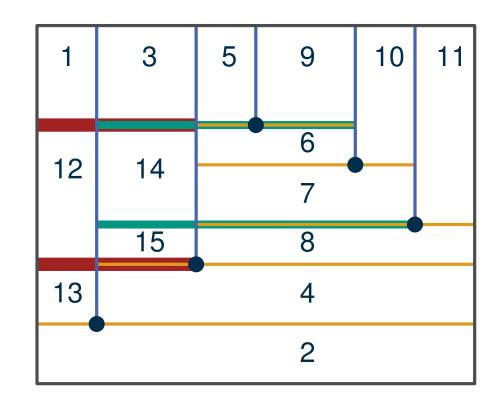
- \blacksquare mental shortcut: multiple searches for the same number \rightarrow fractional cascading probably helps
- specific situation: problem-specific argument often easier than pressing it into the framework

General Framework vs. Specific Situation

Useful Way Of Thinking

- \blacksquare mental shortcut: multiple searches for the same number \rightarrow fractional cascading probably helps
- specific situation: problem-specific argument often easier than pressing it into the framework

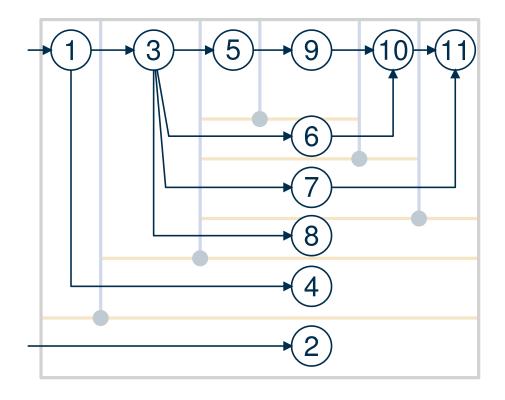


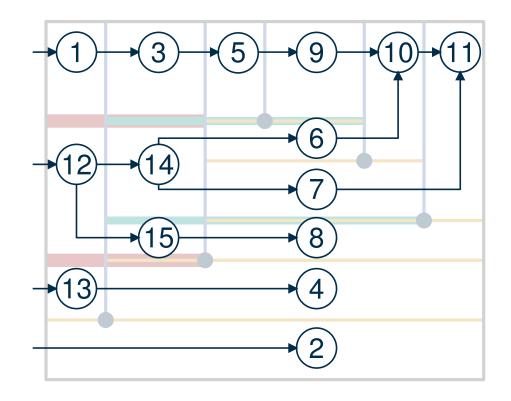


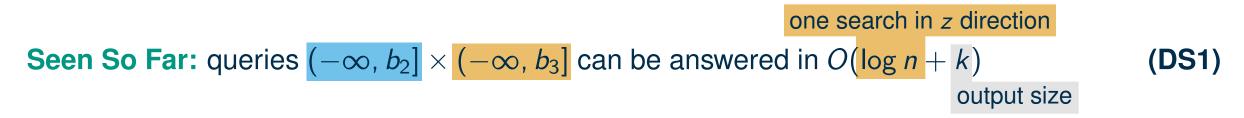
General Framework vs. Specific Situation

Useful Way Of Thinking

- \blacksquare mental shortcut: multiple searches for the same number \rightarrow fractional cascading probably helps
- specific situation: problem-specific argument often easier than pressing it into the framework







one search in *z* direction

Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (**DS1**) output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

one search in z direction

Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

one search in z direction

Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

binary search tree for x-direction

(**DS1**)

one search in z direction

Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

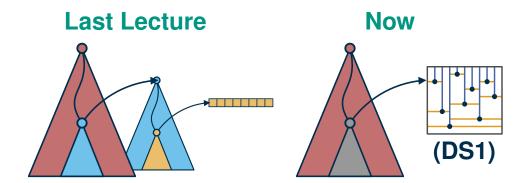
(**DS1**)

Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points



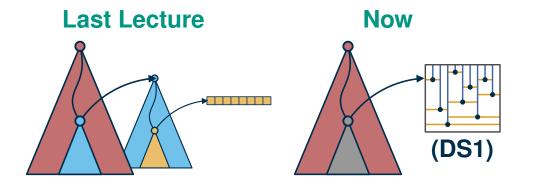
Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

Don't We Have To Search In $O(\log n)$ Many (DS1)?



Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

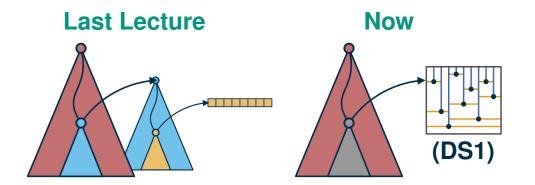
New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

Don't We Have To Search In $O(\log n)$ Many (DS1)?

yes, but ...



Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

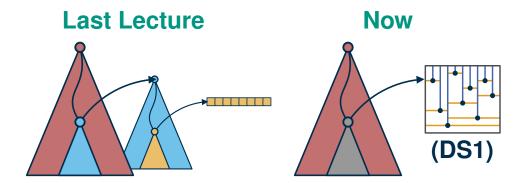
New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

Don't We Have To Search In $O(\log n)$ Many (DS1)?

yes, but ... Fractional Cascading!



Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

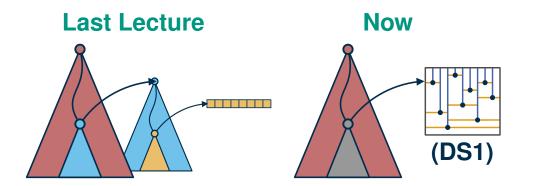
New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

Don't We Have To Search In $O(\log n)$ Many (DS1)?

- yes, but ... Fractional Cascading!
- search once in z-direction in the root of the x-tree
- follow pointers for the z-positions while walking down the x-tree



Seen So Far: queries $(-\infty, b_2] \times (-\infty, b_3]$ can be answered in $O(\log n + k)$ (DS1) output size

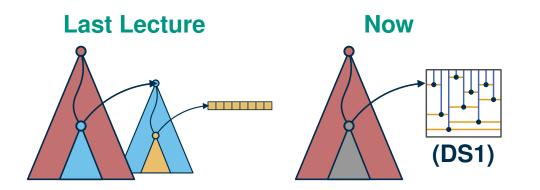
New Goal: answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$

We Already Know How To Do This ...

- binary search tree for x-direction
- every node stores (DS1) for the corresponding points

Don't We Have To Search In $O(\log n)$ Many (DS1)?

- yes, but ... Fractional Cascading!
- search once in z-direction in the root of the x-tree
- follow pointers for the z-positions while walking down the x-tree
- save the first search in (DS1) \Rightarrow total running time $O(\log n + k)$



Lemma

(DS2) For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Lemma

(DS2)For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Plan use (DS2) as black box

Lemma

(DS2) For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Plan

- use (DS2) as black box
- y-inverted variant $\rightarrow [a_2, \infty)$ queries
- query $[a_2, \infty)$ and $(-\infty, b_2]$ to get $[a_2, b_2]$

Lemma

(DS2) For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Plan

- use (DS2) as black box
- y-inverted variant $\rightarrow [a_2, \infty)$ queries
- query $[a_2, \infty)$ and $(-\infty, b_2]$ to get $[a_2, b_2]$

Why can't we just use the intersection of two queries?

$$egin{array}{rcl} [a_1,\,b_1] & imes & [a_2,\,b_2] & imes & [a_3,\,b_3] & = \ [a_1,\,b_1] & imes & (-\infty,\,b_2] & imes & (-\infty,\,b_3] & \cap \ [a_1,\,b_1] & imes & [a_2,\,\infty) & imes & [a_3,\,\infty) \end{array}$$

