
1

Computational Geometry

Thomas Bläsius

Orthogonal Range Queries: Range-Trees



Thomas Bläsius – Computational Geometry2

Overview

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
randomized algorithms
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries
develop data structure based on P such that

each query is fast

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries
develop data structure based on P such that

each query is fast
data structure can be build efficiently

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries
develop data structure based on P such that

each query is fast
data structure can be build efficiently
data structure requires little space

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry3

Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries
develop data structure based on P such that

each query is fast
data structure can be build efficiently
data structure requires little space

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.

What are possible applications?



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1
data structure: sorted array
query: binary search

→ O(n log n)

→ O(log n + k)

1 2 3 4 5 6 7 8

(k = output size)

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1
data structure: sorted array
query: binary search

→ O(n log n)

→ O(log n + k)

Solution 2
binary search tree with one leaf for each point
query: search in the search tree

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(k = output size)

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1
data structure: sorted array
query: binary search

→ O(n log n)

→ O(log n + k)

Solution 2
binary search tree with one leaf for each point
query: search in the search tree

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(k = output size)

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.

How does the search work?



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1
data structure: sorted array
query: binary search

→ O(n log n)

→ O(log n + k)

Solution 2
binary search tree with one leaf for each point
query: search in the search tree

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(k = output size)

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.

How does the search work? Which values do we store at the inner nodes?



Thomas Bläsius – Computational Geometry4

1D Range Queries

Simplest Case: d = 1

the points are just numbers
we look for all numbers in a given interval

Solution 1
data structure: sorted array
query: binary search

→ O(n log n)

→ O(log n + k)

Solution 2
binary search tree with one leaf for each point
query: search in the search tree

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2

3

4

1

6

5 7

(k = output size)

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.

How does the search work? Which values do we store at the inner nodes?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]: 1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry5

2D Range Queries
a1 b1

b2

a2

Idea
first search in the first dimension (x)

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

search in the second dimension (y ) on the result

search for x ∈ [a1; b1]:

Problem
y -search is done on a subset of points
we cannot store a y -sorted array for
each possible subset

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

Why not?



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

find the predecessor of a1 and the successor of b1 in the x-tree

a1 b1

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

find the predecessor of a1 and the successor of b1 in the x-tree
for nodes directly below the path: binary search in the corresponding
y -Array for [a2; b2] → output found points

a1 b1

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

Running Time Of The Query

find the predecessor of a1 and the successor of b1 in the x-tree
for nodes directly below the path: binary search in the corresponding
y -Array for [a2; b2] → output found points

a1 b1

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

Running Time Of The Query

find the predecessor of a1 and the successor of b1 in the x-tree
for nodes directly below the path: binary search in the corresponding
y -Array for [a2; b2] → output found points

a1 b1
search in the x-tree → O(log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

Running Time Of The Query

find the predecessor of a1 and the successor of b1 in the x-tree
for nodes directly below the path: binary search in the corresponding
y -Array for [a2; b2] → output found points

a1 b1
search in the x-tree → O(log n)

search in O(log n) y -arrays → O(log2 n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry6

Queries In A 2D Range Tree

Query [a1; b1]× [a2; b2]

Running Time Of The Query

find the predecessor of a1 and the successor of b1 in the x-tree
for nodes directly below the path: binary search in the corresponding
y -Array for [a2; b2] → output found points

a1 b1
search in the x-tree → O(log n)

search in O(log n) y -arrays → O(log2 n)
(remember: +O(k) for the output size)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree

The subtrees yield disjoint sets of points!
Does this make it better than log2 n?



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

split sorted array to obtain sorted array for the children: O(n) per layer → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

split sorted array to obtain sorted array for the children: O(n) per layer → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

split sorted array to obtain sorted array for the children: O(n) per layer → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

split sorted array to obtain sorted array for the children: O(n) per layer → O(n log n)

Memory Consumption

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry7

Computing A 2D Range Tree

Computing The Data Structure
compute the x-tree → O(n log n)

sort each of the y -arrays: O(n log n) per layer → O(n log2 n)

improving the second step → O(n log n)

sort all points once by y → O(n log n)

split sorted array to obtain sorted array for the children: O(n) per layer → O(n log n)

Memory Consumption
O(n) per layer → O(n log n)

Idea
store y -sorted array for few important subsets
nodes in the x-tree define important subsets

