

Computational Geometry Linear Programs & Half-Plane Intersection

Thomas Bläsius

Casting (Manufacturing Technique)

liquid material is poured into a mold, where it solidifies

Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

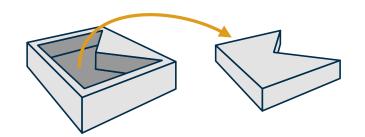
For Which Objects Is There a Permanent Mold?

Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?

assumption: mold consists of one piece



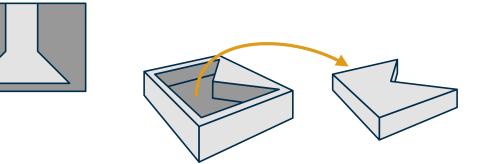
Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?

- assumption: mold consists of one piece
- the object may be stuck in the mold

2

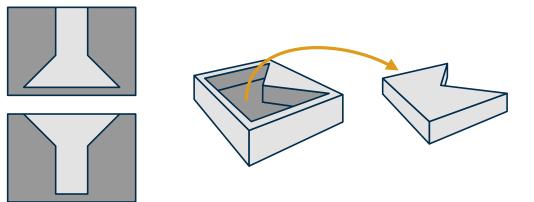


Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?

- assumption: mold consists of one piece
- the object may be stuck in the mold
- but a different mold for the same object works

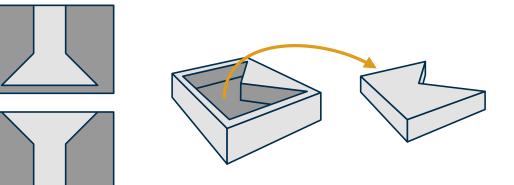


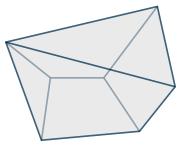
Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?

- assumption: mold consists of one piece
- the object may be stuck in the mold
- but a different mold for the same object works

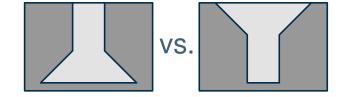




Decisions To Make

Problem

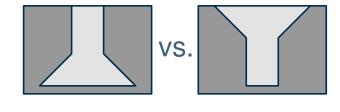
Decisions To Makechoice of the top face



Problem

Decisions To Make

- choice of the top face
- direction of the translation



Problem

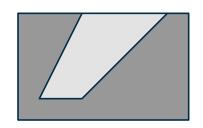
Decisions To Make

- choice of the top face
- direction of the translation

Simplified Situation: Top Face Already Selected

VS.

Problem



Decisions To Make

- choice of the top face
- direction of the translation

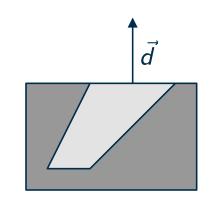
Simplified Situation: Top Face Already Selected

• direction of the translation: $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

VS.

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.



3

Decisions To Make

- choice of the top face
- direction of the translation

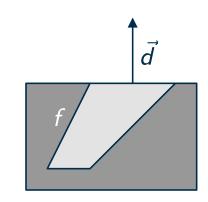
Simplified Situation: Top Face Already Selected

• direction of the translation: $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

VS.

let f be a regular face f (not the top face)

Problem



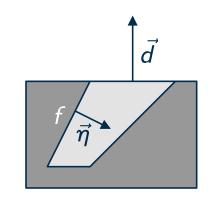
Decisions To Make

- choice of the top face
- direction of the translation

Simplified Situation: Top Face Already Selected

- direction of the translation: $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$
- let f be a regular face f (not the top face)
- let $\vec{\eta}$ be its normal vector (pointing inwards)

Problem



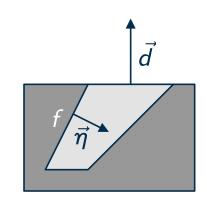
Decisions To Make

- choice of the top face
- direction of the translation

Simplified Situation: Top Face Already Selected

- direction of the translation: $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$
- Iet f be a regular face f (not the top face)
- let $\vec{\eta}$ be its normal vector (pointing inwards)
- problem in the example: angle between \vec{d} and $\vec{\eta}$ is bigger than 90°

Problem



Decisions To Make

- choice of the top face
- direction of the translation

Simplified Situation: Top Face Already Selected

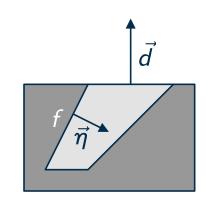
- direction of the translation: $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$
- let f be a regular face f (not the top face)
- let $\vec{\eta}$ be its normal vector (pointing inwards)
- problem in the example: angle between \vec{d} and $\vec{\eta}$ is bigger than 90°

Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

VS.

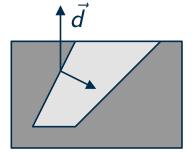
Problem



Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

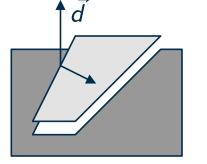
- angle $> 90^{\circ} \Rightarrow$ cannot be removed
- angle $\leq 90^{\circ} \Rightarrow$ can be removed



Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

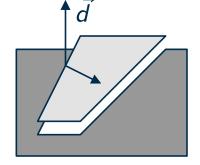
- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed

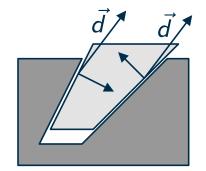


Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning

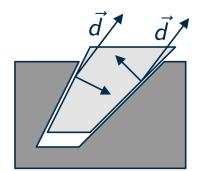




Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

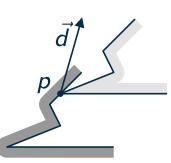
- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning
 - can the polyhedron collide with the mold later?

