AT

Computational Geometry
Linear Programs & Half-Plane Intersection

Thomas Blasius




Developing A Mold

Casting (Manufacturing Technique)
= |iquid material is poured into a mold, where it solidifies

m expendable mold: gets destroyed when removing the object

= permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?
m assumption: mold consists of one piece

= the object may be stuck in the mold
= but a different mold for the same object works

2 Thomas Blasius — Computational Geometry ﬂ(IT



Initial Observations

Decisions To Make

= choice of the top face I VS. I

= direction of the translation ﬁ Ve d
Simplified Situation: Top Face Already Selected

= direction of the translation: d = (d d, dz)T e R?

m |et f be a regular face f (not the top face)
= |et i be its normal vector (pointing inwards)

= problem in the example: angle between d and 7 is bigger than 90°

3 Thomas Blasius — Computational Geometry ﬂ(IT



Good And Bad Translations

Proof
angle > 90° = cannot be removed

4

already fails right at the beginning of the translation

angle < 90° = can be removed

ok at the beginning

can the polyhedron collide with the mold later?

let p be the first point of P that collides with the mold
let f be the corresponding face of P with normal n
angle between d and 7: > 90°

Thomas Blasius — Computational Geometry

AKIT



What Do We Need To Do?

Problem
Goal Given a polyhedron P, is there a
= choose upper face for P mold for P from which P can be

S - removed with a translation.
= choose adirectiond = (dx d, d,) € R®

= such that for every normal n of a regular face: angle between d and 7 is at most 90°

= note: we can assume d, = 1

Reminder (Dot Product): angle between d and n<90° < d- n>0

Restating The Problem (For A Fixed Upper Face)
= find dx and d,

= such that for every regular face we have: n, - dy +n,-d, +n, > 0
m this is a linear program (LP)

Is the inequality really linear?

AKIT



Linear Programs

General Form Of An LP maximize cixi + coxo + - + Caxqd
m variables xi, ..., xy " 3, bj, ¢; are constants

= an objective function = n constraints
= d is the dimension of the LP

Our Specific LP 31X+ -+ andXd < b
= variables d,, d, — dimension 2

= one constraint for each face: nx - dx +n, -d, +71, >0

= No objective function

such that aiixi + -+ a1,axd < by

ai1x1+ -+ axaxa < by

Algorithm For The Mold Creation Problem
= choose each of the n faces once as upper face

= for every upper face, solve a 2-dimensional LP with n — 1 constraints

Goal In The Following: efficient algorithm to solve a 2-dimensional LP

AKIT



Find An Optimal Solution

maximize:
such that:

X1 + Xo
x120
XQZO
X2—X1§1
X1—|—6X2§15
4X1—X2§10

(B)
(R)
(E)
(A)
(K)

AKIT



2D LPs

Example Geometric Interpretation
maximize: X1 + X X2

suchthat: x3 >0 3

optimal
solution

XQZO

valid solutions

Properties Of The LP
m infeasible: no valid solution

® unbounded: there are solutions
with arbitrarily large objective

8 Thomas Blasius — Computational Geometry ﬂ(IT



Half-Plane Intersection

Plan: Divide And Conquer
= split half planes into two groups of roughly equal size

= compute intersection for each group
= compute intersection of the two resulting regions

Intersecting The Two Results

= more or less the intersection of two convex polygons

m careful: regions might be unbounded

= sweep-line algorithm can be adjusted accordingly — running time O(nlog n)

: : . : this is a hint for one exercise on the current sheet

= using convexity — running time O(n)
_ Can This Be Improved?

Total Time: T(n) = O(n) +27(n/2) = closely related to convex hull (via duality)

= O(nlog n) = lower bound: Q(nlog n)

AKIT



solution

Incremental Algorithm For 2D LPs

Observation
= we do not actually need to compute the valid region explicitly

= it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

m let hy, ..., h, he the half planes (constraints)

mletC; = hiNhyN---N h; (feasible region with respect to h;
= assumption: we know an optimal point v;_1 € C;_4

m goal: find an optimal point v; € C;

valid solution

Case 1: v;_1 € C; Case 2: v;_1 € C;

. — I . ‘ei
?
\ = v; lies on the line £; bounding h;
m this is essentially a 1D LP with / constraints

® v;_; remains optimal for C; (as C C Ci_1) = can be solved in O(/) time

AKIT



Incremental Algorithm For 2D LPs

Open Questions

m How do we start? — next exercise sheet
= Why do we care about an O(n?) algorithm? — now

Thoughts On The Running Time
m case vj_; € C;is cheap (just set v; = v;_1) =
m case v;_1 ¢ C; is expensive (O(i) to compute v;) Ci—1 h;
= hope: v;_1 ¢ C; happens rarely

m there is an order hq, . .., h,, suchthat v;_; € C; for;i > 3
m finding this order is not so easy

= put: most orders are good — random order




Randomized Incremental Algorithm

Expected Running Time

= the running time is a random
variable, let’s call it X

m additional random variables: X;
IS the running time in iteration /

ZX,- :ZE[X,-]

Expected Time In Iteration i:
E[X;]]=0(1) + P(vi_1 ¢ C;) - O(i)

Vi—1
m h;

X:iX,-:»E[X]:E

i=1

Can We Bound P(v;_1 ¢ C;) = P(v; # v;_1)?

= current view: add random line in each step

= equivalent: draw random line order

m equivalent: remove random line in every step
- going from C; to C;_1 (removing random h;)

- vi_1 # v; = {; is one of the two lines that
intersect in v;

- probability: 2 -
m thus: P(V,' ;ﬁ V,'_1) < % ><

if more than two intersect,
Why <7 removing any one might
- not resultin v; # v;_q

= E[X;] € O(1) = E[X] € O(n)

AKIT



Wrap-Up

What Have We Learned Today?

= computing a 3D mold for casting — 2D-LP formulation

m 2D-LP — formulate as half-plane intersection

= computing the half-plane intersection: O(nlog n) algorithm

= solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?
= the randomized algorithm also works for higher dimensions

- running time: still O(n) in expectation, if d constant
- grows super-exponentially in d

= this type of randomization (and analysis) works for other geometric problems
- prominent example: O(nlog n) algo for convex hull in 3D

AKIT



