

Computational Geometry Polygon Triangulation

Thomas Bläsius

Definition A **triangulation** of a polygon *P* is a planar subdivision of *P* such that each face is a triangle.

Definition A **triangulation** of a polygon *P* is a planar subdivision of *P* such that each face is a triangle.

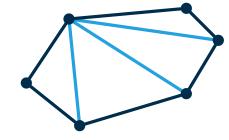
Problem Given *P*, find diagonals that triangulate *P*.

Definition A triangulation of a polygon *P* is a planar subdivision of *P* such that each face is a triangle.

Does this always exist?

Problem

Given *P*, find diagonals that triangulate *P*.

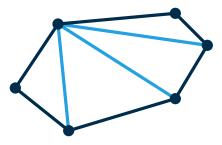


Definition

A triangulation of a polygon P is a planar subdivision of P such that each face is a triangle. **Problem** Given *P*, find diagonals that triangulate *P*.

Let's Simplify First

convex polygons are easy to triangulate


Definition

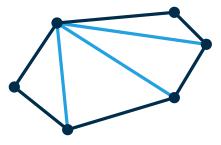
A **triangulation** of a polygon P is a planar subdivision of P such that each face is a triangle.

Problem Given *P*, find diagonals that triangulate *P*.

Let's Simplify First

- convex polygons are easy to triangulate
- idea: subdivide *P* into convex pieces then triangulate those pieces

Definition


2

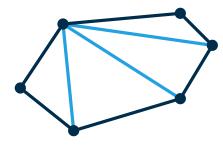
A triangulation of a polygon P is a planar subdivision of P such that each face is a triangle.

Problem Given *P*, find diagonals that triangulate *P*.

Let's Simplify First

- convex polygons are easy to triangulate
- idea: subdivide *P* into convex pieces then triangulate those pieces
- problem: finding a convex subdivision is not much easier

Definition


A triangulation of a polygon P is a planar subdivision of P such that each face is a triangle. **Problem** Given *P*, find diagonals that triangulate *P*.

Let's Simplify First

- convex polygons are easy to triangulate
- idea: subdivide P into convex pieces then triangulate those pieces
- problem: finding a convex subdivision is not much easier

Our Plan

find a weaker condition than convexity

Definition

A triangulation of a polygon P is a planar subdivision of P such that each face is a triangle.

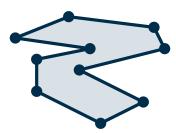

Problem Given *P*, find diagonals that triangulate *P*.

Let's Simplify First

- convex polygons are easy to triangulate
- idea: subdivide P into convex pieces then triangulate those pieces
- problem: finding a convex subdivision is not much easier

Our Plan

- find a weaker condition than convexity
- subdividing P into pieces with this property becomes easier
- triangulating the pieces becomes more difficult

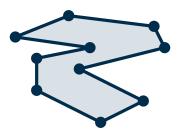

Definition

A polygon is *y*-monotone if the intersection with every horizontal line is connected.

not y-monotone

y-monotone

disclaimer: I will not be super consistent whether "polygon" refers to its interior or its boundary; but it will be always clear from the context


Definition

A polygon is *y*-monotone if the intersection with every horizontal line is connected.

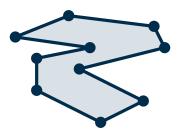
not y-monotone

y-monotone

disclaimer: I will not be super consistent whether "polygon" refers to its interior or its boundary; but it will be always clear from the context

Remark

convex polygons are monotone in every direction


Definition

A polygon is *y*-monotone if the intersection with every horizontal line is connected.

not y-monotone

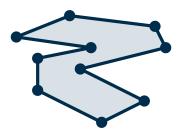
y-monotone

Remark

convex polygons are monotone in every direction

x- and *y*-monotone \Rightarrow convex?

disclaimer: I will not be super consistent whether "polygon" refers to its interior or its boundary; but it will be always clear from the context


Definition

A polygon is *y*-monotone if the intersection with every horizontal line is connected.

not y-monotone

y-monotone

Remark

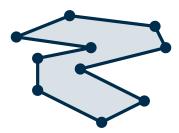
convex polygons are monotone in every direction

x- and *y*-monotone \Rightarrow convex?

disclaimer: I will not be super consistent whether "polygon" refers to its interior or its boundary; but it will be always clear from the context

Our Plan

• subdivide arbitrary polygon in $O(n \log n)$ time in y-monotone pieces \rightarrow today


Definition

A polygon is *y*-monotone if the intersection with every horizontal line is connected.

not y-monotone

y-monotone

Remark

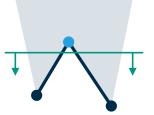
convex polygons are monotone in every direction

x- and *y*-monotone \Rightarrow convex?

disclaimer: I will not be super consistent whether "polygon" refers to its interior or its boundary; but it will be always clear from the context

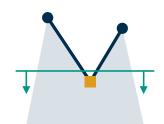
Our Plan

- subdivide arbitrary polygon in $O(n \log n)$ time in y-monotone pieces \rightarrow today
- triangulate a y-monotone polygon in O(n) time


ightarrow exercise sheet

Split Vertex

- edges lie below
- polygon lies above
- polygon splits (coming from above)