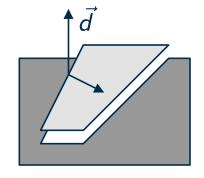


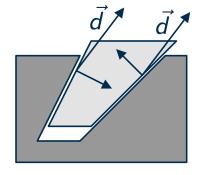
Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning
 - can the polyhedron collide with the mold later?
 - let *p* be the first point of *P* that collides with the mold



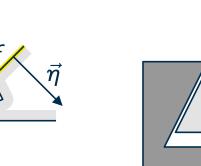


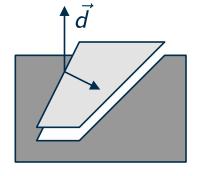


Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning
 - can the polyhedron collide with the mold later?
 - let *p* be the first point of *P* that collides with the mold
 - let f be the corresponding face of P with normal $\vec{\eta}$

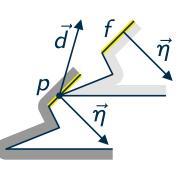


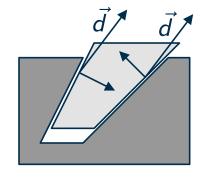


Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning
 - can the polyhedron collide with the mold later?
 - let p be the first point of P that collides with the mold
 - let *f* be the corresponding face of *P* with normal $\vec{\eta}$
 - angle between \vec{d} and $\vec{\eta}$: > 90°





Goal

- choose upper face for P
- choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

• such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Restating The Problem (For A Fixed Upper Face)

• find d_x and d_y

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Restating The Problem (For A Fixed Upper Face)

- find d_x and d_y
- such that for every regular face we have: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Restating The Problem (For A Fixed Upper Face)

- find d_x and d_y
- such that for every regular face we have: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$
- this is a linear program (LP)

Goal

choose upper face for P

• choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$

Problem

Given a polyhedron P, is there a mold for P from which P can be removed with a translation.

- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Restating The Problem (For A Fixed Upper Face)

- find d_x and d_y
- such that for every regular face we have: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$
- this is a linear program (LP)

Is the inequality really linear?

General Form Of An LP

- variables *x*₁, . . . , *x*_d
- an objective function
- $a_{i,j}$, b_i , c_i are constants
- n constraints

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables x_1, \ldots, x_d
- $a_{i,j}, b_i, c_i$ are constants
- an objective function
- n constraints d is the dimension of the LP

maximize $c_1x_1 + c_2x_2 + \cdots + c_dx_d$ such that $a_{1,1}x_1 + \cdots + a_{1,d}x_d \le b_1$ $a_{2,1}x_1 + \cdots + a_{2,d}x_d \leq b_2$ $a_{n,1}x_1 + \cdots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables *x*₁, . . . , *x*_d
- $a_{i,j}$, b_i , c_i are constants
- an objective function
- n constraints
- *d* is the dimension of the LP

Our Specific LP

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables *x*₁,...,*x*_d
- an objective function
- *d* is the dimension of the LP

Our Specific LP

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$

• $a_{i,i}, b_i, c_i$ are constants

n constraints

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables *x*₁,...,*x*_d
- an objective function
- *d* is the dimension of the LP

Our Specific LP

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$

• $a_{i,i}, b_i, c_i$ are constants

n constraints

no objective function

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables *x*₁,...,*x*_d
- an objective function
- *d* is the dimension of the LP

Our Specific LP

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$

• $a_{i,i}, b_i, c_i$ are constants

n constraints

no objective function

Algorithm For The Mold Creation Problem

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables *x*₁,...,*x*_d
- an objective function
- *d* is the dimension of the LP

Our Specific LP

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$
- no objective function

Algorithm For The Mold Creation Problem

- choose each of the n faces once as upper face
- for every upper face, solve a 2-dimensional LP with n-1 constraints

• $a_{i,i}, b_i, c_i$ are constants

n constraints

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$

General Form Of An LP

- variables x_1, \ldots, x_d
- an objective function
- d is the dimension of the LP

Our Specific LP

6

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$
- no objective function

Algorithm For The Mold Creation Problem

- choose each of the n faces once as upper face
- for every upper face, solve a 2-dimensional LP with n-1 constraints

• $a_{i,i}, b_i, c_i$ are constants

n constraints

Goal In The Following: efficient algorithm to solve a 2-dimensional LP

maximize $c_1x_1 + c_2x_2 + \dots + c_dx_d$ such that $a_{1,1}x_1 + \dots + a_{1,d}x_d \le b_1$ $a_{2,1}x_1 + \dots + a_{2,d}x_d \le b_2$ \vdots $a_{n,1}x_1 + \dots + a_{n,d}x_d \le b_n$

Find An Optimal Solution

 $\begin{array}{lll} \text{maximize:} & x_1 + x_2 \\ \text{such that:} & x_1 \ge 0 & (B) \\ & x_2 \ge 0 & (R) \\ & x_2 - x_1 \le 1 & (E) \\ & x_1 + 6x_2 \le 15 & (A) \\ & 4x_1 - x_2 \le 10 & (K) \end{array}$

Example

 $\begin{array}{ll} \text{maximize:} & x_1 + x_2 \\ \text{such that:} & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_2 - x_1 \le 1 \\ & x_1 + 6x_2 \le 15 \\ & 4x_1 - x_2 \le 10 \end{array}$

