
1

Computational Geometry

Thomas Bläsius

Orthogonal Range Queries: Fractional Cascading

Thomas Bläsius – Computational Geometry2

Searching In Many Arrays

Situation
consider ‘ sorted arrays A1; : : : ; A‘ with ≤ n elements each
find the position of x in all arrays
obvious solution: O(‘ log n)
last lecture: O(‘+ log n) if A1 ⊇ A2 ⊇ · · · ⊇ A‘

Is ‘+ log n Possible In General?

2 5 8 12 17 19 25 28

3 4 6 11 13 18 25 33

1 3 7 9 17 19 22 32

8 11 12 13 14 15 16 17

hope: search x in A1, find x in A2; : : : ; A‘ via pointers
problem: position of x in Ai may not help to find position in Ai+1

A1 =

A2 =

A3 =

A4 =

example query: x = 14

Observation
Ai ⊇ Ai+1 ⇒ position in Ai determines position in Ai+1

Ai contains many elements from Ai+1 ⇒ position in Ai roughly determines position in Ai+1

idea: insert some elements from Ai+1 into Ai

Thomas Bläsius – Computational Geometry3

Fractional Cascading

Shared Elements
new array A′

3: insert every other element from A4 into A3

1 3 7 9 17 19 22 32

8 11 12 13 14 15 16 17

A3 =

A4 =

1 3 7 9 17 19 22 32

8 11 12 13 14 15 16 17

A′
3 =

A4 =

8

store pointers to copies
pointers from A′

3 \ A4 to prev / next element from A4 ⇒ position in A′
3 gives position in A4 (±1)

pointers from elements in A4 to prev / next in A′
3 \ A4⇒ position in A′

3 gives position in A3

cascade the process for all previous Ai

2 5 8 12 17 19 25 28

3 4 6 11 13 18 25 33

A1 =

A2 =

1412 16

224 11 13 18 25 33A′
2 =

2 5 8 12 17 19 25 28

1 3 76 9 14 17

4 11 18 251 7 14A′
1 =

Thomas Bläsius – Computational Geometry4

Fractional Cascading – Running Time

Cost For The Search
one search in A′

1 → O(log(|A′
1|))

O(1) for every subsequent array → O(‘)

How Large is A′
1
?

|A′
‘−1| = (12 + 1)n

(assumption: |Ai | = n for all i)

|A′
‘−2| = (14 + 1

2 + 1)n

|A′
‘−3| = (18 + 1

4 + 1
2 + 1)n

|A′
1| ≤ 2n

Memory Consumption
only a constant factor overhead
also true if not all arrays have the same size

⇒ search takes O(‘+ log n) time

Precomputation Time
linear in the input

|{z
}

total: O(‘+ log(|A′
1|))

Thomas Bläsius – Computational Geometry5

General Fractional Cascading

Now With A Directed Graph G = (V; E)

sorted array Av for every vertex v

an interval Ie for every edge e

for every number x and u ∈ V : |{uv ∈ E | x ∈ Iuv}| ∈ O(1)

2 17 25

7 17 226

[3; 29]

[0; 15]

(−∞;∞)

[·; ·]

[·; ·]
[·; ·]

[·; ·]

[·; ·]

A Game Between Alice And Bob
precomputes a data structure choose a number x and u ∈ V

asks where x lies in Au
answers the question

choose edge uv with x ∈ Iuv

asks where x lies in Avanswers the question iterate

(s = total array size)Similar Guarantee To The Path Setting (without proof)
precomputation: O(s) time and O(s) space query: O(log s) for the first, then O(1)

How is this a generalization?

Thomas Bläsius – Computational Geometry6

Back To The Range Queries

Query In 3D Range Tree (Simple Variant) query: [a1; b1]× [a2; b2]× [a3; b3]
x y zdirection:walk down the x-tree → O(log n)

walk down in O(log n) y -trees → O(log n log n)

search in O(log n log n) z-arrays → O(log n log n log n)

Last Lecture: Do z-Search Earlier
walk down the x-tree → O(log n) time

walk down in O(log n) y -trees (and follow z-array pointers) → O(log n log n)

search in z-arrays in roots of O(log n) y -trees → O(log n log n)

Idea: Do The z-Search Even Earlier

walk down the x-tree → O(log n) time
search z-array in root of x-tree → O(log n)

walk down in O(log n) y -trees → O(log n log n)

Observation
getting rid of log n seems easy

goal: 2D DS with query time O(log n)

getting rid of log n seems hard

Thomas Bläsius – Computational Geometry7

One-Sided 2D Range Queries

One-Sided Queries: Half The Sides, Half The Trouble
goal: answer queries of the form (−∞; b2]× (−∞; b3] (instead of [a2; b2]× [a3; b3])

a2 b2

b3

a3

y

z

y

z

b2

b3
y

zAlternative Perspective
shoot a ray from each point upwards
ray from ⟨b2; b3⟩ to the left
intersecting rays yield desired points

Find All Intersecting Rays
collect the intersecting rays from left to right
we basically walk from cell to cell
each cells knows its right neighbors sorted by z ⇒O(k log n)

Fractional Cascading!

Ziel im Folgenden:
reduziere im 2D-Fall log n +
log n auf log n

(einmal nach z suchen)

Can we do log n + k?

goal: 2D DS with query time O(log n)

Thomas Bläsius – Computational Geometry8

Count The Cells

How many cells do we get (with and without fractional cascading)?