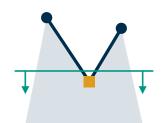


Split Vertex

- edges lie below
- polygon lies above
- polygon splits (coming from above)

Merge Vertex

- edges lie above
- polygon lies below
- polygons parts merge



Split Vertex

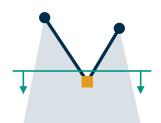
- edges lie below
- polygon lies above
- polygon splits (coming from above)

Merge Vertex

- edges lie above
- polygon lies below
- polygons parts merge

Observation

• a merge or split vertex exists \Rightarrow the polygon is not *y*-monotone

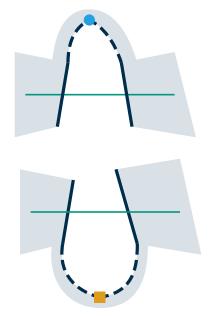


Split Vertex

- edges lie below
- polygon lies above
- polygon splits (coming from above)

Merge Vertex

- edges lie above
- polygon lies below
- polygons parts merge

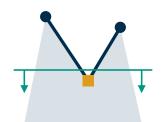


Observation

• a merge or split vertex exists \Rightarrow the polygon is not *y*-monotone

Lemma (*y*-monotonicity) A polygon is *y*-monotone if and only if it has no split or merge vertex.

proof by picture



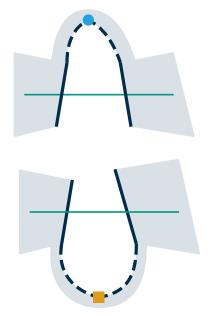
Split Vertex

- edges lie below
- polygon lies above
- polygon splits (coming from above)

Merge Vertex

- edges lie above
- polygon lies below
- polygons parts merge

Observation

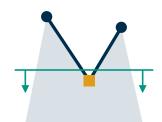

• a merge or split vertex exists \Rightarrow the polygon is not *y*-monotone

Lemma (*y*-monotonicity) A polygon is *y*-monotone if and only if it has no split or merge vertex.

Goal

eliminate all split and merge vertices by inserting diagonals

proof by picture



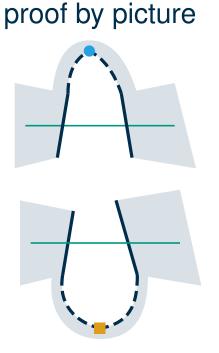
Split Vertex

- edges lie below
- polygon lies above
- polygon splits (coming from above)

Merge Vertex

- edges lie above
- polygon lies below
- polygons parts merge

Observation


• a merge or split vertex exists \Rightarrow the polygon is not *y*-monotone

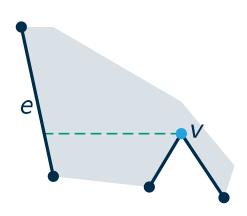
Lemma (*y*-monotonicity) A polygon is *y*-monotone if and only if it has no split or merge vertex.

Goal

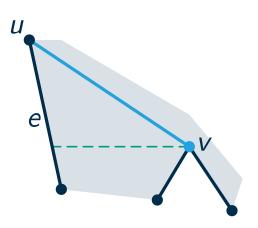
4

- eliminate all split and merge vertices by inserting diagonals
- upwards for split vertices and downwards for merge vertices

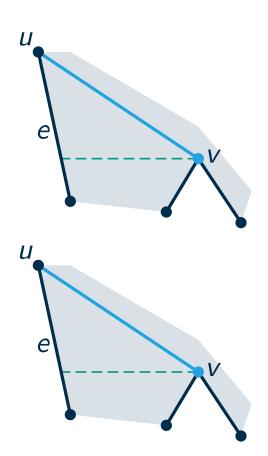
Idea For Split Vertex v


idea: connect v to vertex u that is above v and close to v

Idea For Split Vertex v

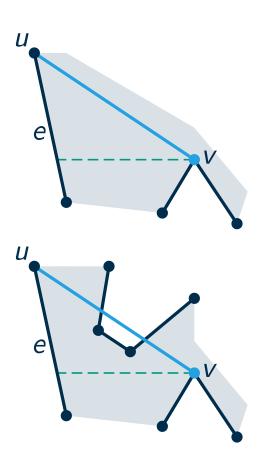

- idea: connect *v* to vertex *u* that is above *v* and close to *v*
- e: edge to the left of *v* ("to the left of": the next edge you hit when shooting a ray from *v* to the left)

Idea For Split Vertex v


- idea: connect v to vertex u that is above v and close to v
- e: edge to the left of V ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose *u* to be the upper vertex of *e*

Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- e: edge to the left of v ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose *u* to be the upper vertex of *e*
- Issue (And How To Fix It)

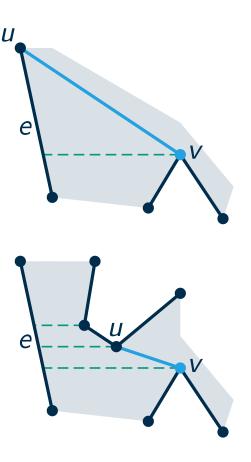


Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- e: edge to the left of v ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e

Issue (And How To Fix It)

