

Computational Geometry Orthogonal Range Queries: Range-Trees

Thomas Bläsius

Overview

Basic Toolbox

- convex hull
- line intersection
- triangulation
- plane intersection

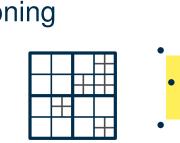
Advanced Toolbox

- Voronoi diagrams
- Delaunay triangulations
- randomized algorithms
- complexity



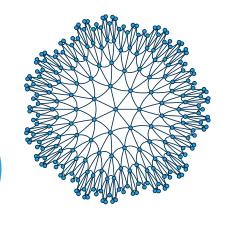
Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location



Related Topics

- What is geometry?
- hyperbolic geometry
- geometric graphs



Range Queries

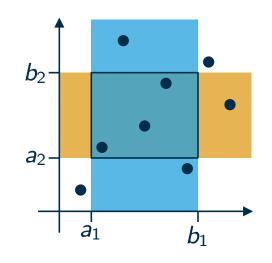
Problem: Range Queries

Given a set of points $P \in \mathbb{R}^d$ and a box $B = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$, find all points in $P \cap B$.

Static Variant

- point set P is fixed
- many different range queries
- develop data structure based on P such that
 - each query is fast
 - data structure can be build efficiently
 - data structure requires little space

What are possible applications?



1D Range Queries

Problem: Range Queries

Given a set of points $P \in \mathbb{R}^d$ and a box $B = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d]$, find all points in $P \cap B$.

Simplest Case: d = 1

- the points are just numbers
- we look for all numbers in a given interval

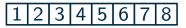
Solution 2

- binary search tree with one leaf for each point
- query: search in the search tree

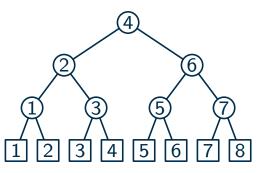
How does the search work?

Solution 1

- data structure: sorted array
- query: binary search



- $\rightarrow O(n \log n)$
- $\rightarrow O(\log n + k)$ (k = output size)



Which values do we store at the inner nodes?

2D Range Queries

Idea

- first search in the first dimension (x)
- search in the second dimension (y) on the result

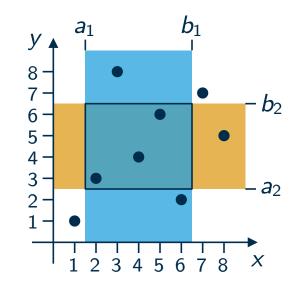
search for $x \in [a_1, b_1]$: **1,1 2,3 3,8 4,4 5,6 6,2 7,7 8,5**

Problem

- y-search is done on a subset of points
- we cannot store a y-sorted array for each possible subset

Idea

- store y-sorted array for few important subsets
- nodes in the x-tree define important subsets
- this data structure is called 2D range tree





Queries In A 2D Range Tree

Idea

- store y-sorted array for few important subsets
- nodes in the x-tree define important subsets
- this data structure is called 2D range tree

Query $[a_1, b_1] \times [a_2, b_2]$

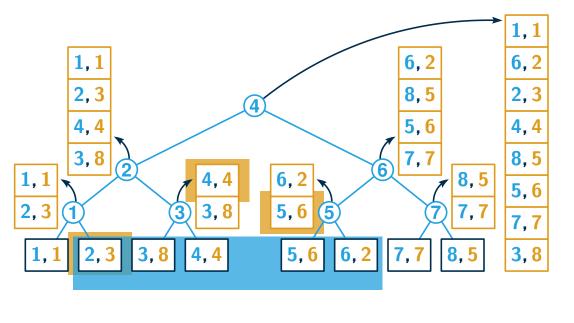
- find the predecessor of a_1 and the successor of b_1 in the x-tree
- for nodes directly below the path: binary search in the corresponding y-Array for [a₂, b₂] → output found points

