AT

Computational Geometry
Orthogonal Range Queries: Range-Trees

Thomas Blasius

Overview

Basic Toolbox

= convex hul Q
m line intersection

= triangulation

= plane intersection

Advanced Toolbox
= \oronoi diagrams

= Delaunay triangulations o °

= randomized algorithms
= complexity @

Geometric Data Structures
m orthogonal range searching

m space partitioning
= point location °

Related Topics
= What is geometry?

= hyperbolic geometry
= geometric graphs

el
R
SN 2L

Vavay——

VA

W
it
0

M
X
i
)N
o
4
o
1

Range Queries

b

a2

al bl

3 Thomas Blasius — Computational Geometry ﬂ(IT

Range Queries

Static Variant
= point set P is fixed

= many different range queries

3 Thomas Blasius — Computational Geometry

AKIT

Range Queries

Static Variant
= point set P is fixed

= many different range queries

= develop data structure based on P such that
- each query is fast

3 Thomas Blasius — Computational Geometry ﬂ(IT

Range Queries

Static Variant
= point set P is fixed

= many different range queries

= develop data structure based on P such that
- each query is fast

- data structure can be build efficiently

3 Thomas Blasius — Computational Geometry ﬂ(IT

Range Queries

Static Variant
= point set P is fixed

= many different range queries

= develop data structure based on P such that
- each query is fast
- data structure can be build efficiently
- data structure requires little space

3 Thomas Blasius — Computational Geometry ﬂ(IT

Range Queries

Problem: Range Queries

Given a set of points P € R and a box B = [a1, b1] X [as, bo] X - -+ X [aq4, bg], find all points
in PN B.

Static Variant
= point set P is fixed

= many different range queries
m develop data structure based on P such that
- each query is fast

- data structure can be build efficiently an by
- data structure requires little space

What are possible applications?

AKIT

1D Range Queries

Simplest Case: d =1
= the points are just numbers
= we look for all numbers in a given interval

4 Thomas Blasius — Computational Geometry

AKIT

1D Range Queries

Simplest Case: d =1
= the points are just numbers
= we look for all numbers in a given interval

Solution 1

4 Thomas Blasius — Computational Geometry

AKIT

1D Range Queries

Simplest Case: d =1

Solution 1 [1[2]3]4]5]6]7]8]
= the points are just numbers m data structure: sorted array — O(nlog n)
= we look for all numbers in a given interval ® query: binary search — O(log n + k)

(k = output size)

4 Thomas Blasius — Computational Geometry

AKIT

1D Range Queries

Simplest Case: d =1 Solution 1 [1]2]3]4[5]6]7]8]
= the points are just numbers m data structure: sorted array — O(nlog n)
= we look for all numbers in a given interval ® query: binary search — O(log n + k)

(k = output size)
Solution 2
= binary search tree with one leaf for each point

m query: search in the search tree

4 Thomas Blasius — Computational Geometry ﬂ(IT

1D Range Queries

Problem: Range Queries

Given a set of points P € R and a box B = [a1, b1] X [as, bo] X - -+ X [aq4, bg], find all points
in PN B.

Simplest Case: d =1 Solution 1 [1]2]3]4[5]6]7]8]

= the points are just numbers m data structure: sorted array — O(nlogn)

= we look for all numbers in a given interval m query: binary search — O(log n + k)
(k = output size)

Solution 2

= pbinary search tree with one leaf for each point
m query: search in the search tree

How does the search work?

AKIT

1D Range Queries

Problem: Range Queries

Given a set of points P € R and a box B = [a1, b1] X [as, bo] X - -+ X [aq4, bg], find all points
in PN B.

Simplest Case: d =1 Solution 1 [1]2]3]4[5]6]7]8]

= the points are just numbers m data structure: sorted array — O(nlogn)

= we look for all numbers in a given interval m query: binary search — O(log n + k)
(k = output size)

Solution 2

= pbinary search tree with one leaf for each point
m query: search in the search tree

How does the search work? Which values do we store at the inner nodes?

AKIT

1D Range Queries

Problem: Range Queries

Given a set of points P € R and a box B = [a1, b1] X [as, bo] X - -+ X [aq4, bg], find all points
in PN B.

Simplest Case: d =1 Solution 1 [1]2]3]4[5]6]7]8]

= the points are just numbers m data structure: sorted array — O(nlogn)

= we look for all numbers in a given interval m query: binary search — O(log n + k)
(k = output size)

Solution 2

= pbinary search tree with one leaf for each point
m query: search in the search tree

How does the search work? Which values do we store at the inner nodes?