• *uv* might intersect another edge of the polygon

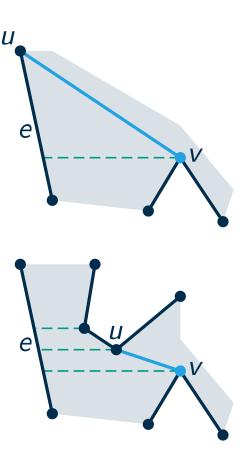


Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- e: edge to the left of v ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e

Issue (And How To Fix It)

- uv might intersect another edge of the polygon
- fix: choose for u the lowest vertex above v such that e is to the left of u



Idea For Split Vertex v

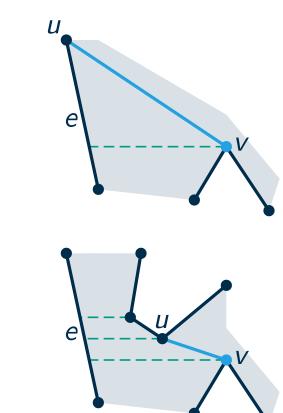
- idea: connect v to vertex u that is above v and close to v
- e: edge to the left of v ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e

Issue (And How To Fix It)

- uv might intersect another edge of the polygon
- fix: choose for u the lowest vertex above v such that e is to the left of u
- we call *u* the **helper** of *e* (note: it depends on *v*)

Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- C: edge to the left of V ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e


Issue (And How To Fix It)

- *uv* might intersect another edge of the polygon
- fix: choose for *u* the lowest vertex above *v* such that *e* is to the left of *u*
- we call u the **helper** of e (note: it depends on v)

Lemma

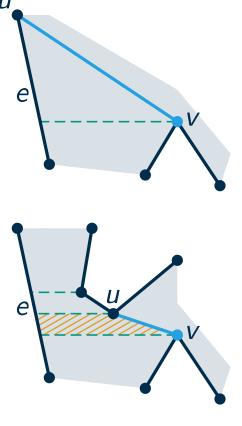
5

(the helper is helpful) Let v be a split vertex, e the edge left of v, and u the helper of e (wrt v). Then uv does not intersect an edge of the polygon (except in u and v).

Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- C: edge to the left of V ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e

Issue (And How To Fix It)


- *uv* might intersect another edge of the polygon
- fix: choose for *u* the lowest vertex above *v* such that *e* is to the left of *u*
- we call u the **helper** of e (note: it depends on v)

Lemma

(the helper is helpful) Let v be a split vertex, e the edge left of v, and u the helper of e (wrt v). Then uv does not intersect an edge of the polygon (except in u and v).

Proof

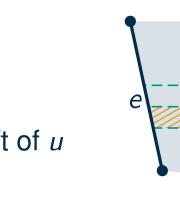
the quadrilateral between uv and *e* contains no vertex

Why?

Idea For Split Vertex v

- idea: connect v to vertex u that is above v and close to v
- C: edge to the left of V ("to the left of": the next edge you hit when shooting a ray from v to the left)
- choose u to be the upper vertex of e

Issue (And How To Fix It)

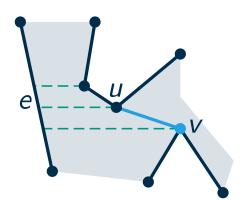

- *uv* might intersect another edge of the polygon
- fix: choose for *u* the lowest vertex above *v* such that *e* is to the left of *u*
- we call u the **helper** of e (note: it depends on v)

Lemma

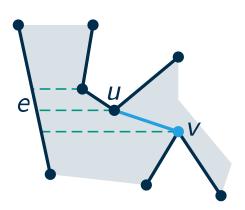
(the helper is helpful) Let v be a split vertex, e the edge left of v, and u the helper of e (wrt v). Then uv does not intersect an edge of the polygon (except in u and v).

Proof

- the quadrilateral between uv and *e* contains no vertex
- no edge intersects uv

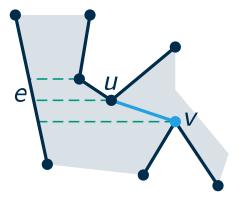


Observations


• goal for split vertex v: find edge e to the left of v and helper of e

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

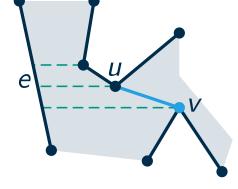


e lies (partially) above *v* the helper of *e* lies above *v* sweep line seems to be a good idea (horizontal sweep line *l* from top to bottom)

Eliminating Split Vertices

Observations

- goal for split vertex v: find edge e to the left of v and helper of e

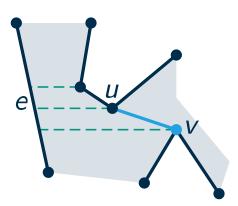


Observations goal for split vertex v: find edge e to the left of v and helper of e

Eliminating Split Vertices

e lies (partially) above v
 the helper of e lies above v
 sweep line seems to be a good idea (horizontal sweep line l from top to bottom)

Event Queue



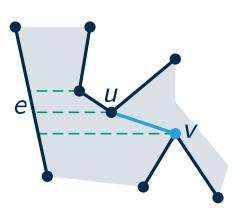
Observations

- goal for split vertex v: find edge e to the left of v and helper of e

e lies (partially) above v
 the helper of e lies above v
 sweep line seems to be a good idea (horizontal sweep line l from top to bottom)

Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)


Observations

- goal for split vertex v: find edge e to the left of v and helper of e

e lies (partially) above v
 the helper of e lies above v
 sweep line seems to be a good idea (horizontal sweep line l from top to bottom)

Event Queue

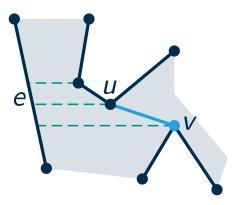
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

• edges that intersect ℓ sorted by x-coordinate

Sweep Line Status

vertices of the polygon

Eliminating Split Vertices


sorted by y-coordinate (or lexicographic by yx)

Observations

Event Queue

- goal for split vertex v: find edge e to the left of v and helper of e

e lies (partially) above v
 the helper of e lies above v
 sweep line seems to be a good idea (horizontal sweep line l from top to bottom)

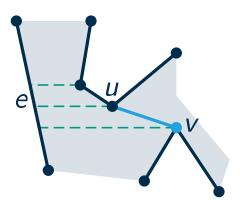
Sweep Line Status

vertices of the polygon

• edges that intersect ℓ sorted by x-coordinate

sorted by y-coordinate (or lexicographic by yx)

edges that have the polygon to their right suffice

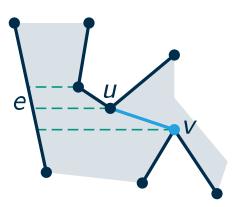

Eliminating Split Vertices

Observations

Event Queue

- goal for split vertex v: find edge e to the left of v and helper of e

e lies (partially) above v
 the helper of e lies above v
 sweep line seems to be a good idea (horizontal sweep line l from top to bottom)



Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- *e* lies (partially) above *v*the helper of *e* lies above *v*

 $\Rightarrow \text{ sweep line seems to be a good idea}$ (horizontal sweep line ℓ from top to bottom)

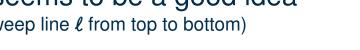
Event Queue

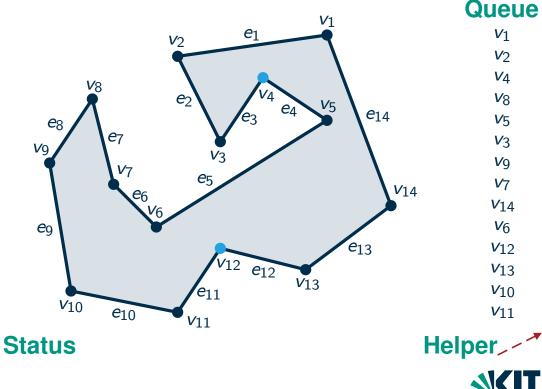
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

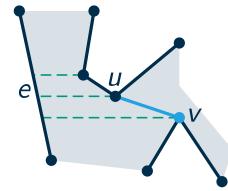
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- *e* lies (partially) above *v*
- the helper of *e* lies above *v*


Event Queue

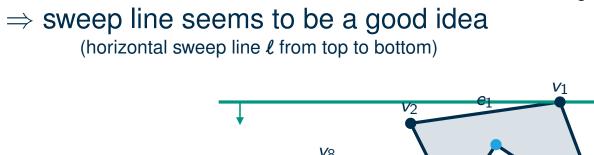

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

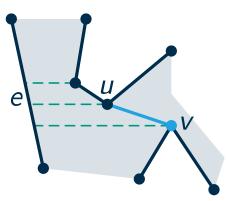

Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

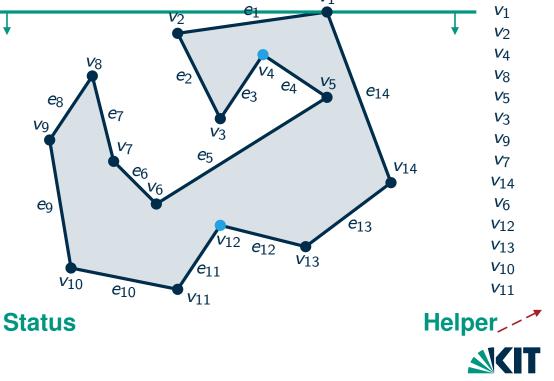
 $\Rightarrow sweep line seems to be a good idea (horizontal sweep line <math>\ell$ from top to bottom)

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

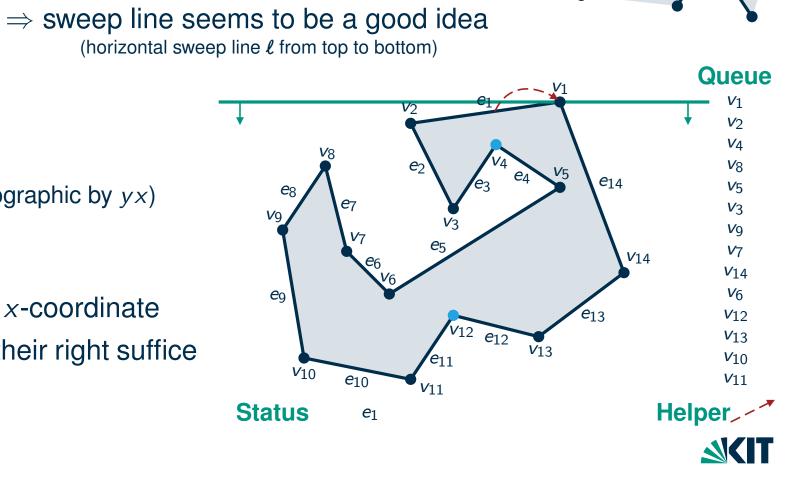
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