$\textbf{One-Sided} \rightarrow \textbf{Two-Sided}$

Lemma

For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Plan

- use (DS2) as black box
- *y*-inverted variant $\rightarrow [a_2, \infty)$ queries
- query $[a_2, \infty)$ and $(-\infty, b_2]$ to get $[a_2, b_2]$

Why can't we just use the intersection of two queries?

$$egin{array}{rcl} [a_1,\,b_1]& imes& [a_2,\,b_2]& imes& [a_3,\,b_3]&=\ [a_1,\,b_1]& imes& (-\infty,\,b_2]& imes& (-\infty,\,b_3]&\cap\ [a_1,\,b_1]& imes& [a_2,\,\infty)& imes& [a_3,\,\infty) \end{array}$$

Lemma (DS3) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log^2 n)$ preprocessing with $O(n \log^2 n)$ memory.

(DS2)

$\textbf{One-Sided} \rightarrow \textbf{Two-Sided}$

Lemma

For *n* points in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times (-\infty, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log n)$ preprocessing with $O(n \log n)$ memory.

Plan

- use (DS2) as black box
- *y*-inverted variant $\rightarrow [a_2, \infty)$ queries
- query $[a_2, \infty)$ and $(-\infty, b_2]$ to get $[a_2, b_2]$

Why can't we just use the intersection of two queries?

$$egin{array}{rcl} [a_1,\,b_1]& imes& [a_2,\,b_2]& imes& [a_3,\,b_3]&=\ [a_1,\,b_1]& imes& (-\infty,\,b_2]& imes& (-\infty,\,b_3]&\cap\ [a_1,\,b_1]& imes& [a_2,\,\infty)& imes& [a_3,\,\infty) \end{array}$$

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

(DS2)

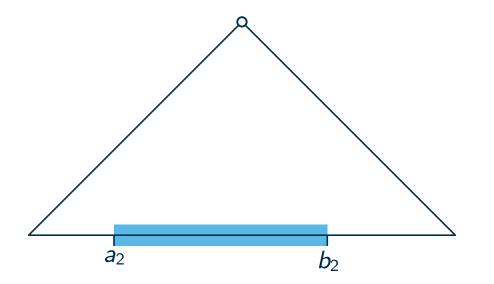
Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

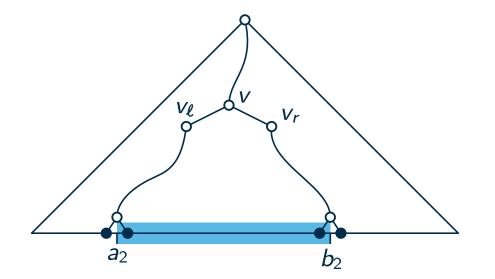


Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

• search for a_2 and b_2 splits at v to v_{ℓ} and v_r

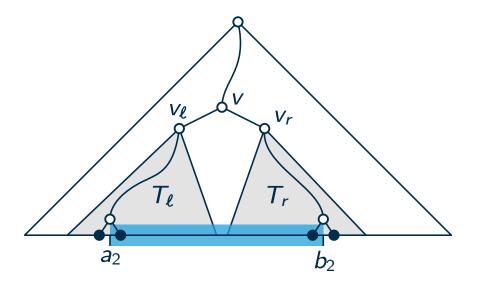


Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

- search for a_2 and b_2 splits at v to v_{ℓ} and v_r
- queries in instances of (DS2): $[a_2, \infty)$ on points in T_{ℓ} and $(-\infty, b_2]$ on points in T_r

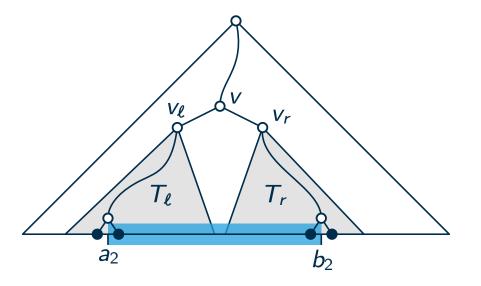


Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

- search for a_2 and b_2 splits at v to v_{ℓ} and v_r
- queries in instances of (DS2): $[a_2, \infty)$ on points in T_{ℓ} and $(-\infty, b_2]$ on points in T_r
- running time: $O(\log n)$ for search in *y*-tree plus $O(\log n + k)$ for two queries in (DS2)



