
1

Computational Geometry

Thomas Bläsius

Linear Programs & Half-Plane Intersection



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
assumption: mold consists of one piece



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
assumption: mold consists of one piece
the object may be stuck in the mold



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
assumption: mold consists of one piece
the object may be stuck in the mold
but a different mold for the same object works



Thomas Bläsius – Computational Geometry2

Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
assumption: mold consists of one piece
the object may be stuck in the mold
but a different mold for the same object works

Problem
Given a polyhedron P , is there a mold for P from which P can be removed
with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected
direction of the translation: ~d = (dx dy dz)

T ∈ R3
~d

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected

let f be a regular face f (not the top face)
direction of the translation: ~d = (dx dy dz)

T ∈ R3
~d

f

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected

let f be a regular face f (not the top face)
let ~” be its normal vector (pointing inwards)

direction of the translation: ~d = (dx dy dz)
T ∈ R3

~d

f
~”

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected

let f be a regular face f (not the top face)
let ~” be its normal vector (pointing inwards)

direction of the translation: ~d = (dx dy dz)
T ∈ R3

~d

f
~”

problem in the example: angle between ~d and ~” is bigger than 90◦

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry3

Initial Observations

Decisions To Make
choice of the top face vs.

direction of the translation
vs.

Simplified Situation: Top Face Already Selected

let f be a regular face f (not the top face)
let ~” be its normal vector (pointing inwards)

direction of the translation: ~d = (dx dy dz)
T ∈ R3

~d

f
~”

problem in the example: angle between ~d and ~” is bigger than 90◦

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.

Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

~d
Proof

angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~d

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~dcan the polyhedron collide with the mold later?

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

let p be the first point of P that collides with the mold

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~dcan the polyhedron collide with the mold later?

p

~d

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

let f be the corresponding face of P with normal ~”
let p be the first point of P that collides with the mold

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~dcan the polyhedron collide with the mold later?

p

~d f
~”

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry4

Good And Bad Translations

angle between ~d and ~”: > 90◦
let f be the corresponding face of P with normal ~”
let p be the first point of P that collides with the mold

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~dcan the polyhedron collide with the mold later?

p

~d f
~”

~”

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦
choose a direction ~d = (dx dy dz)

T ∈ R3



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

Restating The Problem (For A Fixed Upper Face)
find dx and dy

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

Restating The Problem (For A Fixed Upper Face)
find dx and dy
such that for every regular face we have: ”x · dx + ”y · dy + ”z ≥ 0

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

Restating The Problem (For A Fixed Upper Face)
find dx and dy
such that for every regular face we have: ”x · dx + ”y · dy + ”z ≥ 0

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?

this is a linear program (LP)



Thomas Bläsius – Computational Geometry5

What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

Restating The Problem (For A Fixed Upper Face)
find dx and dy
such that for every regular face we have: ”x · dx + ”y · dy + ”z ≥ 0

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?

this is a linear program (LP)
Is the inequality really linear?



Thomas Bläsius – Computational Geometry6

Linear Programs



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

no objective function

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

no objective function

Algorithm For The Mold Creation Problem

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

no objective function

Algorithm For The Mold Creation Problem
choose each of the n faces once as upper face
for every upper face, solve a 2-dimensional LP with n − 1 constraints

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry6

Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

no objective function

Algorithm For The Mold Creation Problem
choose each of the n faces once as upper face
for every upper face, solve a 2-dimensional LP with n − 1 constraints

Goal In The Following: efficient algorithm to solve a 2-dimensional LP

ai ;j ; bi ; ci are constants



Thomas Bläsius – Computational Geometry7

Find An Optimal Solution

maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

(B)

(R)

(E)

(A)

(K)



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions

optimal
solution



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions

optimal
solution

Properties Of The LP
infeasible: no valid solution



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions

optimal
solution

Properties Of The LP
infeasible: no valid solution
unbounded: there are solutions
with arbitrarily large objective



Thomas Bläsius – Computational Geometry8

2D LPs

Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions

optimal
solution

Properties Of The LP
infeasible: no valid solution
unbounded: there are solutions
with arbitrarily large objective Problem: Half-Plane Intersection

Given n half planes, compute their intersection.



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer
split half planes into two groups of roughly equal size



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
split half planes into two groups of roughly equal size



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)

this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n) this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n)

Total Time:

this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n)

Total Time: T (n) = O(n) + 2T (n=2)

this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n)

Total Time: T (n) = O(n) + 2T (n=2)

⇒ O(n log n)

this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry9

Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n)

Total Time: T (n) = O(n) + 2T (n=2)

⇒ O(n log n)

Can This Be Improved?
closely related to convex hull (via duality)
lower bound: Ω(n log n)

this is a hint for one exercise on the current sheet



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach
let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi
vi−1 vi−1



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi

vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)

vi−1 vi−1



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi

vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)

Case 2: vi−1 ̸∈ Ci

Ci−1

hi
vi−1 vi−1

vi−1

vi

‘i



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi

vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)

Case 2: vi−1 ̸∈ Ci

Ci−1

hi

vi lies on the line ‘i bounding hi

vi−1 vi−1

vi−1

vi

‘i Why?