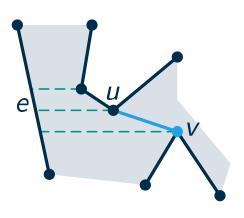

Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Queue

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

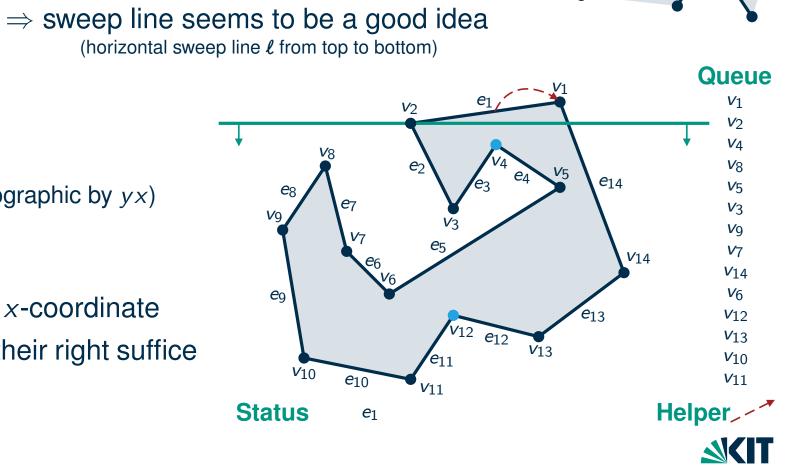

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

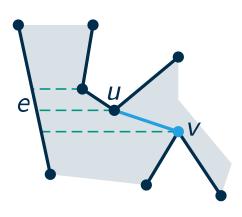
Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Eliminating Split Vertices