Example

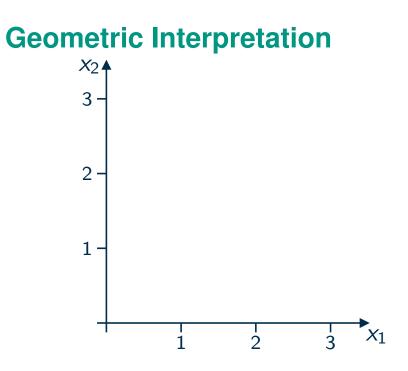
maximize: $x_1 + x_2$ such that: $x_1 \ge 0$ $x_2 \ge 0$ $x_2 - x_1$

 $egin{aligned} x_1 &\geq 0 \ x_2 &\geq 0 \ x_2 &- x_1 &\leq 1 \ x_1 + 6 x_2 &\leq 15 \ 4 x_1 - x_2 &\leq 10 \end{aligned}$

Example

maximize: such that:

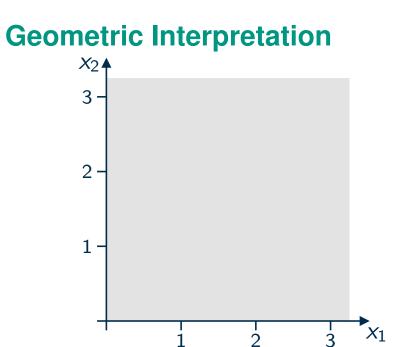
 $egin{aligned} x_1 + x_2 \ x_1 &\geq 0 \ x_2 &\geq 0 \ x_2 - x_1 &\leq 1 \ x_1 + 6 x_2 &\leq 15 \ 4 x_1 - x_2 &\leq 10 \end{aligned}$



Example

maximize: such that:

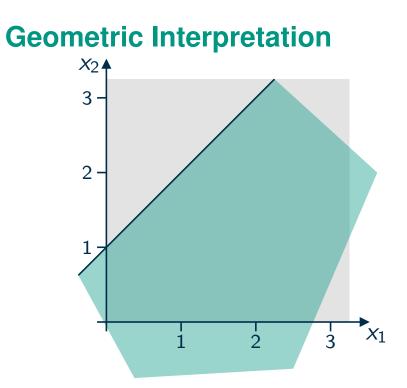
 $egin{aligned} x_1 + x_2 \ x_1 &\geq 0 \ x_2 &\geq 0 \ x_2 - x_1 &\leq 1 \ x_1 + 6 x_2 &\leq 15 \ 4 x_1 - x_2 &\leq 10 \end{aligned}$



Example

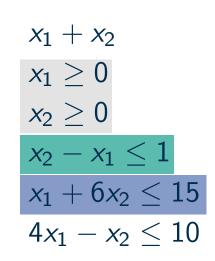
maximize: such that:

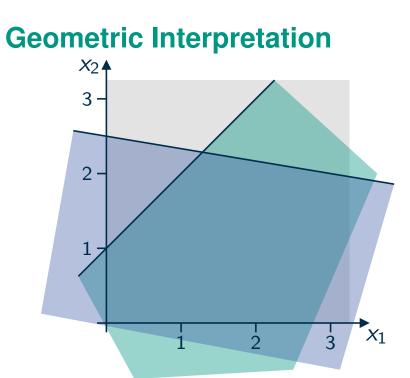
 $egin{aligned} x_1 + x_2 \ x_1 &\geq 0 \ x_2 &\geq 0 \ x_2 - x_1 &\leq 1 \ x_1 + 6 x_2 &\leq 15 \ 4 x_1 - x_2 &\leq 10 \end{aligned}$



Example

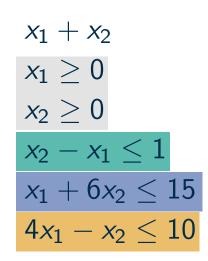
maximize: such that:

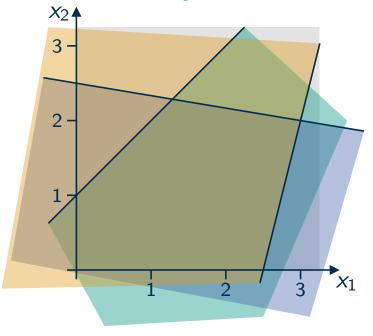




Example

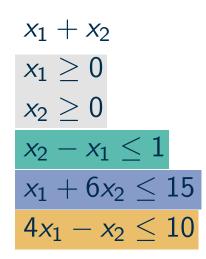
maximize: such that:

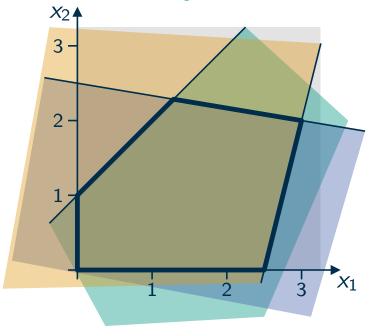




Example

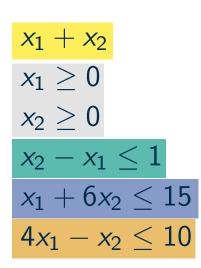
maximize: such that:

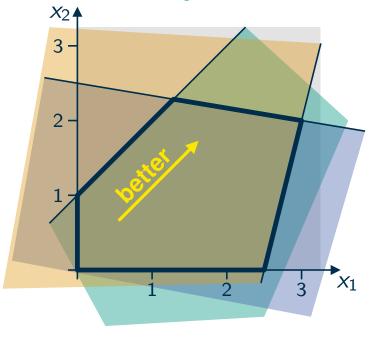


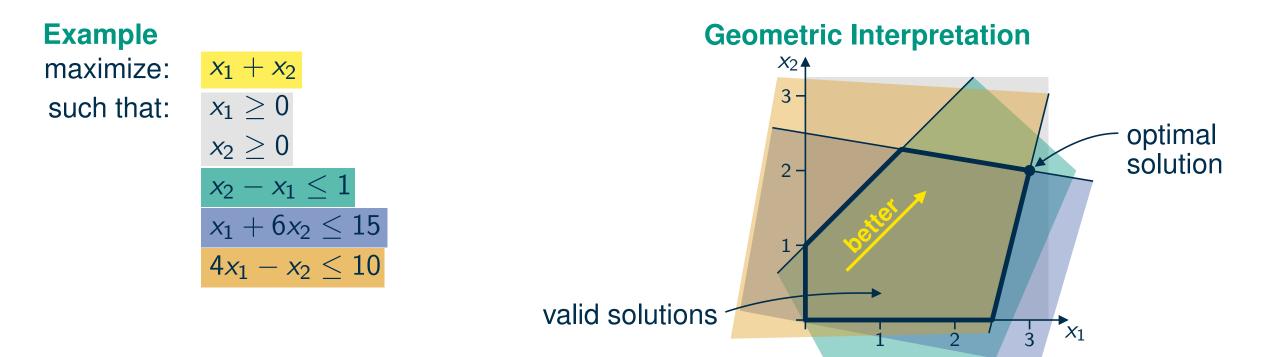


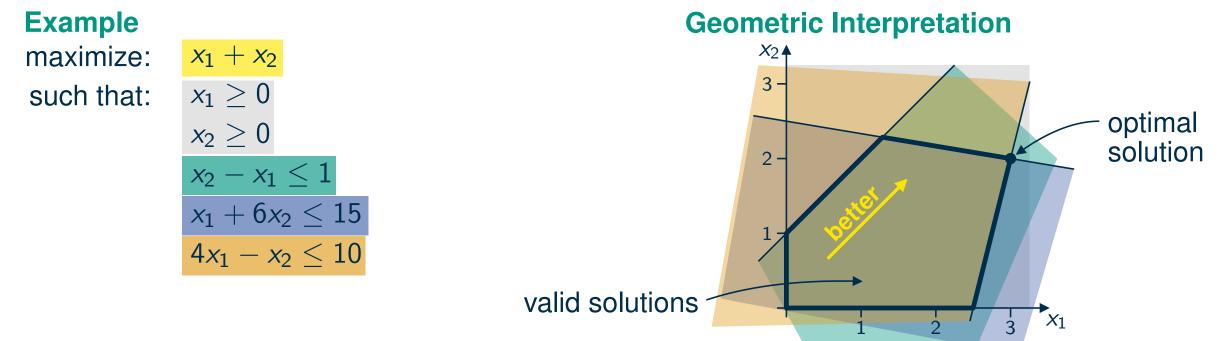
Example

maximize: such that:



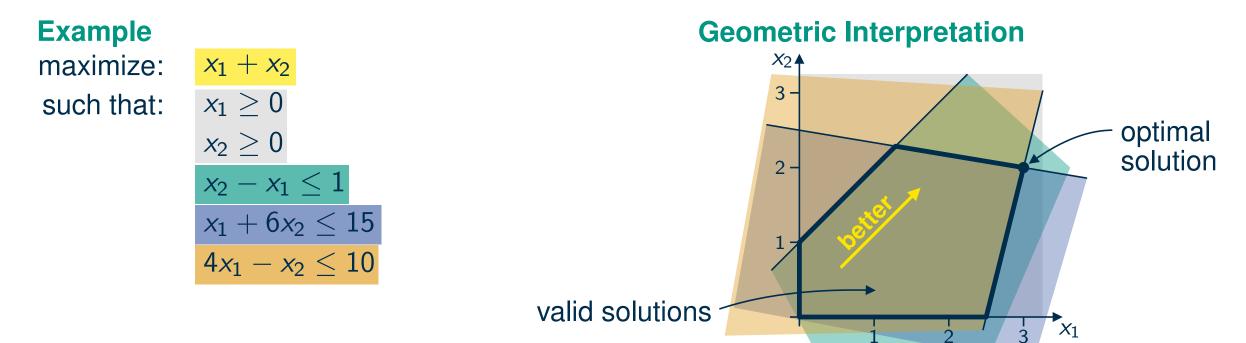






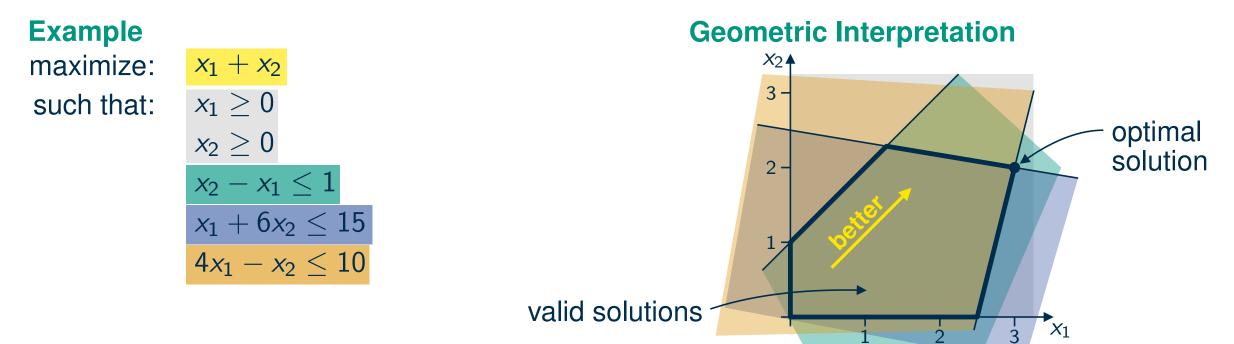
Properties Of The LP

infeasible: no valid solution



Properties Of The LP

- infeasible: no valid solution
- unbounded: there are solutions with arbitrarily large objective