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi

vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)

Case 2: vi−1 ̸∈ Ci

Ci−1

hi

vi lies on the line ‘i bounding hi

vi−1 vi−1

vi−1

vi

this is essentially a 1D LP with i constraints

‘i Why?



Thomas Bläsius – Computational Geometry10

Incremental Algorithm For 2D LPs

Observation
we do not actually need to compute the valid region explicitly
it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

assumption: we know an optimal point vi−1 ∈ Ci−1

goal: find an optimal point vi ∈ Ci

let h1; : : : ; hn he the half planes (constraints)
let Ci = h1 ∩ h2 ∩ · · · ∩ hi (feasible region with respect to h1; : : : ; hi )

1 2 3

1

2

3

x1

x2

bes
se

r

valid solution

optimal
solution

Case 1: vi−1 ∈ Ci

Ci−1 hi Ci−1

hi

vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)

Case 2: vi−1 ̸∈ Ci

Ci−1

hi

vi lies on the line ‘i bounding hi

vi−1 vi−1

vi−1

vi

this is essentially a 1D LP with i constraints

‘i

can be solved in O(i) time

Why?

How?



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?
→ next exercise sheet
→ now



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

→ next exercise sheet
→ now



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

hope: vi−1 =∈ Ci happens rarely

→ next exercise sheet
→ now



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

hope: vi−1 =∈ Ci happens rarely
there is an order h1; : : : ; hn, such that vi−1 ∈ Ci for i ≥ 3

→ next exercise sheet
→ now

Why?



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

hope: vi−1 =∈ Ci happens rarely
there is an order h1; : : : ; hn, such that vi−1 ∈ Ci for i ≥ 3

finding this order is not so easy

→ next exercise sheet
→ now

Why?



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

hope: vi−1 =∈ Ci happens rarely
there is an order h1; : : : ; hn, such that vi−1 ∈ Ci for i ≥ 3

finding this order is not so easy
but: most orders are good

→ next exercise sheet
→ now

Why?



Thomas Bläsius – Computational Geometry11

Incremental Algorithm For 2D LPs

Open Questions
How do we start?

Why do we care about an O(n2) algorithm?

Thoughts On The Running Time

Ci−1

hi

vi−1

vi

‘i

case vi−1 =∈ Ci is expensive (O(i) to compute vi )
case vi−1 ∈ Ci is cheap (just set vi = vi−1)

Ci−1 hi

vi−1

hope: vi−1 =∈ Ci happens rarely
there is an order h1; : : : ; hn, such that vi−1 ∈ Ci for i ≥ 3

finding this order is not so easy
but: most orders are good → random order

→ next exercise sheet
→ now

Why?



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Running Time
the running time is a random
variable, let’s call it X



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

Ci−1

hi

vi−1

vi

‘i



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

Ci−1

hi

vi−1

vi

‘i



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

Ci−1

hi

vi−1

vi

‘i



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi
probability: 2

i

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

thus: P (vi ̸= vi−1) ≤ 2
i

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi
probability: 2

i

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

thus: P (vi ̸= vi−1) ≤ 2
i

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi
probability: 2

i

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step

Why ≤?



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

thus: P (vi ̸= vi−1) ≤ 2
i

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi
probability: 2

i

Ci

vi

Ci−1

hi

vi−1

vi

‘i

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step

Why ≤?
if more than two intersect,
removing any one might
not result in vi ̸= vi−1



Thomas Bläsius – Computational Geometry12

Randomized Incremental Algorithm

Expected Time In Iteration i :

Expected Running Time
the running time is a random
variable, let’s call it X
additional random variables: Xi

is the running time in iteration i

X =
nX

i=1

Xi ⇒ E [X] = E
"

nX
i=1

Xi

#
=

nX
i=1

E [Xi ]

Ci−1 hi

vi−1

Can We Bound P (vi−1 =∈ Ci ) = P (vi ̸= vi−1)?

thus: P (vi ̸= vi−1) ≤ 2
i

E [Xi ] = O(1) + P (vi−1 =∈ Ci ) · O(i)

going from Ci to Ci−1 (removing random hi )
vi−1 ̸= vi ⇒ ‘i is one of the two lines that
intersect in vi
probability: 2

i

Ci

vi

Ci−1

hi

vi−1

vi

‘i ⇒ E [Xi ] ∈ O(1) ⇒ E [X] ∈ O(n)

current view: add random line in each step
equivalent: draw random line order
equivalent: remove random line in every step

Why ≤?
if more than two intersect,
removing any one might
not result in vi ̸= vi−1



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm
solving a 2D-LPs: randomized algorithm with expected running time O(n)



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm
solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?
the randomized algorithm also works for higher dimensions



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm
solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?
the randomized algorithm also works for higher dimensions

running time: still O(n) in expectation, if d constant
grows super-exponentially in d



Thomas Bläsius – Computational Geometry13

Wrap-Up

What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm
solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?
the randomized algorithm also works for higher dimensions

running time: still O(n) in expectation, if d constant
grows super-exponentially in d

this type of randomization (and analysis) works for other geometric problems
prominent example: O(n log n) algo for convex hull in 3D