Eliminating Split Vertices

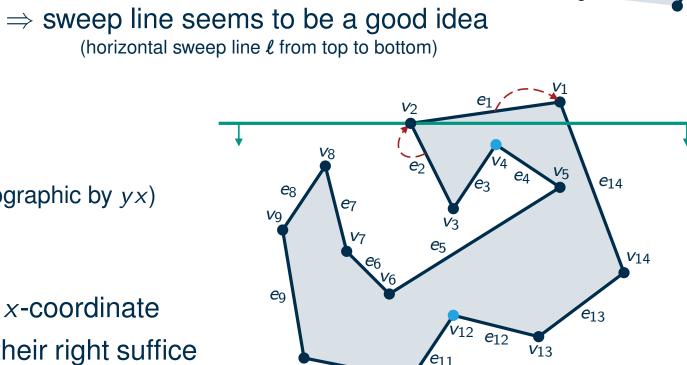

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Eliminating Split Vertices

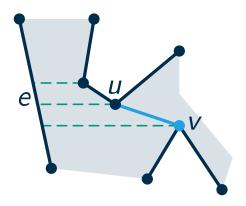

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge


V11

 V_{10}

Status

 e_{10}

e₂

*v*₁ - *v*₂

 V_4

 V_8

V5 V3 V9 V7

*v*₁₄ *v*₆

 V_{12}

 V_{13}

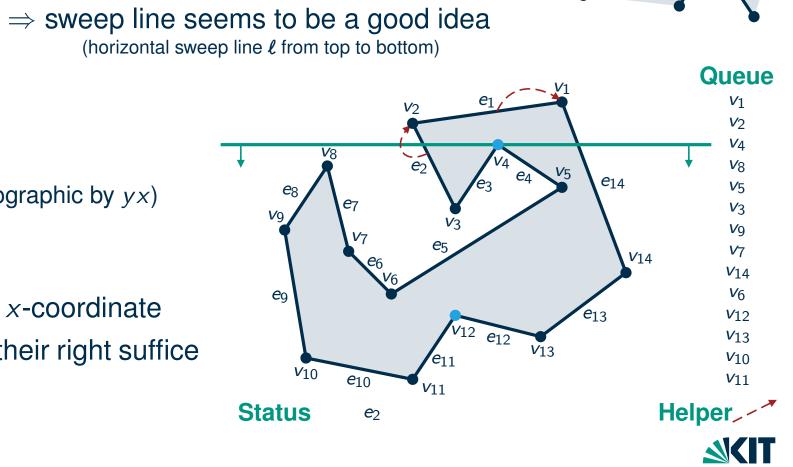
 V_{10}

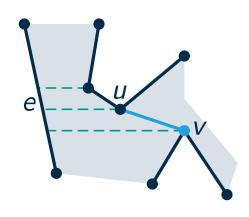
V11

Helper____

Queue

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

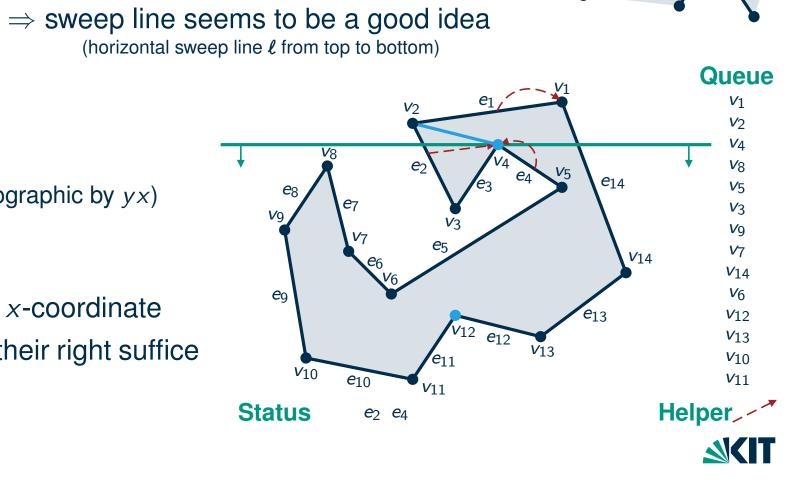

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

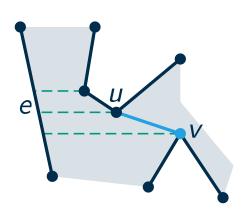
Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Eliminating Split Vertices

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

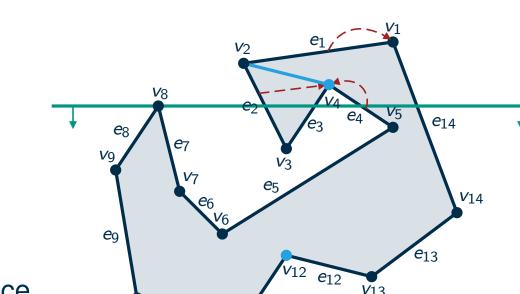

Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Eliminating Split Vertices


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

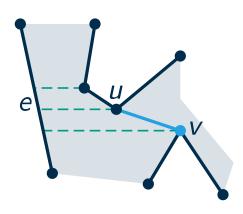
Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

V11


 \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

 V_{10}

Status

 e_{10}

 $e_2 e_4$

> V2 V4

V8

 V_5

V3 V9 V7

*v*₁₄ *v*₆

 V_{12}

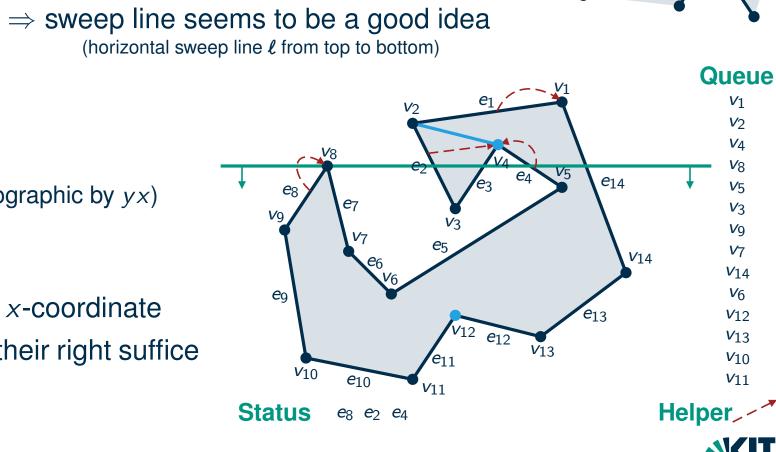
 V_{13}

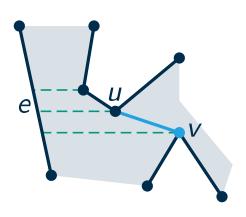
 V_{10}

V11

Helper____

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

 V_1

 V_2 V_4

V8

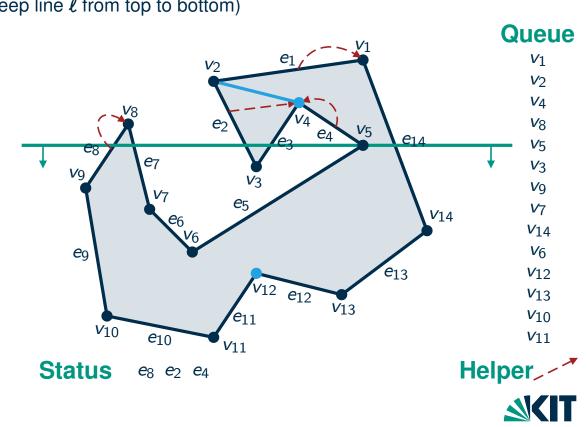
 V_5

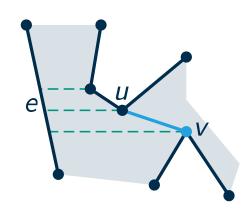
 V_3 Vg V_7

 V_6

 V_{12}

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

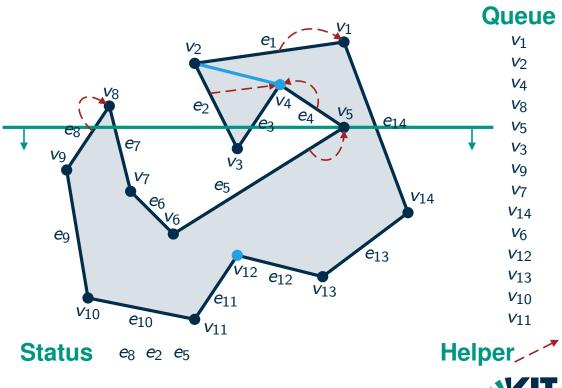
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