AKIT

2D Range Queries

Idea

5 Thomas Blasius — Computational Geometry

FNWAROON® <

L
-t
op
=

12345678 X

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

12345678 X

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

5 Thomas Blasius — Computational Geometry

HNWROON® <

L
Ay
o
My

12345678 X

AKIT

2D Range Queries

L
Ay
oy
My

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

HFNWROON® <

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X

5 Thomas Blasius — Computational Geometry ﬂ(IT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem
m y-search is done on a subset of points

5 Thomas Blasius — Computational Geometry

12345678 X

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3|3,8(4,4|5,6|6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

Idea
m store y-sorted array for few important subsets

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3|3,8(4,4|5,6|6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1]2,3(3,8(4,4|5,6(6,2(7,7

8,5

Problem
m y-search is done on a subset of points

= we cannot store a y-sorted array for
each possible subset

Idea

m store y-sorted array for few important subsets
® nodes in the x-tree define important subsets

12345678 X

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1]2,3(3,8(4,4|5,6(6,2(7,7

8,5

Problem
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets

12345678 X

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for JEyNERESEEe
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets
® this data structure is called 2D range tree

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for Whv not?
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets
® this data structure is called 2D range tree

AKIT

2D Range Queries

Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

search for x € [a1, b1]: |1,1|2,3(3,8(4,4|5,6(6,2|7,7|8,5

Problem 12345678 X
m y-search is done on a subset of points

= we cannot store a y-sorted array for Whv not?
each possible subset Y '

Idea
m store y-sorted array for few important subsets

® nodes in the x-tree define important subsets
® this data structure is called 2D range tree

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

ai bl

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [as, by] — output found points

ai bl

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [a,, bo] — output found points

Running Time Of The Query a by

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [as, by] — output found points

Running Time Of The Query a by
= search in the x-tree — O(log n)

AKIT

1,1

Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [as, by] — output found points

Running Time Of The Query a by
= search in the x-tree — O(log n)

= search in O(log n) y-arrays — O(log” n)

AKIT

Queries In A 2D Range Tree

Idea
m store y-sorted array for few important subsets

= nodes in the x-tree define important subsets
= this data structure is called 2D range tree

LK IN ||

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [as, by] — output found points

Running Time Of The Query

= search in the x-tree — O(log n)

: N o
N O(Iog2 n) The subtrees yield disjoint sets of points!

= search in O(Iog ”) y-arrays Does this make it better than log® n?

(remember: +O(k) for the output size)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. L 2,3 3,8/ 5.6
® nodes in the x-tree define important subsets - 2 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure
= compute the x-tree — O(nlog n)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. L 2,3 3,8/ 5.6
® nodes in the x-tree define important subsets - 2 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure
= compute the x-tree — O(nlog n)

= sort each of the y-arrays

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. L 2,3 3,8/ 5.6
® nodes in the x-tree define important subsets - 2 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure
= compute the x-tree — O(nlog n)

= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. L 2,3 3,8/ J5,6
® nodes in the x-tree define important subsets - 2 [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure
= compute the x-tree — O(nlog n)

= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step

- sort all points once by y — O(nlog n)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step

- sort all points once by y — O(nlog n)

- split sorted array to obtain sorted array for the children

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step
- sort all points once by y — O(nlog n)
- split sorted array to obtain sorted array for the children: O(n) per layer — O(nlog n)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step — O(nlog n)
- sort all points once by y — O(nlog n)
- split sorted array to obtain sorted array for the children: O(n) per layer — O(nlog n)

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step — O(nlog n)
- sort all points once by y — O(nlog n)
- split sorted array to obtain sorted array for the children: O(n) per layer — O(nlog n)

Memory Consumption

AKIT

1,1

Computing A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets [

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5(|3,8
= this data structure is called 2D range tree w

Computing The Data Structure

= compute the x-tree — O(nlog n)
= sort each of the y-arrays: O(nlog n) per layer — O(nlog” n)
= improving the second step — O(nlog n)
- sort all points once by y — O(nlog n)
- split sorted array to obtain sorted array for the children: O(n) per layer — O(nlog n)

Memory Consumption
= O(n) per layer — O(nlog n)

AKIT

What Is The Solution To The Query [4, 11] x [3,7]?

AKIT

What Is The Solution To The Query [4, 11] x [3,7]?

