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Developing A Mold

Casting (Manufacturing Technique)
liquid material is poured into a mold, where it solidifies
expendable mold: gets destroyed when removing the object
permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
assumption: mold consists of one piece
the object may be stuck in the mold
but a different mold for the same object works

Problem
Given a polyhedron P , is there a mold for P from which P can be removed
with a translation.
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let ~” be its normal vector (pointing inwards)

direction of the translation: ~d = (dx dy dz)
T ∈ R3
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problem in the example: angle between ~d and ~” is bigger than 90◦

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.
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Given a polyhedron P , is there a
mold for P from which P can be
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angle between ~d and ~”: > 90◦
let f be the corresponding face of P with normal ~”
let p be the first point of P that collides with the mold

Proof
angle > 90◦ ⇒ cannot be removed

angle ≤ 90◦ ⇒ can be removed
already fails right at the beginning of the translation

~d

ok at the beginning
~d ~dcan the polyhedron collide with the mold later?

p

~d f
~”

~”

Lemma
P can be removed in the direction ~d if and only if the angle between ~d and the inner normal is
≤ 90◦ for every regular face.
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What Do We Need To Do?
Problem
Given a polyhedron P , is there a
mold for P from which P can be
removed with a translation.

Goal
choose upper face for P

such that for every normal ~” of a regular face: angle between ~d and ~” is at most 90◦

note: we can assume dz = 1

Reminder (Dot Product): angle between ~d and ~” ≤ 90◦ ⇔ ~d · ~” ≥ 0

Restating The Problem (For A Fixed Upper Face)
find dx and dy
such that for every regular face we have: ”x · dx + ”y · dy + ”z ≥ 0

choose a direction ~d = (dx dy dz)
T ∈ R3

Why?

this is a linear program (LP)
Is the inequality really linear?
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Linear Programs

General Form Of An LP maximize
such that

c1x1 + c2x2 + · · ·+ cdxd

a1;1x1 + · · ·+ a1;dxd ≤ b1

a2;1x1 + · · ·+ a2;dxd ≤ b2

an;1x1 + · · ·+ an;dxd ≤ bn

...

an objective function n constraints
variables x1; : : : ; xd

d is the dimension of the LP

Our Specific LP
variables dx ; dy → dimension 2
one constraint for each face: ”x · dx + ”y · dy + ”z ≥ 0

no objective function

Algorithm For The Mold Creation Problem
choose each of the n faces once as upper face
for every upper face, solve a 2-dimensional LP with n − 1 constraints

Goal In The Following: efficient algorithm to solve a 2-dimensional LP

ai ;j ; bi ; ci are constants
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Find An Optimal Solution

maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

(B)

(R)

(E)

(A)

(K)
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Example
maximize:
such that:

x1 + x2
x1 ≥ 0

x2 ≥ 0

x2 − x1 ≤ 1

x1 + 6x2 ≤ 15

4x1 − x2 ≤ 10

Geometric Interpretation

1 2 3

1

2

3

x1

x2

bet
te

r

valid solutions

optimal
solution

Properties Of The LP
infeasible: no valid solution
unbounded: there are solutions
with arbitrarily large objective Problem: Half-Plane Intersection

Given n half planes, compute their intersection.
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Half-Plane Intersection

Plan: Divide And Conquer

compute intersection for each group
compute intersection of the two resulting regions

split half planes into two groups of roughly equal size

Intersecting The Two Results
more or less the intersection of two convex polygons
careful: regions might be unbounded
sweep-line algorithm can be adjusted accordingly → running time O(n log n)
using convexity → running time O(n)

Total Time: T (n) = O(n) + 2T (n=2)

⇒ O(n log n)

Can This Be Improved?
closely related to convex hull (via duality)
lower bound: Ω(n log n)

this is a hint for one exercise on the current sheet
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Incremental Algorithm For 2D LPs

Observation
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vi−1 remains optimal for Ci (as Ci ⊆ Ci−1)
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‘i

can be solved in O(i) time

Why?

How?
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What Have We Learned Today?
computing a 3D mold for casting → 2D-LP formulation
2D-LP → formulate as half-plane intersection
computing the half-plane intersection: O(n log n) algorithm
solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?
the randomized algorithm also works for higher dimensions

running time: still O(n) in expectation, if d constant
grows super-exponentially in d

this type of randomization (and analysis) works for other geometric problems
prominent example: O(n log n) algo for convex hull in 3D