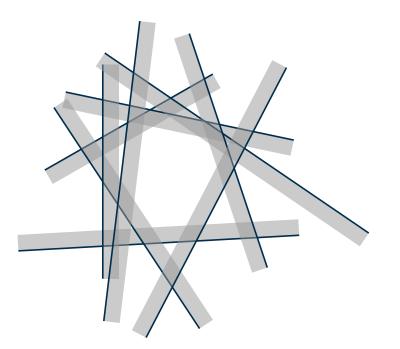


Properties Of The LP

- infeasible: no valid solution
- unbounded: there are solutions with arbitrarily large objective

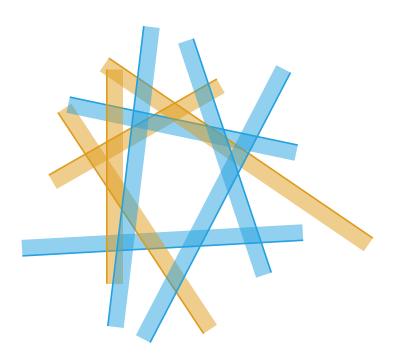
Problem: Half-Plane Intersection Given *n* half planes, compute their intersection.

Plan: Divide And Conquer



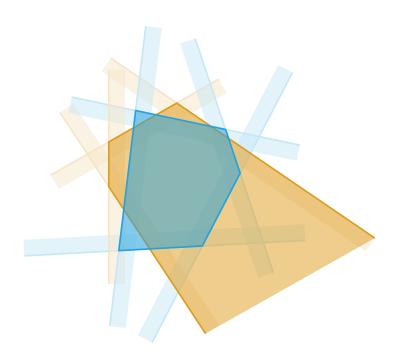
Plan: Divide And Conquer

split half planes into two groups of roughly equal size



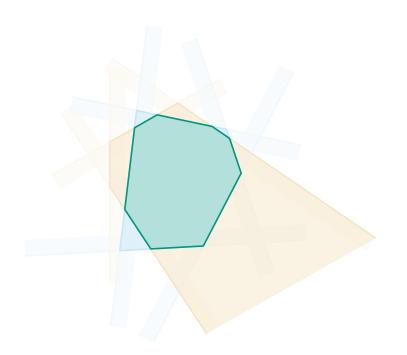
Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group



Plan: Divide And Conquer

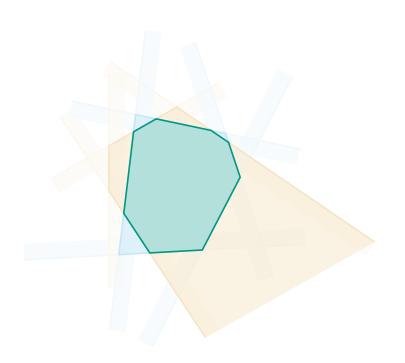
- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions



Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results



Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

more or less the intersection of two convex polygons

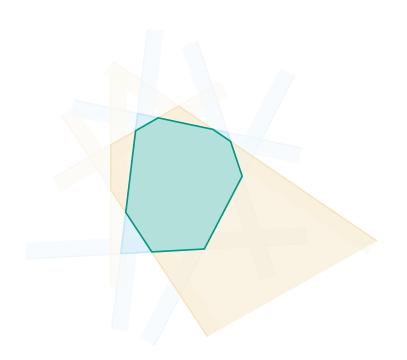


Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded



Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

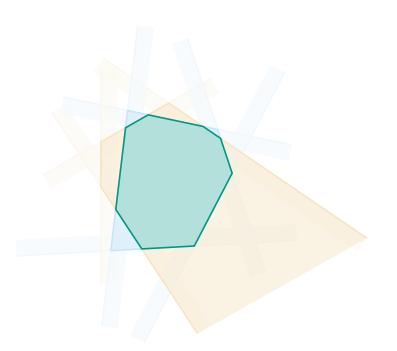
- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$

Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)



Plan: Divide And Conquer

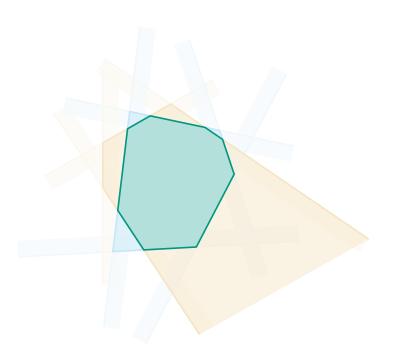
- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)

Total Time:

9



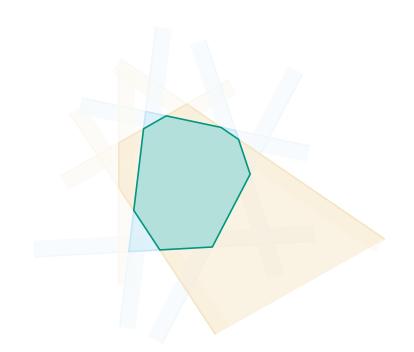
Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)

Total Time: T(n) = O(n) + 2T(n/2)