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

this data structure is called 2D range tree



Thomas Bläsius – Computational Geometry8

What Is The Solution To The Query [4; 11]× [3; 7]?

r

p
c

d

k

f

g

h

i

j

u

‘

m

n

o

b

q

s

a

t

e

v

w

x

y

z



Thomas Bläsius – Computational Geometry8

What Is The Solution To The Query [4; 11]× [3; 7]?

r

p
c

d

k

f

g

h

i

j

u

‘

m

n

o

b

q

s

a

t

e

v

w

x

y

z



Thomas Bläsius – Computational Geometry9

General Range Trees

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.

d
logd−1 n

d

logd−1 n



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.

d
logd−1 n

d

logd−1 n



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
building the binary search tree for dimension 1: O(n log n) time and O(n) space

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.

d
logd−1 n

d

logd−1 n



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
building the binary search tree for dimension 1: O(n log n) time and O(n) space

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.

d
logd−1 n

d

logd−1 n

per level: (d − 1)-dim range trees for n points in total ⇒ O(n logd−2 n) time and space per layer



Thomas Bläsius – Computational Geometry9

General Range Trees

Idea For Dimension d > 2
binary search tree for dimension 1
every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
building the binary search tree for dimension 1: O(n log n) time and O(n) space

query: O(log n) for first search plus O(log n) queries in (d − 1)-dim range trees (with disjoint output!)

Theorem
The range tree for n points in R2 can be computed in O(n log n) time, requires O(n log n)
memory and enables range queries in O(log2 n + k) time.

d
logd−1 n

d

logd−1 n

per level: (d − 1)-dim range trees for n points in total ⇒ O(n logd−2 n) time and space per layer



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

Current State



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

for each dimension, we lose a log n factor
Current State



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

for each dimension, we lose a log n factor
if we improve d = 2, we also improve d > 2

Current State



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

for each dimension, we lose a log n factor
if we improve d = 2, we also improve d > 2

from d = 1 to d = 2, we already saved log n
in precomputation

Current State

(the trick with sorting only once and then splitting the sorted array)



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

for each dimension, we lose a log n factor
if we improve d = 2, we also improve d > 2

from d = 1 to d = 2, we already saved log n
in precomputation

Today
save log n query time for d = 2

also saves a log n factor for all higher dimensions

Current State

(the trick with sorting only once and then splitting the sorted array)



Thomas Bläsius – Computational Geometry10

Can We Improve?

d = 1 d = 2 d > 2

range query

precomputation
memory

log n + k

n log n

n

log2 n + k

n log n

n log n

logd n + k

n logd−1 n

n logd−1 n

for each dimension, we lose a log n factor
if we improve d = 2, we also improve d > 2

from d = 1 to d = 2, we already saved log n
in precomputation

Today
save log n query time for d = 2

also saves a log n factor for all higher dimensions

Next Lecture
save another log n factor in query time for d = 3

pay for this with an additional log n factor in precomputation time and memory

Current State

(the trick with sorting only once and then splitting the sorted array)



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points
Problem: result potentially contains points not in the x-range



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points
Problem: result potentially contains points not in the x-range
Idea: search the position in the superset but list the result in the correct subsets



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B

pointer from every a ∈ A\B to its predecessor in A∩B → find x in B in O(1)



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B

pointer from every a ∈ A\B to its predecessor in A∩B → find x in B in O(1)

Case 3: x ̸∈ A



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B

pointer from every a ∈ A\B to its predecessor in A∩B → find x in B in O(1)

Case 3: x ̸∈ A

goal: find predecessor of x in B, when knowing the predecessor of x in A



Thomas Bläsius – Computational Geometry12

Searching In A Superset

Situation (Simplified)
consider sorted arrays of numbers A and B with B ⊆ A

search for x in A

find x in B without searching again

2 5 8 12 16 17 25 28 32 33 34

2 8 12 16 32 34

A =

B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B

pointer from every a ∈ A\B to its predecessor in A∩B → find x in B in O(1)

Case 3: x ̸∈ A

goal: find predecessor of x in B, when knowing the predecessor of x in A

use case 1 or 2 → find x in B in O(1)