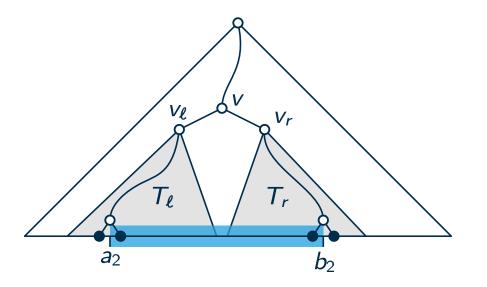
Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

- search for a_2 and b_2 splits at v to v_{ℓ} and v_r
- queries in instances of (DS2): $[a_2, \infty)$ on points in T_{ℓ} and $(-\infty, b_2]$ on points in T_r
- running time: $O(\log n)$ for search in y-tree plus $O(\log n + k)$ for two queries in (DS2)
- memory: $O(\log n) \cdot (\text{memory for } DS2)$



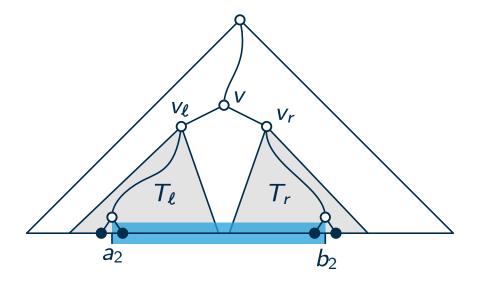
Two-Sided Query In y-Direction

Simplified Perspective: Ignore x And z-Direction

- (DS2) allows $[a_2, \infty)$ and $(-\infty, b_2]$ queries
- goal: build data structure, that allows [*a*₂, *b*₂] queries

Binary Search Tree In *y***-Direction**

• search for a_2 and b_2 splits at v to v_{ℓ} and v_r



- queries in instances of (DS2): $[a_2, \infty)$ on points in T_{ℓ} and $(-\infty, b_2]$ on points in T_r
- running time: $O(\log n)$ for search in y-tree plus $O(\log n + k)$ for two queries in (DS2)
- memory: $O(\log n) \cdot (\text{memory for } DS2)$

Lemma (DS3) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times (-\infty, b_3]$ in $O(\log n + k)$ time after $O(n \log^2 n)$ preprocessing with $O(n \log^2 n)$ memory.

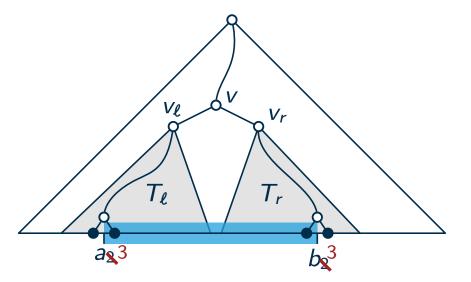
Two-Sided Query In $\frac{z}{x}$ -Direction

Simplified Perspective: Ignore x And $\frac{y}{x}$ -Direction

- (DS2) allows $[a_1^3, \infty)$ and $(-\infty, b_1^3]$ queries
- goal: build data structure, that allows $[a_{\mathbf{X}}^3, b_{\mathbf{X}}^3]$ queries

Binary Search Tree In $\frac{z}{\chi}$ -Direction

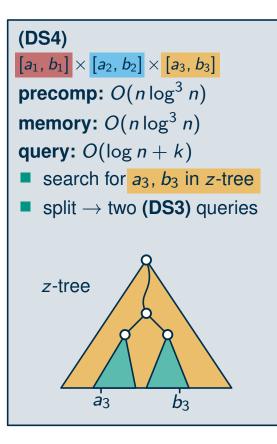
• search for a_8^3 and b_8^3 splits at v to v_ℓ and v_r