AKIT

General Range Trees

9 Thomas Blasius — Computational Geometry &(IT

General Range Trees

Idea For Dimension d > 2

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
= building the binary search tree for dimension 1: O(nlog n) time and O(n) space

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
= building the binary search tree for dimension 1: O(nlog n) time and O(n) space

= per level: (d — 1)-dim range trees for n points in total = O(nlog® 2 n) time and space per layer

9 Thomas Blasius — Computational Geometry ﬂ(IT

General Range Trees

Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
= building the binary search tree for dimension 1: O(nlog n) time and O(n) space

= per level: (d — 1)-dim range trees for n points in total = O(nlog® 2 n) time and space per layer
= query: O(log n) for first search plus O(log n) queries in (d — 1)-dim range trees (with disjoint output!)

9 Thomas Blasius — Computational Geometry ﬂ(IT

Can We

Current State

range query
precomputation
memory

Improve?
d=1 d=2 d> 2
logn+ k log?n+k logn+ k
nlog n nlogn nlog?™*
n nlogn nlog?*

n

n

AKIT

Can We

Current State

range query
precomputation
memory

Improve?
d=1 d=2 d> 2
logn+ k log?n+k logn+ k
nlog n nlogn nlog® 1
n nlogn nlog?™!

n

n

= for each dimension, we lose a log n factor

AKIT

Can We

Current State

range query
precomputation
memory

Improve?
d=1 d=2 d> 2
logn+ k log?n+k logn+ k
nlog n nlogn nlog® 1
n nlogn nlog?1

n

n

= for each dimension, we lose a log n factor
= if we improve d = 2, we also improve d > 2

AKIT

Can We

Current State

range query
precomputation
memory

Improve?
d=1 d=2
logn+ k log?n+ k
nlog n nlogn

n nlogn

d~>2 ® foreach dimension, we lose a log n factor

log? n+ k = if we improve d = 2, we also improve d > 2

nlog? 'n m fromd = 1to d = 2, we already saved log n

nlog? ! n In precomputation
(the trick with sorting only once and then splitting the sorted array)

AKIT

Can We Improve?

Current State

d=1 d =2 d~>2 ® foreach dimension, we lose a log n factor
range query logn+ k log?n+ k log?n+ k ™ if weimprove d = 2, we also improve d > 2
precomputation nlogn nlogn nlog?*n mfromd = 1to d = 2, we already saved log n
memory n nlogn nlog? tn In precomputation

(the trick with sorting only once and then splitting the sorted array)

Today
® save log n query time for d = 2

® also saves a log n factor for all higher dimensions

AKIT

Can We Improve?

Current State

d=1 d =2 d~>2 ® foreach dimension, we lose a log n factor
range query logn+ k log?n+k log?n+ k ™ if weimprove d = 2, we also improve d > 2
precomputation nlogn nlogn nlog?*n mfromd = 1to d = 2, we already saved log n
memory n nlogn nlog? tn In precomputation

(the trick with sorting only once and then splitting the sorted array)

Today
® save log n query time for d = 2

® also saves a log n factor for all higher dimensions

Next Lecture
= save another log n factor in query time for d = 3

= pay for this with an additional log n factor in precomputation time and memory

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a;, b] f }
- implicit representation via O(log n) subtrees

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)
= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b]
- implicit representation via O(log n) subtrees
= binary search with respect to y
- one search (or two) for each subtree

- O(log n) per search — O(log? n)

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b] f
- implicit representation via O(log n) subtrees " by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

- O(log n) per search — O(log? n)

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a;, b] f }
- implicit representation via O(log n) subtrees " by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

= we always search for the same numbers
- O(log n) per search — O(log? n)

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a;, b] f }
- implicit representation via O(log n) subtrees " by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

= we always search for the same numbers

- O(log n) per search — O(log? n) = we only need so long as the numbers are
split into subsets

AKIT

Why Is It So Expensive?