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1

2; 3

3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

5; 6

6; 2

7; 7

8; 5

1; 1

2; 3

3; 8

4; 4

1; 1

2; 3 3; 8

4; 4

5; 6

6; 2

7; 7

8; 5

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a1 b1



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a1 b1



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a2 b2a2 b2
a1 b1



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a2 b2a2 b2

a1 ≤ ≤ b1

a1 b1

a1 b1



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a2 b2a2 b2

a1 ≤ ≤ b1

a2 b2 a2 b2 a2 b2 a2 b2

a1 b1

a1 b1



Thomas Bläsius – Computational Geometry13

And Now For Range-Trees

a1 b1So Many Subsets

search for a2 and b2 in the superset
Plan

find a2 and b2 in the subsets without searching

many subsets → too many pointers
solution: store pointers only for children

a1 b1

b2

a2

x

y

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

1; 1 2; 3 3; 8 4; 4 5; 6 6; 2 7; 7 8; 5

1 3 5 7

6

4

2

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

1; 1 2; 3 3; 84; 4 5; 66; 2 7; 78; 5

b2a2

a1 ≤ ≤ b1

a2 b2a2 b2

a1 ≤ ≤ b1

a2 b2 a2 b2 a2 b2 a2 b2

a1 b1

a1 b1
≤ a1

a1

b1 ≤

b1

a2 b2



Thomas Bläsius – Computational Geometry14

Does This All Work Now?

Range Query



Thomas Bläsius – Computational Geometry14

Does This All Work Now?

Range Query
search in y -Array at the root O(log n)

walk down the x-tree (log n steps) O(log n)

decision for left or right O(1)

finding the range [a2; b2] in the y -array (without searching) O(1)

output result O(k)



Thomas Bläsius – Computational Geometry14

Does This All Work Now?

Range Query
search in y -Array at the root O(log n)

walk down the x-tree (log n steps) O(log n)

decision for left or right O(1)

finding the range [a2; b2] in the y -array (without searching) O(1)

output result O(k)

Memory: only constant factor overhead for each y -array



Thomas Bläsius – Computational Geometry14

Does This All Work Now?

Range Query
search in y -Array at the root O(log n)

walk down the x-tree (log n steps) O(log n)

decision for left or right O(1)

finding the range [a2; b2] in the y -array (without searching) O(1)

output result O(k)

Memory: only constant factor overhead for each y -array

Precomputation: sort only at the root and split for the children (additionally adding pointers)



Thomas Bläsius – Computational Geometry14

Does This All Work Now?

Range Query
search in y -Array at the root O(log n)

walk down the x-tree (log n steps) O(log n)

decision for left or right O(1)

finding the range [a2; b2] in the y -array (without searching) O(1)

output result O(k)

Memory: only constant factor overhead for each y -array

Precomputation: sort only at the root and split for the children (additionally adding pointers)

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n

Next Lecture
generalization of the concept of clever pointers → fractional cascading

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n

Next Lecture
generalization of the concept of clever pointers → fractional cascading
lets us save an additional log n factor in the query (d ≥ 3)

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.



Thomas Bläsius – Computational Geometry15

Wrap-Up

What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n

Next Lecture
generalization of the concept of clever pointers → fractional cascading
lets us save an additional log n factor in the query (d ≥ 3)
costs an additional log n factor precomputation time and memory

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.



Thomas Bläsius – Computational Geometry16

Similar Data Structures

Range Tree
stores points
Which points lie in a given interval?



Thomas Bläsius – Computational Geometry16

Similar Data Structures

Segment Tree

Range Tree
stores points
Which points lie in a given interval?

stores intervals
Which intervals contain a given point?



Thomas Bläsius – Computational Geometry16

Similar Data Structures

Segment Tree

Range Tree
stores points
Which points lie in a given interval?

stores intervals
Which intervals contain a given point?

Interval Tree
stores intervals
Which intervals intersect a given interval?



Thomas Bläsius – Computational Geometry16

Similar Data Structures

Segment Tree

Range Tree
stores points
Which points lie in a given interval?

stores intervals
Which intervals contain a given point?

Interval Tree
stores intervals
Which intervals intersect a given interval?

Segment Tree
stores weighted points
What is the sum of weights of points in a
given interval?



Thomas Bläsius – Computational Geometry16

Similar Data Structures

Segment Tree

Range Tree
stores points
Which points lie in a given interval?

stores intervals
Which intervals contain a given point?

Interval Tree
stores intervals
Which intervals intersect a given interval?

Segment Tree
stores weighted points
What is the sum of weights of points in a
given interval?

Similarities
can be nested to extend to higher dimensions
fractional cascading can help to save logarithmic factors