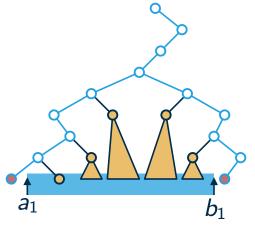
Running Time Of The Query

search in the x-tree

- $\rightarrow O(\log n)$
- search in $O(\log n)$ y-arrays $\rightarrow O(\log^2 n)$

(remember: +O(k) for the output size)





7 Thomas Bläsius – Computational Geometry

Computing A 2D Range Tree

Idea

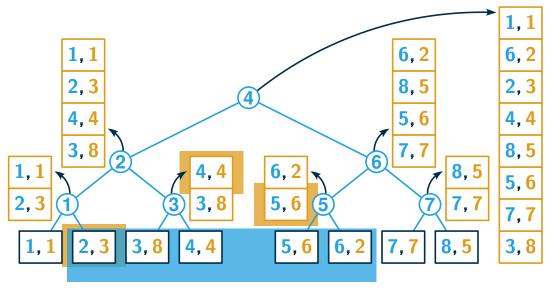
- store y-sorted array for few important subsets
- nodes in the x-tree define important subsets
- this data structure is called 2D range tree

Computing The Data Structure

- compute the x-tree
- sort each of the *y*-arrays: $O(n \log n)$ per layer
- improving the second step
 - sort all points once by y
 - split sorted array to obtain sorted array for the children: O(n) per layer

Memory Consumption

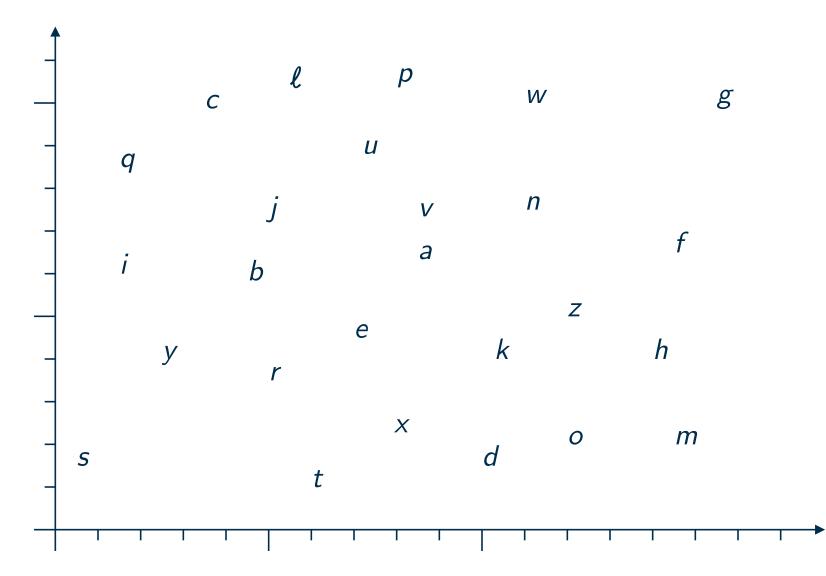
O(n) per layer



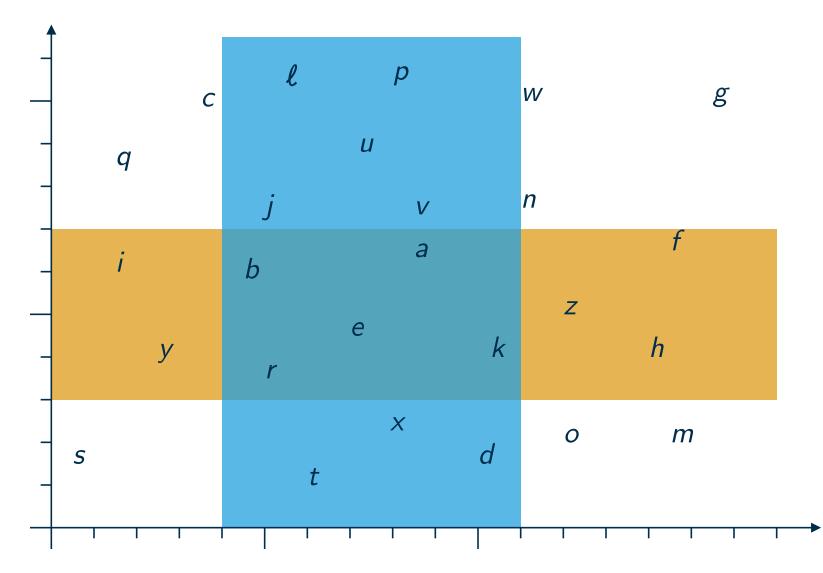
 $\rightarrow O(n \log n)$ $\rightarrow O(n \log^2 n)$ $\rightarrow O(n \log n)$ $\rightarrow O(n \log n)$ $\rightarrow O(n \log n)$ $\rightarrow O(n \log n)$

