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Overview

Basic Toolbox

= convex hul Q
m line intersection

= triangulation

= plane intersection

Advanced Toolbox
= \oronoi diagrams

= Delaunay triangulations o °

= randomized algorithms
= complexity @

Geometric Data Structures
m orthogonal range searching

m space partitioning
= point location °

Related Topics
= What is geometry?

= hyperbolic geometry
= geometric graphs
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Static Variant
= point set P is fixed

= many different range queries
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Range Queries

Problem: Range Queries

Given a set of points P € R and a box B = [a1, b1] X [as, bo] X - -+ X [aq4, bg], find all points
in PN B.

Static Variant
= point set P is fixed

= many different range queries
m develop data structure based on P such that
- each query is fast

- data structure can be build efficiently an by
- data structure requires little space

What are possible applications?
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1D Range Queries

Simplest Case: d =1
= the points are just numbers
= we look for all numbers in a given interval
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Simplest Case: d =1
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Solution 1
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1D Range Queries

Simplest Case: d =1

Solution 1 [1[2]3]4]5]6]7]8]
= the points are just numbers m data structure: sorted array — O(nlog n)
= we look for all numbers in a given interval ® query: binary search — O(log n + k)

(k = output size)
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= the points are just numbers m data structure: sorted array — O(nlog n)
= we look for all numbers in a given interval ® query: binary search — O(log n + k)

(k = output size)
Solution 2
= binary search tree with one leaf for each point

m query: search in the search tree
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2D Range Queries

Idea
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Idea
= first search in the first dimension (x)

m search in the second dimension (y) on the result

HFNWROON® <
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Queries In A 2D Range Tree

6,2
2,3
4,4
Idea 8,5
= store y-sorted array for few important subsets L1 5,6

. . . 2,3
® nodes in the x-tree define important subsets 7

: : 1,1{§2,383,34,4 5,66,2Q(7,7(]8,5( |3,8
= this data structure is called 2D range tree w
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Queries In A 2D Range Tree

Idea
m store y-sorted array for few important subsets

= nodes in the x-tree define important subsets
= this data structure is called 2D range tree

LK IN ||

Query [al, b1] X [az, bz]
= find the predecessor of a; and the successor of b; in the x-tree

= for nodes directly below the path: binary search in the corresponding
y-Array for [as, by] — output found points

Running Time Of The Query

= search in the x-tree — O(log n)

: N o
N O(Iog2 n) The subtrees yield disjoint sets of points!

= search in O(Iog ”) y-arrays Does this make it better than log® n?

(remember: +O(k) for the output size)
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Idea For Dimension d > 2
= binary search tree for dimension 1

= every node stores a (d — 1)-dim range tree for remaining dimensions
of the points below this node

Proof: induction over d (base case d = 2 already done)
= building the binary search tree for dimension 1: O(nlog n) time and O(n) space

= per level: (d — 1)-dim range trees for n points in total = O(nlog® 2 n) time and space per layer
= query: O(log n) for first search plus O(log n) queries in (d — 1)-dim range trees (with disjoint output!)
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Can We

Current State

range query
precomputation
memory

Improve?
d=1 d=2 d> 2
logn+ k log?n+k logn+ k
nlog n nlogn  nlog?™*
n nlogn  nlog?*

n

n
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Can We Improve?

Current State

d=1 d =2 d~>2 ® foreach dimension, we lose a log n factor
range query logn+ k log?n+k log?n+ k ™ if weimprove d = 2, we also improve d > 2
precomputation nlogn nlogn nlog?*n mfromd = 1to d = 2, we already saved log n
memory n nlogn nlog? tn In precomputation

(the trick with sorting only once and then splitting the sorted array)

Today
® save log n query time for d = 2

® also saves a log n factor for all higher dimensions

Next Lecture
= save another log n factor in query time for d = 3

= pay for this with an additional log n factor in precomputation time and memory
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= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a;, b] f }
- implicit representation via O(log n) subtrees
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Actually...
= binary search with respect to y = we only search on < n numbers in total
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= we always search for the same numbers
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split into subsets
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Why Is It So Expensive?

Recall: Query In O(log” n + k)

= search in the x-tree — O(log n)
- finds all points with x-coordinate in [a1, b]
- implicit representation via O(log n) subtrees o by

Actually...
= binary search with respect to y

= we only search on < n numbers in total
- one search (or two) for each subtree = we always search for the same numbers

= we only need so long as the numbers are
split into subsets

= searching on all n numbers would be faster

- O(log n) per search — O(log? n)

Idea: search only once in a/SUperset of the relevant points
Problem: result potentially contains points not in the x-range

Idea: search the position in the superset but list the result in the correct subsets
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Situation (Simplified)
m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m search for x in A

= find x in B without searching again B = 21812]16|32|34
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m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m search for x in A

= find x in B without searching again B = 21812]16|32|34
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Searching In A Superset

Situation (Simplified)

m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

2(5(8

2|16

17

25

23

32(33|34

AN

1
2|8

12

16

32

3

s
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m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B