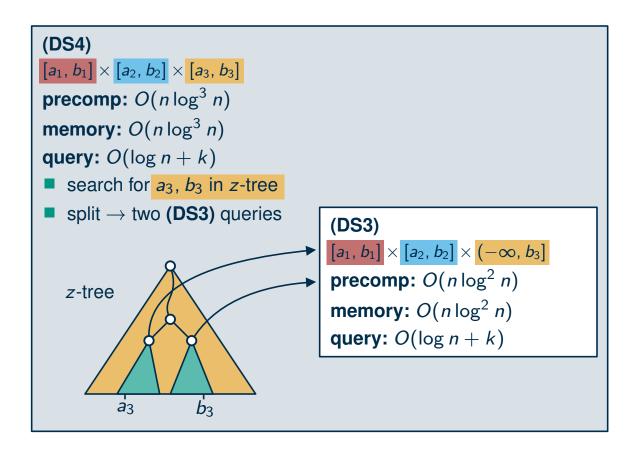


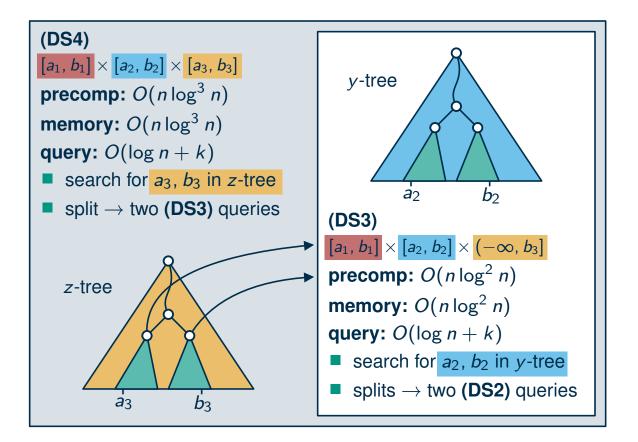
- queries in instances of (DS2): $[a_{\mathbf{x}}^3, \infty)$ on points in T_{ℓ} and $(-\infty, b_{\mathbf{x}}^3]$ on points in T_r
- running time: O(log n) for search in x²-tree plus O(log n + k) for two queries in (DS2)
 memory: O(log n) · (memory for DS2)

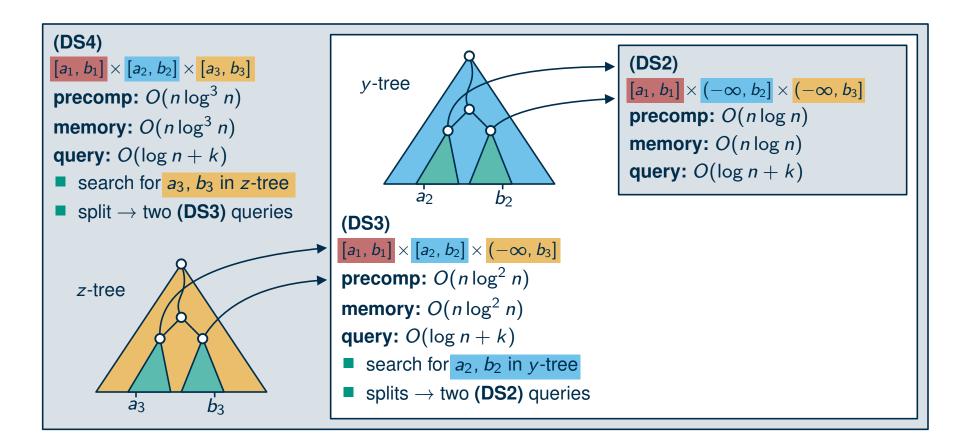
Lemma Theorem For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times (-\infty, b_3]$ in $O(\log n+k)$ time after $O(n \log^{\$^3} n)$ preprocessing with $O(n \log^{\$^3} n)$ memory.