 $ightarrow O(n \log n)$

What Is The Solution To The Query $[4, 11] \times [3, 7]$?



What Is The Solution To The Query $[4, 11] \times [3, 7]$?



General Range Trees

Theorem The range tree for *n* points in \mathbb{R}^{2^d} can be computed in $O(n \log n)$ time, requires $O(n \log n)$ memory and enables range queries in $O(\log^{2^d} n + k)$ time.

Idea For Dimension d > 2

- binary search tree for dimension 1
- every node stores a (d 1)-dim range tree for remaining dimensions of the points below this node

- **Proof:** induction over *d* (base case d = 2 already done)
- building the binary search tree for dimension 1: $O(n \log n)$ time and O(n) space
- per level: (d-1)-dim range trees for *n* points in total $\Rightarrow O(n \log^{d-2} n)$ time and space per layer
- query: $O(\log n)$ for first search plus $O(\log n)$ queries in (d-1)-dim range trees (with disjoint output!)

Can We Improve?

Current State

	d = 1	<i>d</i> = 2	<i>d</i> > 2
range query	$\log n + k$	$\log^2 n + k$	$\log^d n + k$
precomputation	n log n	n log n	$n\log^{d-1}n$
memory	п	n log n	$n\log^{d-1}n$

- for each dimension, we lose a log *n* factor
- if we improve d = 2, we also improve d > 2
- from d = 1 to d = 2, we already saved log n in precomputation (the trick with sorting only once and then splitting the sorted array)

Today

- save $\log n$ query time for d = 2
- also saves a log n factor for all higher dimensions

Next Lecture

- save another $\log n$ factor in query time for d = 3
- pay for this with an additional log n factor in precomputation time and memory

Why Is It So Expensive?

Recall: Query In $O(\log^2 n + k)$

- search in the *x*-tree $\rightarrow O(\log n)$
 - finds all points with x-coordinate in $[a_1, b_1]$
 - implicit representation via $O(\log n)$ subtrees
- binary search with respect to y
 - one search (or two) for each subtree
 - $O(\log n)$ per search $\rightarrow O(\log^2 n)$

Actually...

- we only search on $\leq n$ numbers in total
- we always search for the same numbers
- we only need so long as the numbers are split into subsets
- searching on all *n* numbers would be faster

Idea: search only once in a superset of the relevant pointsProblem: result potentially contains points not in the *x*-rangeIdea: search the position in the superset but list the result in the correct subsets

Searching In A Superset

Situation (Simplified)

- consider sorted arrays of numbers A and B with $B \subseteq A$
- search for x in A
- find x in B without searching again

Case 1: $x \in B$

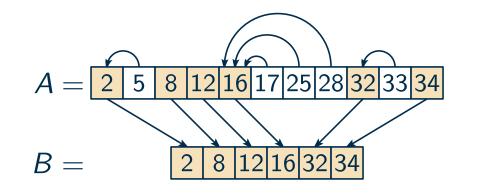
• pointers form elements in A to copies in $B \rightarrow \text{find } x$ in B in O(1)

Case 2: $x \in A$ but $x \notin B$

- goal: find predecessor of *x* in *B*
- pointer from every $a \in A \setminus B$ to its predecessor in $A \cap B \to \text{find } x$ in B in O(1)

