AT

Computational Geometry
Orthogonal Range Queries: Fractional Cascading

Thomas Blasius

Searching In Many Arrays

Situation _
m consider £ sorted arrays A4, ..., Ay with < n elements each example query: x = 14
= find the position of x in all arrays A; =|2|5]8|12]|17|19/25[28
= obvious solution: O(£ log n) / /

m last lecture: O(£ + logn) if Ay D A, D --- D A, Az =|3]46 [11]13]18]25/33
Is £ + log n Possible In General? Az = 13\L/7 9/1‘7/19 22|32
= hope: search x in Ay, find x in A,, .. ., A, via pointers T |
= problem: position of x in A; may not help to find position in A;,; A4 =[8[11]12]13]14)1516]17

Observation
m A; O A;.1 = position in A; determines position in A;. 1

= A; contains many elements from A;, 1 = position in A; roughly determines position in A;, 1
= [dea: insert some elements from A;, 1 into A;

AKIT

Fractional Cascading

Shared Elements
= new array Aj: insert every other element from A, into As

m store pointers to copies

= pointers from A5 \ A4 to prev / next element from A; = position in A% gives position in Ay (£1)
= pointers from elements in A, to prev / next in A3 \ As= position in A% gives position in A3

= cascade the process for all previous A;

A; =[2]5]8]12[17|19|2528 Al =i 2 5%8 12]14]17[1819|25[25/28
A =|3]4]6|11/13[18]25|33 A, = 3 ?ﬁg 13|14/17(18]22|25/33
Az =[1]3[7]9]17]19]22|32 AL = 1/3]7]8]9]1214]16[17]|19]22|32

A, =|8[11(12|13|14[15(16|17 Ay = ’_8/11121314151617

AKIT

Fractional Cascading — Running Time

Cost For The Search

= one search in A} — O(log(|A%]))
= O(1) for every subsequent array — O(¥)

} total: O(£ + log(]A%]))

How Large is A;? (assumption: |A;| = n for all i)

A;z 1 :(%+1)”
Ay_s :(%4'%"‘1)”
A sl=(G+3+35+1)n

= Al <2n = search takes O({ + log n) time
Memory Consumption Precomputation Time
= only a constant factor overhead = |inear in the input

= also true if not all arrays have the same size

AKIT

General Fractional Cascading

Now With A Directed Graph G = (V, E)
= sorted array A, for every vertex v

= an interval I for every edge e

= for every number xand u € V: |[{uv € E | x € I,,}| € O(1)

How is this a generalization?
A Game Between Alice And Bob

® precomputes a data structure ® choose a number x and v € V
m asks where x liesin A,

3, 29]]

= answers the question

A ® choose edge uvwithx € 1,,,
iterate . ® asks where x lies in A,

= answers the question

Similar Guarantee To The Path Setting (without proof) (s = total array size)
= precomputation: O(s) time and O(s) space = query: O(log s) for the first, then O(1)

AKIT

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query:

= walk down the X&if€€ — O(I6giA) direction:
« walk down in O () trees — O (BEHIeER)
= search in O(I6gHlog n) z-arrays — O(|l6gHi log n log n)

Last Lecture: Do z-Search Earlier

= walk down the X5if€8 — O(I6gH) time
= search in z-arrays in roots of O(I6gH) y-trees — O(I6gHi log n)
= walk down in O(Jl6gH) y-trees (and follow z-array pointers) — O(I6gHilog n)

X X [33, b3]
Z

Idea: Do The z-Search Even Earlier Observation
= search z-array in root of X¥ifé€ — O(log n) = getting rid of log n seems easy
= walk down the [X5if€€ — O(I6gH) time = getting rid of log n seems hard

= walk down in O(I6gH) y-trees — O(I6gHilog n) = goal: 2D DS with query time O(log n)

6 Thomas Blasius — Computational Geometry ﬂ(IT

One-Sided 2D Range Queries goal: 2D DS with query time O(log n)

One-Sided Queries: Half The Sides, Half The Trouble

= goal: answer queries of the form (5560, B3] X (=60, B3] (instead of [aa, ba] x [a3, bs])

ZA

) Alternative Perspective 114 l
bs = shoot a ray from each point upwards y l J
a3 = ray from (b,, b3) to the left

S g ® ntersecting rays yield desired points
Find All Intersecting Rays
m collect the intersecting rays from left to right I.ljﬁ_

. Can we do logn + k?
= we basically walk from cell to cell
= each cells knows its right neighbors sorted by z = O(k log n) [o
Fractional Cascading! °

Count The Cells

How many cells do we get (with and without fractional cascading)?