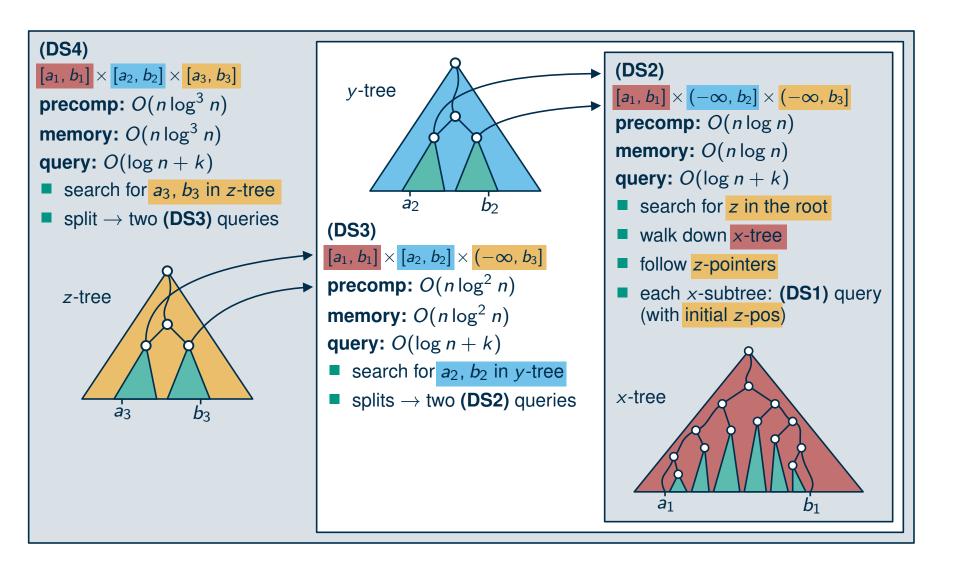
(DS4) $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ **precomp:** $O(n \log^3 n)$ **memory:** $O(n \log^3 n)$ query: $O(\log n + k)$