B

R

E
A

K

Thomas Bläsius – Computational Geometry8

Count The Cells

How many cells do we get (with and without fractional cascading)?

B

R

E
A

K

1

2

3

4

5

6

7

8

9 10 11

Thomas Bläsius – Computational Geometry8

Count The Cells

How many cells do we get (with and without fractional cascading)?

B

R

E
A

K

1

2

3

4

5

6

7

8

9 10 11

12

13

14

15

Thomas Bläsius – Computational Geometry9

General Framework vs. Specific Situation

Useful Way Of Thinking
mental shortcut: multiple searches for the same number → fractional cascading probably helps
specific situation: problem-specific argument often easier than pressing it into the framework

2

3

4

5

6

7

8

9 10 11 1

2

3

4

5

6

7

8

9 10 11

12

13

14

15

1

Thomas Bläsius – Computational Geometry10

One-Sided 3D Range Queries

Seen So Far: queries (−∞; b2]× (−∞; b3] can be answered in O(log n + k) (DS1)
one search in z direction

output size

New Goal: answer queries of the form [a1; b1]× (−∞; b2]× (−∞; b3]

binary search tree for x-direction
We Already Know How To Do This . . .

every node stores (DS1) for the corresponding points

Last Lecture Now

(DS1)
Don’t We Have To Search In O(log n) Many (DS1)?

yes, but . . . Fractional Cascading!
search once in z-direction in the root of the x-tree
follow pointers for the z-positions while walking down the x-tree
save the first search in (DS1) ⇒ total running time O(log n + k)

Thomas Bläsius – Computational Geometry11

One-Sided → Two-Sided

Plan
use (DS2) as black box

query [a2;∞) and (−∞; b2] to get [a2; b2]
y -inverted variant → [a2;∞) queries

Lemma (DS2)
For n points in R3, we can answer queries of the form [a1; b1] × (−∞; b2] × (−∞; b3] in
O(log n + k) time after O(n log n) preprocessing with O(n log n) memory.

[a1; b1] × [a2; b2] × [a3; b3] =

[a1; b1] × (−∞; b2] × (−∞; b3] ∩
[a1; b1] × [a2;∞) × [a3;∞)

Why can’t we just use the intersection of two queries?

Lemma (DS3)
For n point in R3, we can answer queries of the form [a1; b1]×[a2; b2]×(−∞; b3] in O(log n+k)
time after O(n log2 n) preprocessing with O(n log2 n) memory.

Theorem (DS4)
For n point in R3, we can answer queries of the form [a1; b1]× [a2; b2]× [a3; b3] in O(log n+ k)
time after O(n log3 n) preprocessing with O(n log3 n) memory.

Thomas Bläsius – Computational Geometry12

Two-Sided Query In y -Direction

Simplified Perspective: Ignore x And z-Direction
(DS2) allows [a2;∞) and (−∞; b2] queries
goal: build data structure, that allows [a2; b2] queries

Binary Search Tree In y -Direction
a2 b2search for a2 and b2 splits at v to v‘ and vr

v
vrv‘

queries in instances of (DS2): [a2;∞) on points in T‘ and (−∞; b2] on points in Tr

running time: O(log n) for search in y -tree plus O(log n + k) for two queries in (DS2)
memory: O(log n) · (memory for DS2)

T‘ Tr

z

y

3 3 3

3 3

z

3 3

3 3

z

3

3 3

3
3

Lemma (DS3)
For n point in R3, we can answer queries of the form [a1; b1]×[a2; b2]×(−∞; b3] in O(log n+k)
time after O(n log2 n) preprocessing with O(n log2 n) memory.

Theorem
4

3 3

a3

Thomas Bläsius – Computational Geometry13

The Big Picture

query: O(k)

precomp: O(n) (if points are sorted)

(DS1)

[a1; b1]× (−∞; b2]× (−∞; b3]

initial z-position known

walk in y -direction

output intersected rays

memory: O(n)

(DS2)

query: O(log n + k)

search for z in the root

walk down x-tree

each x-subtree: (DS1) query
(with initial z-pos)

precomp: O(n log n)

memory: O(n log n)

(DS3)
[a1; b1]× [a2; b2]× (−∞; b3]

query: O(log n + k)

splits → two (DS2) queries

precomp: O(n log2 n)

memory: O(n log2 n)

(DS4)
[a1; b1]× [a2; b2]× [a3; b3]

query: O(log n + k)

search for a3; b3 in z-tree

split → two (DS3) queries

precomp: O(n log3 n)

memory: O(n log3 n)

a3 b3

a2 b2

a1 b1

z-tree

y -tree

x-tree

(−∞; b2]× (−∞; b3]

search for a2; b2 in y -tree

follow z-pointers

decide for cell by z-query

Thomas Bläsius – Computational Geometry14

Wrap-Up

What Have We Learned Today?
fractional cascading: search only once and then follow pointers
clever geometric solution for simplified queries (−∞; b2]× (−∞; b3]

transformation from (−∞; b] to [a; b]

What Else Is There?
many applications of fractional cascading
dynamic range queries: inserting and deleting points

even better results with some bit-hacking in the word RAM model
O(log n · (log n= log log n)d−3 + k) queries with O(n · (log n= log log n)d−3) memory

Theorem (DS4)
For n point in R3, we can answer queries of the form [a1; b1]× [a2; b2]× [a3; b3] in O(log n+ k)
time after O(n log3 n) preprocessing with O(n log3 n) memory.