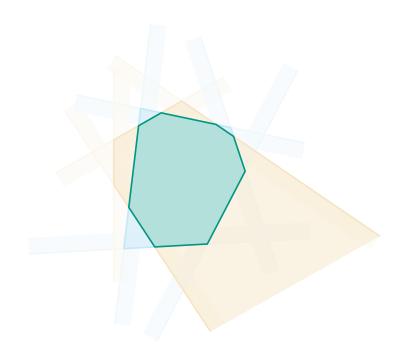
Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)

Total Time: T(n) = O(n) + 2T(n/2) $\Rightarrow O(n \log n)$



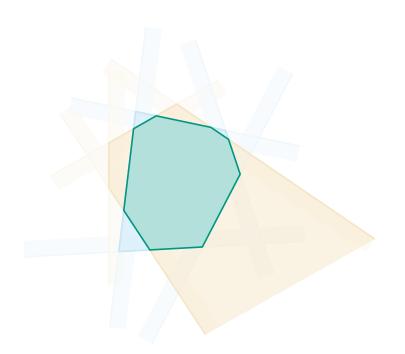
Plan: Divide And Conquer

- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)

Total Time: T(n) = O(n) + 2T(n/2) $\Rightarrow O(n \log n)$



Can This Be Improved?

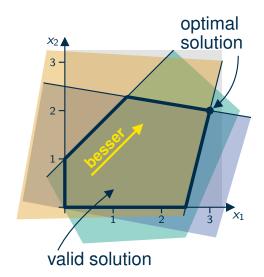
closely related to convex hull (via duality)

this is a hint for one exercise on the current sheet

• lower bound: $\Omega(n \log n)$

Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

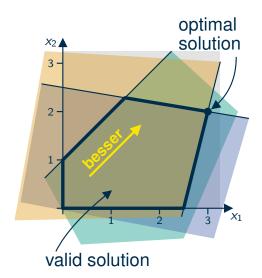


Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)

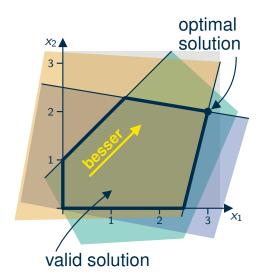


Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$

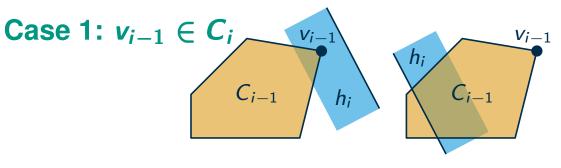


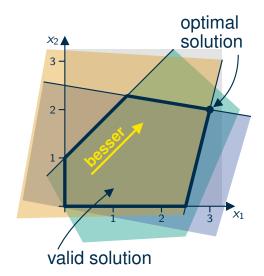
Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$



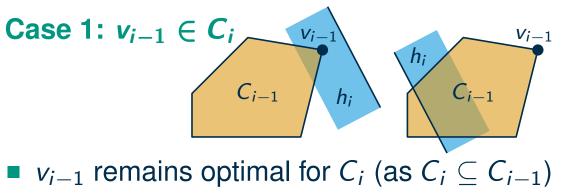


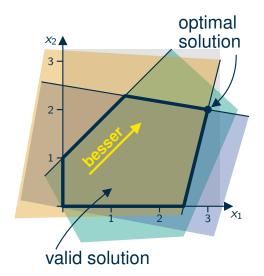
Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$



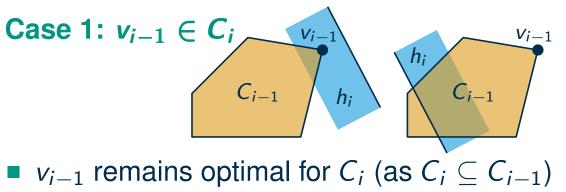


Observation

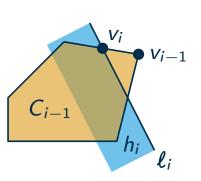
- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$



valid solution



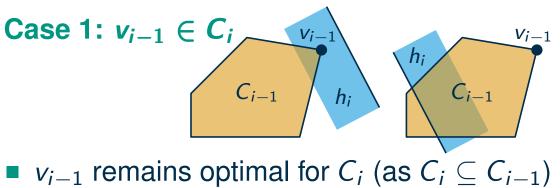
Case 2: $v_{i-1} \notin C_i$

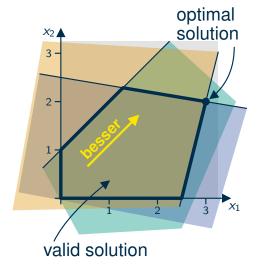
Observation

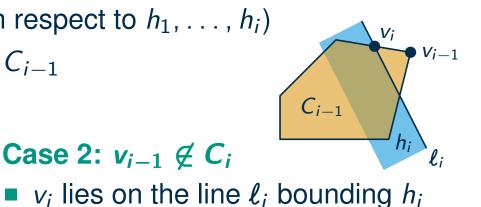
- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$







Case 2: $v_{i-1} \notin C_i$

Why?