2(5(8

2(16

17

25
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Searching In A Superset

Situation (Simplified)

m consider sorted arrays of numbers A and B with B C A A=
m search for x in A

= find x in B without searching again B =

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

2(5(8

2|16

17

25

23

32(33|34

AN

1
2

8

12

16

32

3

s
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Searching In A Superset
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m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)
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Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

Case3: x Z A
m goal: find predecessor of x in B, when knowing the predecessor of x in A
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Searching In A Superset

Situatic.m (Simplified) ~ ﬁ_\\ ~

m consider sorted arrays of numbers A and B with B C A A =|2|5]|812|16|17|25|28|32|33|34
m searchfor xin A \,\,\ (//
= find x in B without searching again B = 21812]16|32|34

Case1: x € B
= pointers form elements in A to copies in B — find x in B in O(1)

Case2: x € Abutx ¢ B
m goal: find predecessor of x in B

= pointer from every a € A\ B toits predecessor in AN B — find x in B in O(1)

Case3: x Z A
m goal: find predecessor of x in B, when knowing the predecessor of x in A

m use case 1 or2 — find xin Bin O(1)
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And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching
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= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children
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12345678 X
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And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

. . . < <b
= solution: store pointers only for children OR

a b,
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ir SO s
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And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset

= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

dil b1

b>

d?

RFNWAOON®O <

12345678 X

13 Thomas Blasius — Computational Geometry
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And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

= solution: store pointers only for children

< @< b [1,1/6,2(2,3(4,4|8,5(5,6/7,7(3,8

a b a2/1’2 ao by
y 1 1 a { ﬁ bl \
8 a1 < 1,1|2,3|4,4(3,8 ®< by |6
5 2
‘3‘ @ 1,1(2,3 ® [4,4]3,8 ® [6,2]5 517.7
2 a2
1
12345678 X 1,1 2,3 3,8 4,4 5,6 6,2 7,7 8, 5

13 Thomas Blasius — Computational Geometry ﬂ(IT



And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets
= many subsets — too many pointers

. . . < @<b (1,1]6,2(2,3|4,4|8,5|5,6(7,7(3,8
= solution: store pointers only for children ™ = OF 1/
3 b a b> ao b>
y ' ' a ﬁ by h 3
8 a; < 1,1(2,3(4,4|3,8 ®< b1 |6,2(8,5(5,6(7,7
7 J N J/ N
6 b2 az/ b2 \az b2 an b2 >< an b2
5 a1 [1d { ARER
4 @ 1,1(2,3 ® [4,4]3.8 ® |6,2]5,6 @ |8,5(7,7
3 ar v
! / \ %
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And Now For Range-Trees

Plan
= search for a, and b, in the[SUperset
= find a, and by in the subsets without searching

So Many Subsets

_ a b>
= many subsets — too many pointers
. . . < @®<b (1,1]6,2(2,3(4,4/8,5|5,6|7,7(3,8
= solution: store pointers only for children ™ = OF 1/
3 b a b> ao b>
y ' ! a | ﬁ by h 3
8 a; < 1,1(2,3(4,4|3,8 ®< b1 |6,2(8,5(5,6(7,7
7 / N N
6 b2 az/ b2 \az b2 az/ b2 >< an b2
5 ai { w[ b1 )r 1
‘31 D<a [1,1(2,3 ® |4,4]3,8 ® [6,2]5,6)p < @D|8,5(7,7
> 2 / \ >< %
1 a» . bo
1

ai (2,3 3,8 4,4 5,6 6,2 b1|7,7 8,5

12345678 X 1,
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- decision for left or right O(1)
- finding the range [a,, by| in the y-array (without searching) O(1)

= output result O(k)
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Does This All Work Now?

Range Query

= search in y-Array at the root O(log n)

= walk down the x-tree (log n steps) O(log n)
- decision for left or right O(1)
- finding the range [a,, bo| in the y-array (without searching) O(1)

= output result O(k)

Memory: only constant factor overhead for each y-array

Precomputation: sort only at the root and split for the children (additionally adding pointers)
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Wrap-Up

What Have We Learned Today?
= generalization of the binary search to multiple dimensions
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Wrap-Up

What Have We Learned Today?
m generalization of the binary search to multiple dimensions

® range trees: nested binary search trees
= one big search is better than many small searches — clever pointers save log n

Next Lecture
= generalization of the concept of clever pointers — fractional cascading

= |ets us save an additional log n factor in the query (d > 3)
m costs an additional log n factor precomputation time and memory
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Similar Data Structures

Range Tree
m stores points

= Which points lie in a given interval?
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Range Tree Interval Tree

m stores points m stores intervals

= Which points lie in a given interval? = Which intervals intersect a given interval?
Segment Tree Segment Tree

= stores intervals m stores weighted points

= Which intervals contain a given point? = What is the sum of weights of points in a

given interval?
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Similar Data Structures

Range Tree Interval Tree

m stores points m stores intervals

= Which points lie in a given interval? = Which intervals intersect a given interval?
Segment Tree Segment Tree

= stores intervals m stores weighted points

= Which intervals contain a given point? = What is the sum of weights of points in a

given interval?
Similarities
= can be nested to extend to higher dimensions
= fractional cascading can help to save logarithmic factors
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