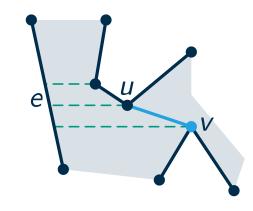
- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

Event Queue

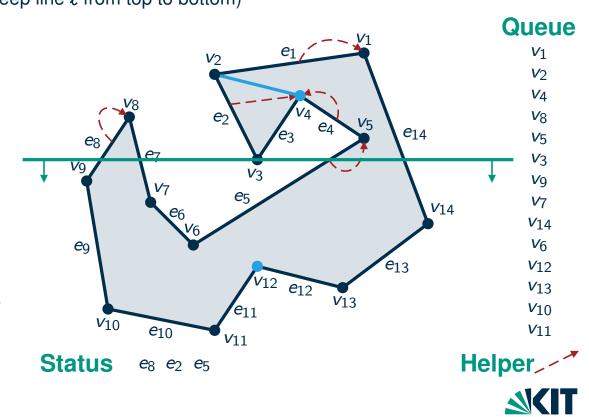

6

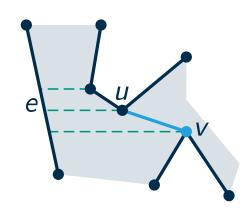

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

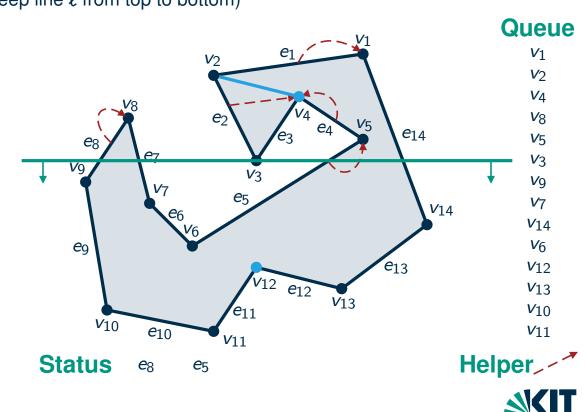
\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

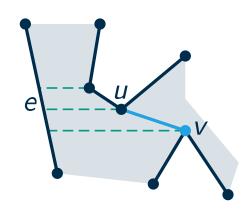

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

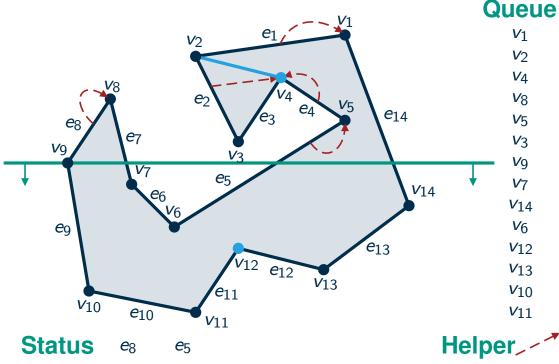

Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

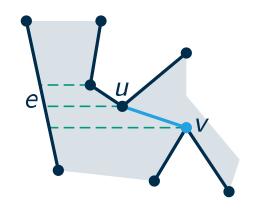
Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

e

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

Event Queue

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

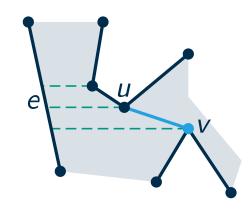
- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

- \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)
 - Queue V_1 V_2 V_4 Vg *e*₁₄ V_5 e₇ V3 V9 V_7 V_7 V14 V_{14} V_6 eq V_{12} e_{13} /12 e_{12} V_{13} V_{13} V_{10} e_{11} V_{10} V11 e_{10} V11 Helper____ Status *e*₅

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

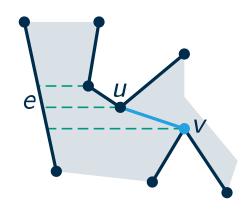
\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Queue V_1 V_2 V_4 Vg *e*₁₄ V_5 V3 Vg V_7 **V**14 V_{14} V_6 eq V_{12} e_{13} e_{12} V_{13} V_{13} V_{10} V_{10} V11 e_{10} V11 Helper____ Status *e*₅

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

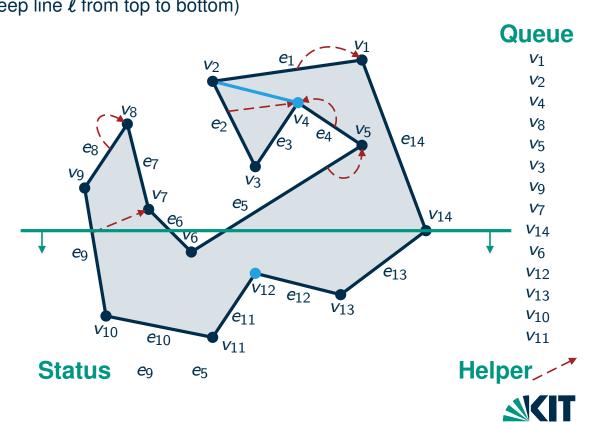
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Queue V_1 V_2 V_4 Vg *e*₁₄ V_5 V3 Va Vg V_7 **V**14 V_{14} V_6 eg V_{12} e_{13} e_{12} V_{13} V_{13} V_{10} V_{10} V11 e_{10} V11 Helper____ Status *e*₅