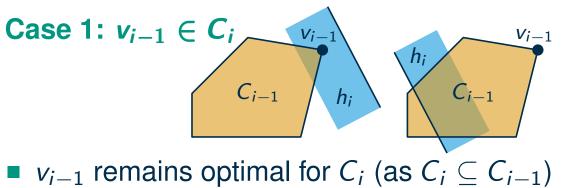
Thomas Bläsius – Computational Geometry 10

Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

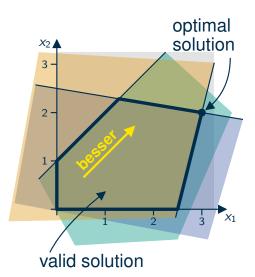
- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$



Case 2: $v_{i-1} \notin C_i$

- v_i lies on the line ℓ_i bounding h_i
- this is essentially a 1D LP with *i* constraints

 C_{i-1}



 V_{i-1}

li

 h_i

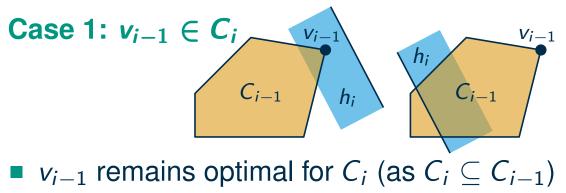
Why?

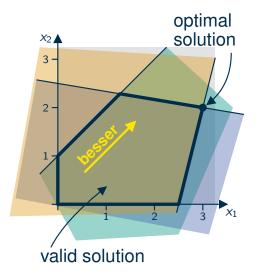
Observation

- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$





- v_i lies on the line ℓ_i bounding h_i
- this is essentially a 1D LP with *i* constraints

 C_{i-1}

• can be solved in O(i) time

 V_{i-1}

li

 h_i

Why?

Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm?

Open Questions

How do we start?

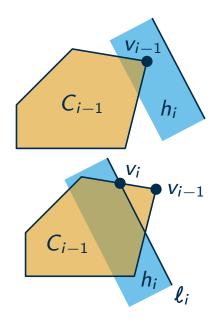
- \rightarrow next exercise sheet
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute v_i)



 \rightarrow next exercise sheet

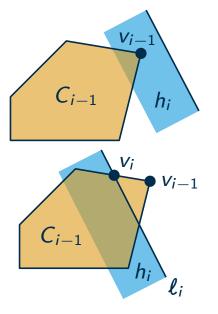
 \rightarrow next exercise sheet

Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute v_i)
- hope: $v_{i-1} \notin C_i$ happens rarely

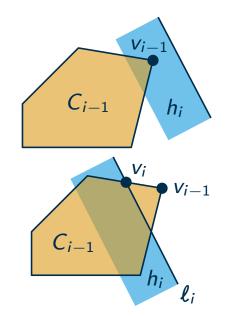


Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute v_i)
- hope: $v_{i-1} \notin C_i$ happens rarely
- there is an order h_1, \ldots, h_n , such that $v_{i-1} \in C_i$ for $i \ge 3$ Why?



 \rightarrow next exercise sheet

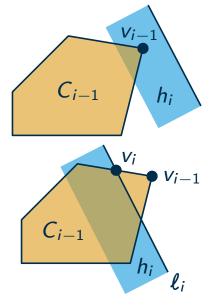
 \rightarrow next exercise sheet

Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute $v_i)$
- hope: $v_{i-1} \notin C_i$ happens rarely
- there is an order h_1, \ldots, h_n , such that $v_{i-1} \in C_i$ for $i \ge 3$ Why?
- finding this order is not so easy

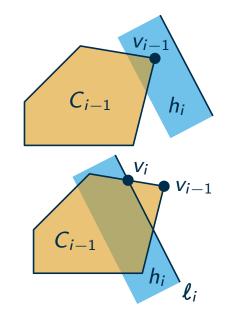


Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute $v_i)$
- hope: $v_{i-1} \notin C_i$ happens rarely
- there is an order h_1, \ldots, h_n , such that $v_{i-1} \in C_i$ for $i \ge 3$ Why?
- finding this order is not so easy
- but: most orders are good



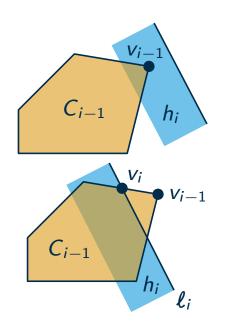
 \rightarrow next exercise sheet

Open Questions

- How do we start?
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i) to compute $v_i)$
- hope: $v_{i-1} \notin C_i$ happens rarely
- there is an order h_1, \ldots, h_n , such that $v_{i-1} \in C_i$ for $i \ge 3$ Why?
- finding this order is not so easy
- \blacksquare but: most orders are good $\ \rightarrow$ random order



Expected Running Time

the running time is a random variable, let's call it X

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i$$

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right]$$

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

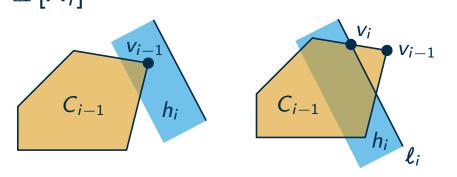
Expected Time In Iteration *i*: $\mathbb{E}[X_i] =$

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i*: $\mathbb{E}[X_i] =$



h_i

l;

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

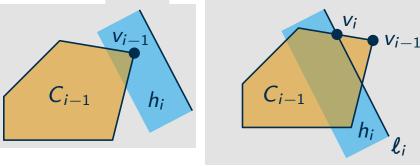
Expected Time In Iteration *i*: $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$ $\bigvee_{i=1}^{v_{i-1}} h_i$

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$

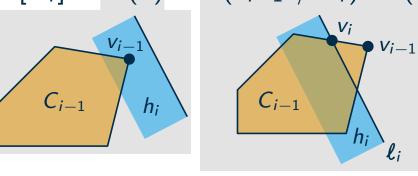


Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_{i} \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

