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Overview

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
randomized algorithms
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs
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Range Queries

a1 b1

b2

a2

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.
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Range Queries

a1 b1

b2

a2

Static Variant
point set P is fixed
many different range queries
develop data structure based on P such that

each query is fast
data structure can be build efficiently
data structure requires little space

Problem: Range Queries
Given a set of points P ∈ Rd and a box B = [a1; b1] × [a2; b2] × · · · × [ad ; bd ], find all points
in P ∩ B.

What are possible applications?
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1D Range Queries
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The subtrees yield disjoint sets of points!
Does this make it better than log2 n?
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Theorem
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memory and enables range queries in O(log2 n + k) time.
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every node stores a (d − 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
building the binary search tree for dimension 1: O(n log n) time and O(n) space

query: O(log n) for first search plus O(log n) queries in (d − 1)-dim range trees (with disjoint output!)

Theorem
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Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)

finds all points with x-coordinate in [a1; b1]

implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points
Problem: result potentially contains points not in the x-range



Thomas Bläsius – Computational Geometry11

Why Is It So Expensive?

Recall: Query In O(log2 n + k)

a1 b1

search in the x-tree → O(log n)
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implicit representation via O(log n) subtrees
binary search with respect to y

one search (or two) for each subtree

O(log n) per search → O(log2 n)

Actually. . .
we only search on ≤ n numbers in total
we always search for the same numbers
we only need so long as the numbers are
split into subsets
searching on all n numbers would be faster

Idea: search only once in a superset of the relevant points
Problem: result potentially contains points not in the x-range
Idea: search the position in the superset but list the result in the correct subsets
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B =

Case 1: x ∈ B
pointers form elements in A to copies in B → find x in B in O(1)

Case 2: x ∈ A but x ̸∈ B

goal: find predecessor of x in B

pointer from every a ∈ A\B to its predecessor in A∩B → find x in B in O(1)

Case 3: x ̸∈ A

goal: find predecessor of x in B, when knowing the predecessor of x in A

use case 1 or 2 → find x in B in O(1)
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Does This All Work Now?

Range Query
search in y -Array at the root O(log n)

walk down the x-tree (log n steps) O(log n)

decision for left or right O(1)

finding the range [a2; b2] in the y -array (without searching) O(1)

output result O(k)

Memory: only constant factor overhead for each y -array

Precomputation: sort only at the root and split for the children (additionally adding pointers)

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.
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What Have We Learned Today?
generalization of the binary search to multiple dimensions
range trees: nested binary search trees
one big search is better than many small searches → clever pointers save log n

Next Lecture
generalization of the concept of clever pointers → fractional cascading
lets us save an additional log n factor in the query (d ≥ 3)
costs an additional log n factor precomputation time and memory

Theorem (improved range trees)
The range tree for n points in Rd can be computed in O(n logd−1 n) time, requires
O(n logd−1 n) memory and enables range queries in O(logd−1 n + k) time.
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Range Tree
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Which points lie in a given interval?

stores intervals
Which intervals contain a given point?

Interval Tree
stores intervals
Which intervals intersect a given interval?

Segment Tree
stores weighted points
What is the sum of weights of points in a
given interval?
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Similar Data Structures

Segment Tree

Range Tree
stores points
Which points lie in a given interval?

stores intervals
Which intervals contain a given point?

Interval Tree
stores intervals
Which intervals intersect a given interval?

Segment Tree
stores weighted points
What is the sum of weights of points in a
given interval?

Similarities
can be nested to extend to higher dimensions
fractional cascading can help to save logarithmic factors