0O
me
> @
N0

oo

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

0o

e

me

A~ 00O N | O

> @

10

P

11

AKIT

Count The Cells

How many cells do we get (with and without fractional cascading)?

1 3 9 10 | 11
| |ee———
6
12 14 O
7 A
- ——————" N
15 8
| f——
13 4
@
B 2

AKIT

General Framework vs. Specific Situation

Useful Way Of Thinking
= mental shortcut: multiple searches for the same number — fractional cascading probably helps
m gpecific situation: problem-specific argument often easier than pressing it into the framework

D)o@ o) —~(8) 001 0o Wo o uN
N

15

-

® EE@OE
® @

AKIT

One-Sided 3D Range Queries

one search in z direction
Seen So Far: queries (—o0, bz]| x (—o0, bs| can be answered in O(log n + k) (DS1)
output size

New Goal: answer queries of the form [EflBH] x (o0, b2] x (o0, bs]

We Already Know How To Do This ... Last Lecture
= binary search tree for XSdlifection TR
m every node stores (DS1) for the corresponding points

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?
m yes, but... Fractional Cascading!

= search once in z-direction in the root of the K&ifee
= follow pointers for the z-positions while walking down the X&ifee
= save the first search in (DS1) = total running time O(log n + k)

AKIT

One-Sided — Two-Sided

Lemma (DS2)
For n points in R3, we can answer queries of the form [a;, b;] x (—o0, by] x (—o0, bs] in
O(log n + k) time after O(nlog n) preprocessing with O(nlog n) memory.

Plan Why can’t we just use the intersection of two queries?
= use (DS2) as black box a1, b1] X [0, bo] X (a3, bs] =

= y-inverted variant — [a, co) queries [a1, 1] X (=00, b2] X (—o0o,b3] N

= query [a;, 00) and (—oo, by] to get [az, by] [a1,b1] % [a2,00) X [a3 00)

Theorem (DS4)
For n point in R3, we can answer queries of the form [ay, b;] x [a2, bo] X [a3, bs] in O(log n+ k)
time after O(nlog> n) preprocessing with O(nlog> n) memory.

AT

Two-Sided Query In)i-Direction

Simplified Perspective: Ignore x And ‘%Direction
O (DSR?aIIows [ay> 00) and (—oo, b§’] queries
= goal: build data structure, that allows [ax, bﬁ] queries

Binary Search Tree In 3Z(-Direction
m search for ag’and bg’splits at v to v, and v,

= gueries in instances of (DS'R?: [ag, 00) on points in T; and (—oo, bg] on points in T,

3
= running time: O(log n) for search in X-tree plus O(log n + k) for two queries in (DS2)

= memory: O(log n) - (memory for DSR)?

Lemima Theorem (DS&)
For n point in R, we can answer queries of the form [a1, b1 x [a2, bo] X (760 bs] in O(log n+k)

time after O(n log® n) preprocessing with O(n log 3n) memory.

AKIT

The Big Picture

(DS4)

[81 B1] x [a2, bo] x [as, bs]
precomp: O(nlog> n)
memory: O(nlog? n)
query: O(log n + k)

B search for a3, bz in z-tree
B split — two (DS3) queries

z-free

y-tree

al2 52
(DS3)
->< [a2, bo] x (—o0, bs]
precomp: O(nlog? n)
memory: O(nlog? n)
query: O(log n + k)
B search forlag, b2 In y-itree
B splits — two (DS2) queries

(DS2)

->< (—o00, by] x (—o0, bs3]
precomp: O(nlog n)
memory: O(nlog n)
query: O(log n + k)

B search for z in the root

® walk down -

B follow z-pointers

® each x-subtree: (DS1) query

(with initial z-pos)

FITH

@
! @
(DS1)
(=00, b2 x (—o0, b3]
query: O(k)

precomp: O(n) it points are sorted)
memory: O(n)

® initial z-position known

® walk in y-direction

B decide for cell by z-query
B output intersected rays

AKIT

Wrap-Up

What Have We Learned Today?
m fractional cascading: search only once and then follow pointers

= clever geometric solution for simplified queries (—oo, by| x (—0o0, bs]
= transformation from (—oo, b] to [a, b]

What Else Is There?
= many applications of fractional cascading

= dynamic range queries: inserting and deleting points
= O(log n- (log n/loglog n)?=3 + k) queries with O(n - (log n/ log log n)?~3) memory
m even better results with some bit-hacking in the word RAM model

14 Thomas Blasius — Computational Geometry ﬂ(IT