Recall: Query In O(log® n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a;, b] f }
- implicit representation via O(log n) subtrees " by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

= we always search for the same numbers

= we only need so long as the numbers are
split into subsets

= searching on all n numbers would be faster

- O(log n) per search — O(log? n)

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b]
- implicit representation via O(log n) subtrees o by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

= we always search for the same numbers

= we only need so long as the numbers are
split into subsets

= searching on all n numbers would be faster

- O(log n) per search — O(log? n)

Idea: search only once in a/SUperset of the relevant points

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b]
- implicit representation via O(log n) subtrees o by

Actually...
= binary search with respect to y = we only search on < n numbers in total
- one search (or two) for each subtree

= we always search for the same numbers

= we only need so long as the numbers are
split into subsets

= searching on all n numbers would be faster

- O(log n) per search — O(log? n)

Idea: search only once in a/SUperset of the relevant points
Problem: result potentially contains points not in the x-range

AKIT

Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b]
- implicit representation via O(log n) subtrees o by

Actually...
= binary search with respect to y

= we only search on < n numbers in total
- one search (or two) for each subtree = we always search for the same numbers

= we only need so long as the numbers are
split into subsets

= searching on all n numbers would be faster

- O(log n) per search — O(log? n)

Idea: search only once in a/SUperset of the relevant points
Problem: result potentially contains points not in the x-range

Idea: search the position in the superset but list the result in the correct subsets

AKIT

Searching In A Superset

Situation (Simplified)

AKIT

Searching In A Superset

Situation (Simplified)
m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m search for x in A

= find x in B without searching again B = 21812]16|32|34

AKIT

Searching In A Superset

Situation (Simplified)
m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m search for x in A

= find x in B without searching again B = 21812]16|32|34

Case1: x € B

AKIT

Searching In A Superset

Situation (Simplified)

m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

2(5(8

2|16

17

25

23

32(33|34

AN

1
2|8

12

16

32

3

s

AKIT

Searching In A Superset

Situation (Simplified)

m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B

2(5(8

2(16

17

25

23

32(33|34

AN

1
2

8

12

16

32

3

s

AKIT

Searching In A Superset

Situation (Simplified)

m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

2(5(8

2|16

17

25

23

32(33|34

AN

1
2

8

12

16

32

3

s

AKIT

Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

AKIT

Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

Case3: x Z A

AKIT

Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

Case3: x Z A
m goal: find predecessor of x in B, when knowing the predecessor of x in A

AKIT

Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

Case3: x Z A
m goal: find predecessor of x in B, when knowing the predecessor of x in A

m use case 1 or2 — find xin Bin O(1)

AKIT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

11 @
I I L
12345678 X

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

. /%%

Y Y=
A N Wi

AKIT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

S NN~
ir SO s

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

. . . < <b
= solution: store pointers only for children OR

a b,

- N /2&\
ir SO s

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset

= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

dil b1

b>

d?

RFNWAOON®O <

12345678 X

13 Thomas Blasius — Computational Geometry

116,22, 3]4,4] 8.5
~—J

3,8

4,

7,7 8,5

AKIT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

dil b1

b>

d?

RFNWAOON®O <

12345678 X

13 Thomas Blasius — Computational Geometry

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

< @< b [1,1/6,2(2,3(4,4|8,5(5,6/7,7(3,8

a b a2/1’2 ao by
y 1 1 a { ﬁ bl \
8 a1 < 1,1|2,3|4,4(3,8 ®< by |6
5 2
‘3‘ @ 1,1(2,3 ® [4,4]3,8 ® [6,2]5 517.7
2 a2
1
12345678 X 1,1 2,3 3,8 4,4 5,6 6,2 7,7 8, 5

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

. . . < @<b (1,1]6,2(2,3|4,4|8,5|5,6(7,7(3,8
= solution: store pointers only for children ™ = OF 1/
3 b a b> ao b>
y ' ' a ﬁ by h 3
8 a; < 1,1(2,3(4,4|3,8 ®< b1 |6,2(8,5(5,6(7,7
7 J N J/ N
6 b2 az/ b2 \az b2 an b2 >< an b2
5 a1 [1d { ARER
4 @ 1,1(2,3 ® [4,4]3.8 ® |6,2]5,6 @ |8,5(7,7
3 ar v
! / \ %
12345678 X 1,1 2,3 3,8 4,4 5,6 6,2 7,7 8,5

13 Thomas Blasius — Computational Geometry ﬂ(IT

And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets

_ a b>
= many subsets — too many pointers
. . . < @®<b (1,1]6,2(2,3(4,4/8,5|5,6|7,7(3,8
= solution: store pointers only for children ™ = OF 1/
3 b a b> ao b>
y ' ! a | ﬁ by h 3
8 a; < 1,1(2,3(4,4|3,8 ®< b1 |6,2(8,5(5,6(7,7
7 / N N
6 b2 az/ b2 \az b2 az/ b2 >< an b2
5 ai { w[b1)r 1
‘31 D<a [1,1(2,3 ® |4,4]3,8 ® [6,2]5,6)p < @D|8,5(7,7
> 2 / \ >< %
1 a» . bo
1

ai (2,3 3,8 4,4 5,6 6,2 b1|7,7 8,5

12345678 X 1,

13 Thomas Blasius — Computational Geometry ﬂ(IT

Does This All Work Now?

