

Computational Geometry Linear Programs & Half-Plane Intersection

Thomas Bläsius

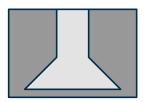
Developing A Mold

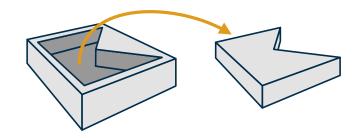
Casting (Manufacturing Technique)

- liquid material is poured into a mold, where it solidifies
- expendable mold: gets destroyed when removing the object
- permanent mold: remains intact and can be reused

For Which Objects Is There a Permanent Mold?

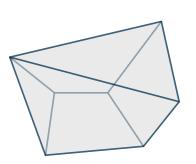
- assumption: mold consists of one piece
- the object may be stuck in the mold
- but a different mold for the same object works





Problem

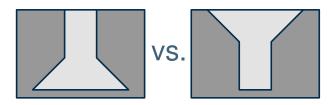
Given a polyhedron P, is there a mold for P from which P can be removed with a translation.



Initial Observations

Decisions To Make

- choice of the top face
- direction of the translation

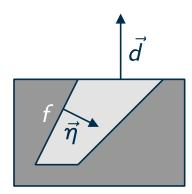


Simplified Situation: Top Face Already Selected

- lacktriangle direction of the translation: $ec{d} = \begin{pmatrix} d_\chi & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$
- let *f* be a regular face *f* (not the top face)
- let $\vec{\eta}$ be its normal vector (pointing inwards)
- problem in the example: angle between \vec{d} and $\vec{\eta}$ is bigger than 90°

Problem

Given a polyhedron *P*, is there a mold for *P* from which *P* can be removed with a translation.



Lemma

P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

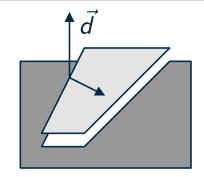
Good And Bad Translations

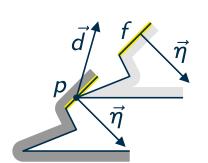
Lemma

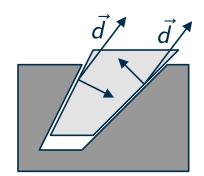
P can be removed in the direction \vec{d} if and only if the angle between \vec{d} and the inner normal is $\leq 90^{\circ}$ for every regular face.

Proof

- angle $> 90^{\circ} \Rightarrow$ cannot be removed
 - already fails right at the beginning of the translation
- angle $\leq 90^{\circ} \Rightarrow$ can be removed
 - ok at the beginning
 - can the polyhedron collide with the mold later?
 - let p be the first point of P that collides with the mold
 - let f be the corresponding face of P with normal $\vec{\eta}$
 - angle between \vec{d} and $\vec{\eta}$: $> 90^\circ$







What Do We Need To Do?

Goal

- choose upper face for P
- choose a direction $\vec{d} = \begin{pmatrix} d_x & d_y & d_z \end{pmatrix}^T \in \mathbb{R}^3$
- such that for every normal $\vec{\eta}$ of a regular face: angle between \vec{d} and $\vec{\eta}$ is at most 90°
- note: we can assume $d_z = 1$

Why?

Reminder (Dot Product): angle between \vec{d} and $\vec{\eta} \leq 90^{\circ} \Leftrightarrow \vec{d} \cdot \vec{\eta} \geq 0$

Restating The Problem (For A Fixed Upper Face)

- find d_x and d_y
- such that for every regular face we have: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \ge 0$
- this is a linear program (LP)

Is the inequality really linear?

Problem

Given a polyhedron P, is there a

mold for P from which P can be

removed with a translation.

Linear Programs

General Form Of An LP

- variables x_1, \ldots, x_d
- \bullet $a_{i,i}$, b_i , c_i are constants
- an objective function
- n constraints
- d is the dimension of the LP

Our Specific LP

- variables d_x , $d_y \rightarrow$ dimension 2
- one constraint for each face: $\eta_x \cdot d_x + \eta_y \cdot d_y + \eta_z \geq 0$
- no objective function

Algorithm For The Mold Creation Problem

- choose each of the *n* faces once as upper face
- for every upper face, solve a 2-dimensional LP with n-1 constraints

Goal In The Following: efficient algorithm to solve a 2-dimensional LP

maximize
$$c_1x_1 + c_2x_2 + \cdots + c_dx_d$$

such that $a_{1,1}x_1 + \cdots + a_{1,d}x_d \le b_1$
 $a_{2,1}x_1 + \cdots + a_{2,d}x_d \le b_2$
 \vdots
 $a_{n,1}x_1 + \cdots + a_{n,d}x_d \le b_n$

Find An Optimal Solution

maximize: $x_1 + x_2$ such that: $x_1 \ge 0$ (B)

$$x_2 \ge 0$$
 (R)

$$x_2 - x_1 \le 1 \qquad (E)$$

$$x_1 + 6x_2 \le 15$$
 (A)

$$4x_1 - x_2 \le 10$$
 (K)

2D LPs

Example

maximize: $x_1 + x_2$

such that: $x_1 \ge 0$

$$x_2 \geq 0$$

$$x_2-x_1\leq 1$$

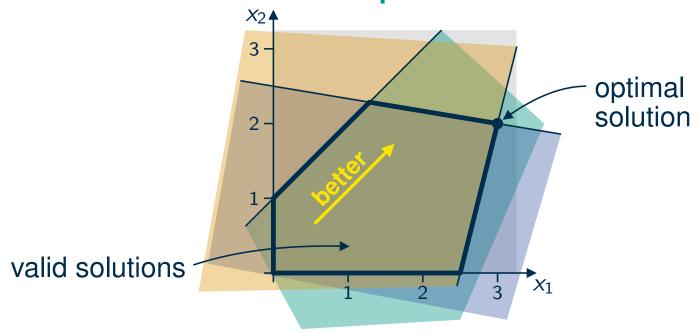
$$x_1+6x_2\leq 15$$

$$4x_1-x_2\leq 10$$

Properties Of The LP

- infeasible: no valid solution
- unbounded: there are solutions with arbitrarily large objective

Geometric Interpretation



Problem: Half-Plane Intersection

Given *n* half planes, compute their intersection.