Case 3: $x \notin A$

- goal: find predecessor of x in B, when knowing the predecessor of x in A
- use case 1 or 2 \rightarrow find x in B in O(1)



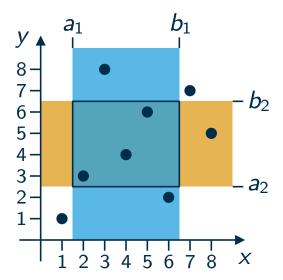
And Now For Range-Trees

Plan

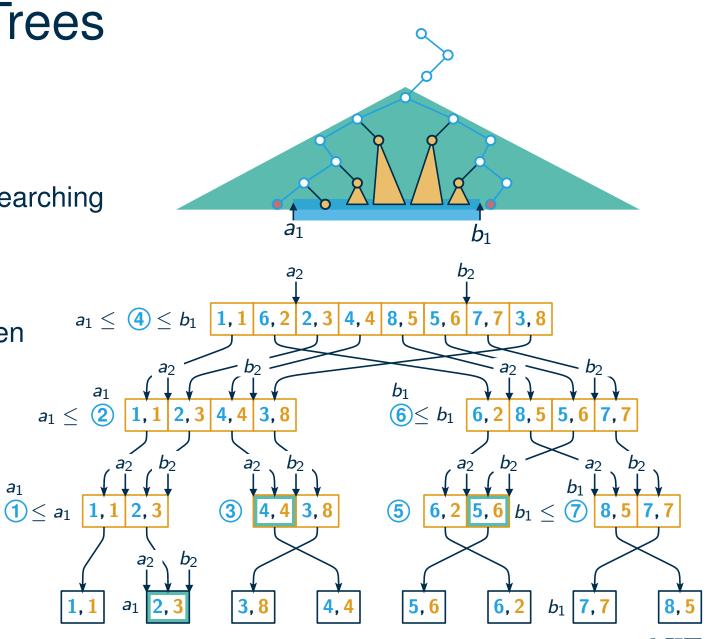
- search for a_2 and b_2 in the superset
- find a_2 and b_2 in the subsets without searching

So Many Subsets

- many subsets \rightarrow too many pointers
- solution: store pointers only for children



 a_1



Does This All Work Now?

Range Query

- search in y-Array at the root
- walk down the x-tree (log n steps)
 - decision for left or right
 - finding the range $[a_2, b_2]$ in the *y*-array (without searching)
- output result

Memory: only constant factor overhead for each *y*-array

Precomputation: sort only at the root and split for the children (additionally adding pointers)

Theorem The range tree for *n* points in \mathbb{R}^d can be computed in $O(n \log^{d-1} n)$ time, requires $O(n \log^{d-1} n)$ memory and enables range queries in $O(\log^{d-1} n + k)$ time.

 $O(\log n)$ $O(\log n)$ O(1)O(1)O(k)

Wrap-Up

What Have We Learned Today?

- generalization of the binary search to multiple dimensions
- range trees: nested binary search trees
- one big search is better than many small searches \rightarrow clever pointers save log *n*

Theorem The range tree for *n* points in \mathbb{R}^d can be computed in $O(n \log^{d-1} n)$ time, requires $O(n \log^{d-1} n)$ memory and enables range queries in $O(\log^{d-1} n + k)$ time.

Next Lecture

- \blacksquare generalization of the concept of clever pointers \rightarrow fractional cascading
- lets us save an additional log *n* factor in the query ($d \ge 3$)
- costs an additional log n factor precomputation time and memory

Similar Data Structures

Range Tree

- stores points
- Which points lie in a given interval?

Segment Tree

- stores intervals
- Which intervals contain a given point?

Interval Tree

- stores intervals
- Which intervals intersect a given interval?

Segment Tree

- stores weighted points
- What is the sum of weights of points in a given interval?

Similarities

- can be nested to extend to higher dimensions
- fractional cascading can help to save logarithmic factors