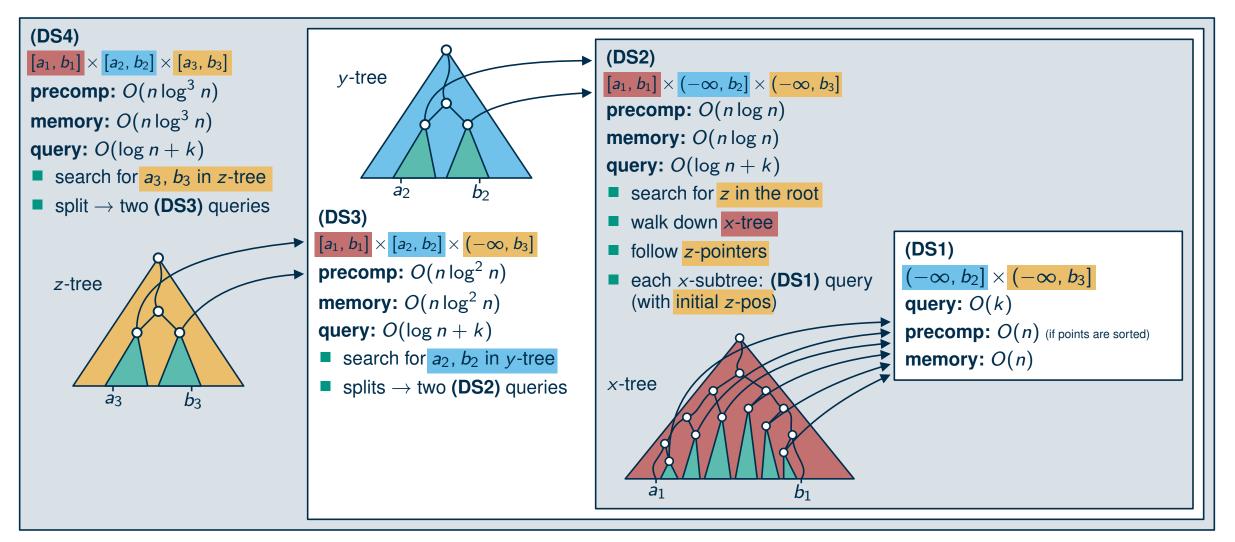


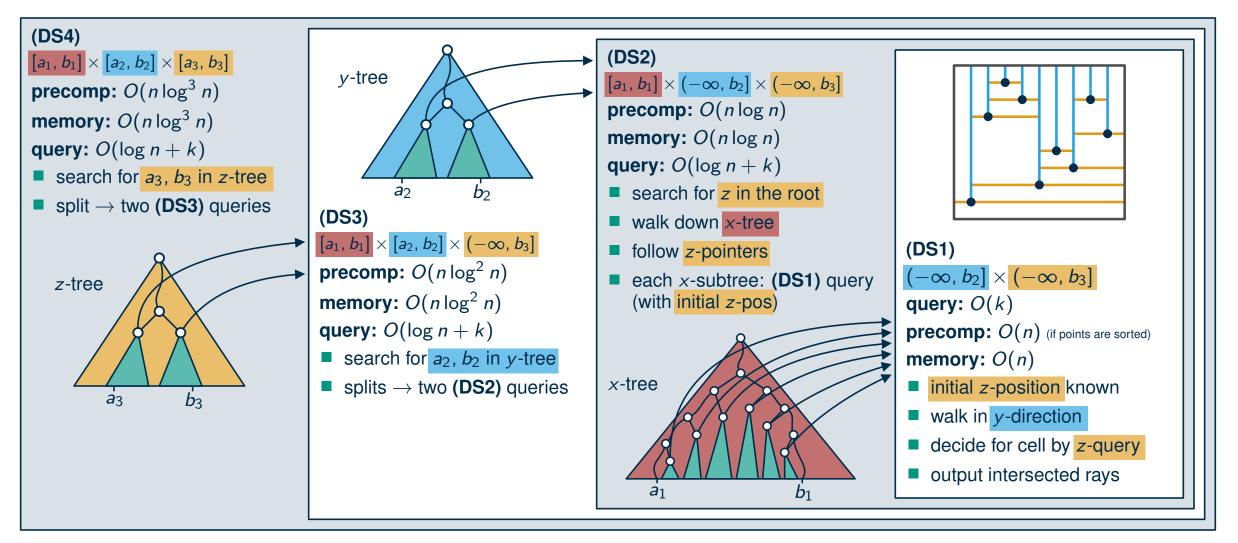












What Have We Learned Today?

fractional cascading: search only once and then follow pointers

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

What else is there?

many applications of fractional cascading

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

What else is there?

- many applications of fractional cascading
- dynamic range queries: inserting and deleting points

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

What else is there?

- many applications of fractional cascading
- dynamic range queries: inserting and deleting points
- $O(\log n \cdot (\log n / \log \log n)^{d-3} + k)$ queries with $O(n \cdot (\log n / \log \log n)^{d-3})$ memory

What Have We Learned Today?

- fractional cascading: search only once and then follow pointers
- clever geometric solution for simplified queries $(-\infty, b_2] \times (-\infty, b_3]$
- transformation from $(-\infty, b]$ to [a, b]

Theorem (DS4) For *n* point in \mathbb{R}^3 , we can answer queries of the form $[a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ in $O(\log n + k)$ time after $O(n \log^3 n)$ preprocessing with $O(n \log^3 n)$ memory.

What else is there?

- many applications of fractional cascading
- dynamic range queries: inserting and deleting points
- $O(\log n \cdot (\log n / \log \log n)^{d-3} + k)$ queries with $O(n \cdot (\log n / \log \log n)^{d-3})$ memory
- even better results with some bit-hacking in the word RAM model