Half-Plane Intersection

Plan: Divide And Conquer

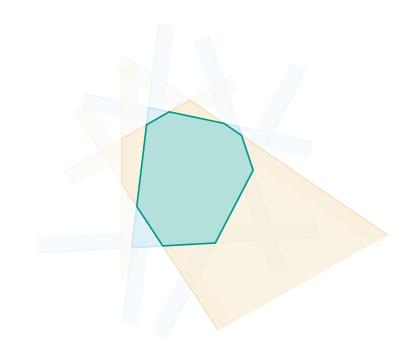
- split half planes into two groups of roughly equal size
- compute intersection for each group
- compute intersection of the two resulting regions

Intersecting The Two Results

- more or less the intersection of two convex polygons
- careful: regions might be unbounded
- sweep-line algorithm can be adjusted accordingly \rightarrow running time $O(n \log n)$
- using convexity \rightarrow running time O(n)

Total Time:
$$T(n) = O(n) + 2T(n/2)$$

 $\Rightarrow O(n \log n)$



this is a hint for one exercise on the current sheet

Can This Be Improved?

- closely related to convex hull (via duality)
- lower bound: $\Omega(n \log n)$

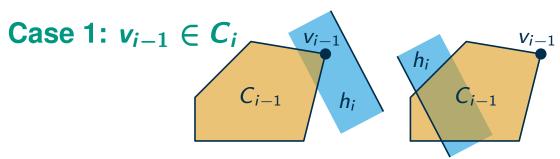
Incremental Algorithm For 2D LPs

Observation

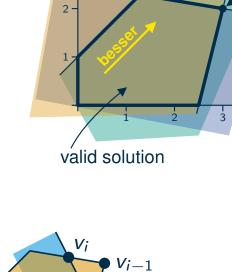
- we do not actually need to compute the valid region explicitly
- it is sufficient to compute a valid point that maximizes the objective

Incremental Approach

- let h_1, \ldots, h_n he the half planes (constraints)
- let $C_i = h_1 \cap h_2 \cap \cdots \cap h_i$ (feasible region with respect to h_1, \ldots, h_i)
- assumption: we know an optimal point $v_{i-1} \in C_{i-1}$
- goal: find an optimal point $v_i \in C_i$



• v_{i-1} remains optimal for C_i (as $C_i \subseteq C_{i-1}$)



optimal solution

Case 2: $v_{i-1} \notin C_i$

 C_{i-1}

• can be solved in O(i) time

Why?

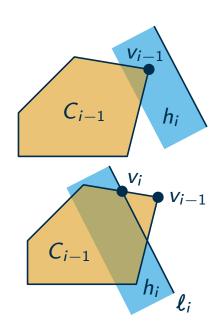
Incremental Algorithm For 2D LPs

Open Questions

- How do we start?
 → next exercise sheet
- Why do we care about an $O(n^2)$ algorithm? \rightarrow now

Thoughts On The Running Time

- case $v_{i-1} \in C_i$ is cheap (just set $v_i = v_{i-1}$)
- case $v_{i-1} \notin C_i$ is expensive (O(i)) to compute v_i
- hope: $v_{i-1} \notin C_i$ happens rarely
- there is an order h_1, \ldots, h_n , such that $v_{i-1} \in C_i$ for $i \geq 3$
- finding this order is not so easy
- but: most orders are good → random order



Randomized Incremental Algorithm

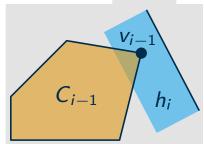
Expected Running Time

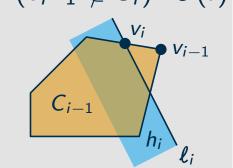
- the running time is a random variable, let's call it X
- additional random variables: X_i is the running time in iteration i

$$X = \sum_{i=1}^{n} X_i \Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expected Time In Iteration *i*:

$$\mathbb{E}\left[X_{i}\right] = O(1) + P(v_{i-1} \notin C_{i}) \cdot O(i)$$

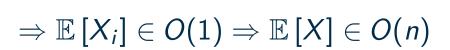




Can We Bound $P(v_{i-1} \notin C_i) = P(v_i \neq v_{i-1})$?

- current view: add random line in each step
- equivalent: draw random line order
- equivalent: remove random line in every step
 - going from C_i to C_{i-1} (removing random h_i)
 - $-v_{i-1} \neq v_i \Rightarrow \ell_i$ is one of the two lines that intersect in v_i
 - probability: $\frac{2}{i}$
- thus: $P(v_i \neq v_{i-1}) \leq \frac{2}{i}$

if more than two intersect, removing any one might not result in $v_i \neq v_{i-1}$



Wrap-Up

What Have We Learned Today?

- computing a 3D mold for casting → 2D-LP formulation
- 2D-LP → formulate as half-plane intersection
- computing the half-plane intersection: $O(n \log n)$ algorithm
- \blacksquare solving a 2D-LPs: randomized algorithm with expected running time O(n)

What Else Is There?

- the randomized algorithm also works for higher dimensions
 - running time: still O(n) in expectation, if d constant
 - grows super-exponentially in d
- this type of randomization (and analysis) works for other geometric problems
 - prominent example: $O(n \log n)$ algo for convex hull in 3D