Expected Time In Iteration *i*: $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



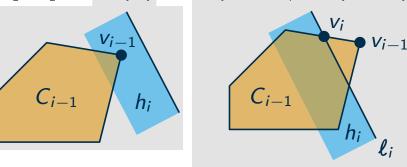
- current view: add random line in each step
- equivalent: draw random line order

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i*: $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



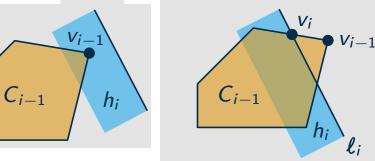
- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step

Expected Running Time

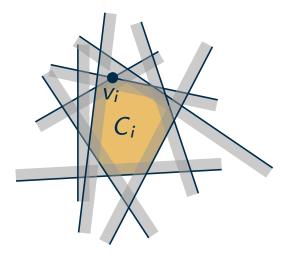
- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i*: $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)

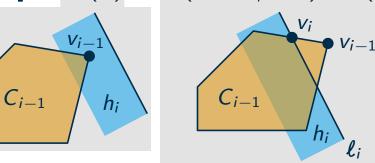


Expected Running Time

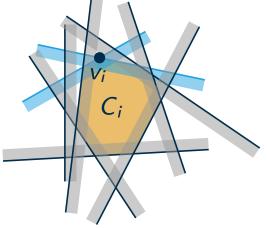
- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i*: $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i

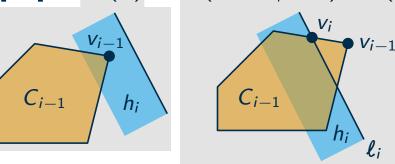


Expected Running Time

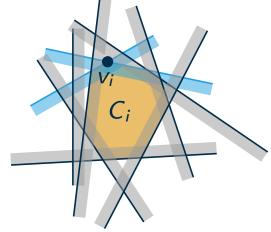
- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$

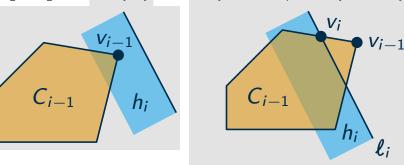


Expected Running Time

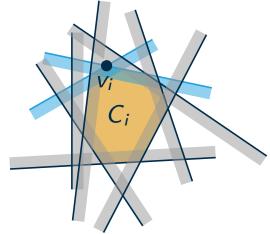
- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$
- thus: $P(v_i \neq v_{i-1}) \leq \frac{2}{i}$



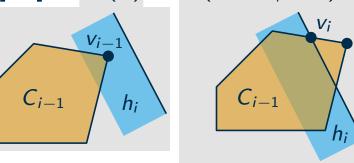
 V_{i-1}

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

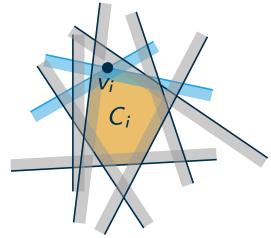
Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



Can We Bound $P(v_{i-1} \notin C_i) = P(v_i \neq v_{i-1})$?

- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$
- thus: $P(v_i \neq v_{i-1}) \leq \frac{2}{i}$

Why \leq ?



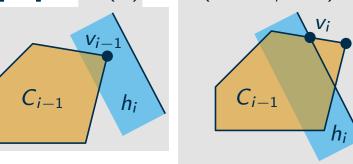
 V_{i-1}

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

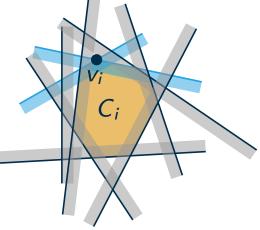
Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



Can We Bound $P(v_{i-1} \notin C_i) = P(v_i \neq v_{i-1})$?

- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$
- thus: $P(v_i \neq v_{i-1}) \leq \frac{2}{i}$

if more than two intersect, removing any one might not result in $v_i \neq v_{i-1}$



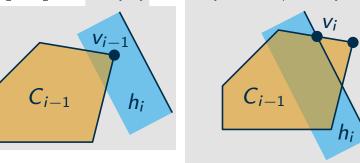
 V_{i-1}

Expected Running Time

- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i***:** $\mathbb{E}[X_i] = O(1) + P(v_{i-1} \notin C_i) \cdot O(i)$



Can We Bound $P(v_{i-1} \notin C_i) = P(v_i \neq v_{i-1})$?

- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$
- thus: $P(v_i \neq v_{i-1}) \leq \frac{2}{i}$

Why \leq ?

if more than two intersect, removing any one might not result in $v_i \neq v_{i-1}$

 $\Rightarrow \mathbb{E}[X_i] \in O(1) \Rightarrow \mathbb{E}[X] \in O(n)$

What Have We Learned Today?

 \blacksquare computing a 3D mold for casting \rightarrow 2D-LP formulation

What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection

What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm

What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm
- solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm
- solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?

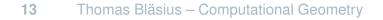
the randomized algorithm also works for higher dimensions

What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm
- solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?

- the randomized algorithm also works for higher dimensions
 - running time: still O(n) in expectation, if d constant
 - grows super-exponentially in d



What Have We Learned Today?

- computing a 3D mold for casting \rightarrow 2D-LP formulation
- \blacksquare 2D-LP \rightarrow formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm
- solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?

- the randomized algorithm also works for higher dimensions
 - running time: still O(n) in expectation, if d constant
 - grows super-exponentially in d
- this type of randomization (and analysis) works for other geometric problems
 - prominent example: $O(n \log n)$ algo for convex hull in 3D