Range Query

AKIT

Does This All Work Now?

Range Query

= search in y-Array at the root O(log n)

= walk down the x-tree (log n steps) O(log n)
- decision for left or right O(1)
- finding the range [a,, by| in the y-array (without searching) O(1)

= output result O(k)

AKIT

Does This All Work Now?

Range Query

= search in y-Array at the root O(log n)

= walk down the x-tree (log n steps) O(log n)
- decision for left or right O(1)
- finding the range [a,, by| in the y-array (without searching) O(1)

= output result O(k)

Memory: only constant factor overhead for each y-array

AKIT

Does This All Work Now?

Range Query

= search in y-Array at the root O(log n)

= walk down the x-tree (log n steps) O(log n)
- decision for left or right O(1)
- finding the range [a,, by| in the y-array (without searching) O(1)

= output result O(k)

Memory: only constant factor overhead for each y-array

Precomputation: sort only at the root and split for the children (additionally adding pointers)

AKIT

Does This All Work Now?

Range Query

= search in y-Array at the root O(log n)

= walk down the x-tree (log n steps) O(log n)
- decision for left or right O(1)
- finding the range [a,, bo| in the y-array (without searching) O(1)

= output result O(k)

Memory: only constant factor overhead for each y-array

Precomputation: sort only at the root and split for the children (additionally adding pointers)

14 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
= generalization of the binary search to multiple dimensions

AKIT

Wrap-Up

What Have We Learned Today?
= generalization of the binary search to multiple dimensions
® range trees: nested binary search trees

AKIT

Wrap-Up

What Have We Learned Today?
= generalization of the binary search to multiple dimensions
® range trees: nested binary search trees

® one big search is better than many small searches — clever pointers save log n

AKIT

Wrap-Up

What Have We Learned Today?
m generalization of the binary search to multiple dimensions

® range trees: nested binary search trees
= one big search is better than many small searches — clever pointers save log n

15 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m generalization of the binary search to multiple dimensions

® range trees: nested binary search trees
= one big search is better than many small searches — clever pointers save log n

Next Lecture
= generalization of the concept of clever pointers — fractional cascading

15 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m generalization of the binary search to multiple dimensions

® range trees: nested binary search trees
= one big search is better than many small searches — clever pointers save log n

Next Lecture
= generalization of the concept of clever pointers — fractional cascading

= |ets us save an additional log n factor in the query (d > 3)

15 Thomas Blasius — Computational Geometry ﬂ(IT

Wrap-Up

What Have We Learned Today?
m generalization of the binary search to multiple dimensions

® range trees: nested binary search trees
= one big search is better than many small searches — clever pointers save log n

Next Lecture
= generalization of the concept of clever pointers — fractional cascading

= |ets us save an additional log n factor in the query (d > 3)
m costs an additional log n factor precomputation time and memory

15 Thomas Blasius — Computational Geometry ﬂ(IT

Similar Data Structures

Range Tree
m stores points

= Which points lie in a given interval?

AKIT

Similar Data Structures

Range Tree
m stores points

= Which points lie in a given interval?

Segment Tree
m stores intervals

= Which intervals contain a given point?

AKIT

Similar Data Structures

Range Tree Interval Tree
m stores points m stores intervals
= Which points lie in a given interval? = Which intervals intersect a given interval?

Segment Tree
m stores intervals

= Which intervals contain a given point?

AKIT

Similar Data Structures

Range Tree Interval Tree

m stores points m stores intervals

= Which points lie in a given interval? = Which intervals intersect a given interval?
Segment Tree Segment Tree

= stores intervals m stores weighted points

= Which intervals contain a given point? = What is the sum of weights of points in a

given interval?

AKIT

Similar Data Structures

Range Tree Interval Tree

m stores points m stores intervals

= Which points lie in a given interval? = Which intervals intersect a given interval?
Segment Tree Segment Tree

= stores intervals m stores weighted points

= Which intervals contain a given point? = What is the sum of weights of points in a

given interval?
Similarities
= can be nested to extend to higher dimensions
= fractional cascading can help to save logarithmic factors

AKIT