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

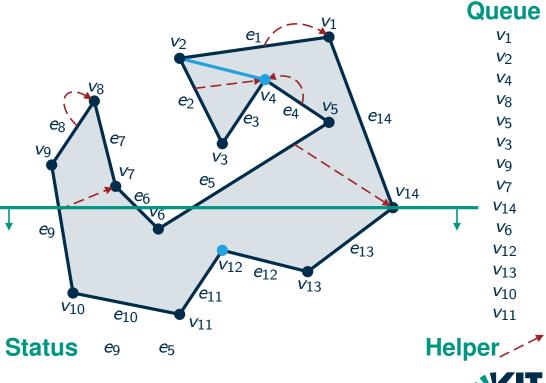
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

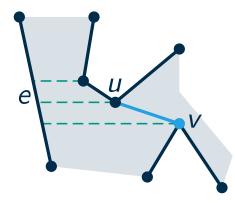
Sweep Line Status

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

e

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

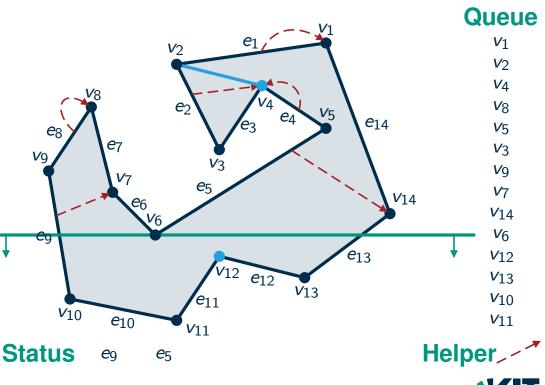
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

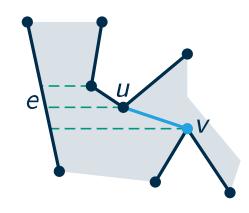
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

- \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

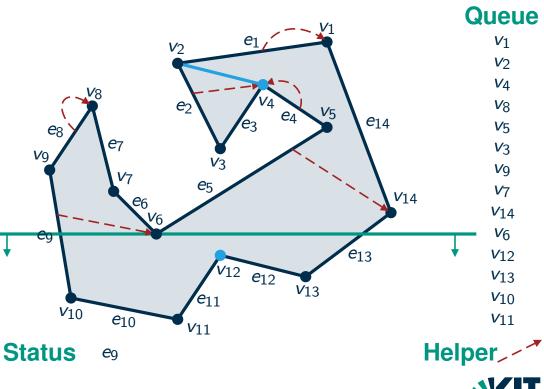

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

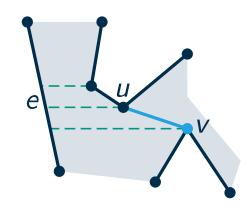
Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

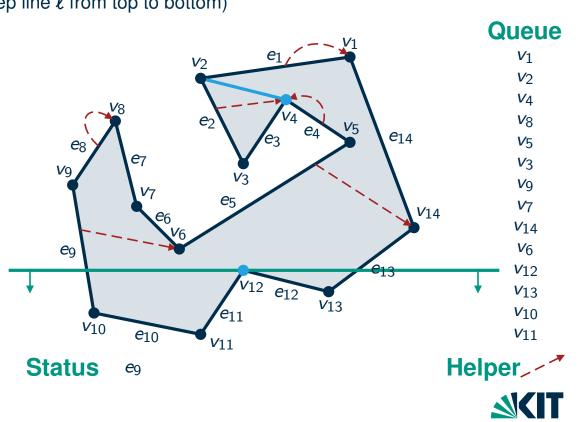

Event Queue

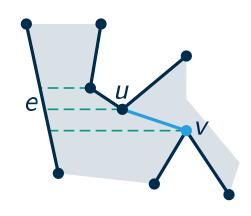
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

- \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

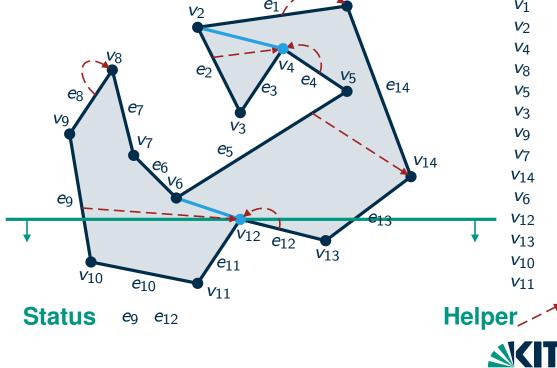

Event Queue

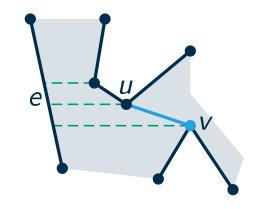
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

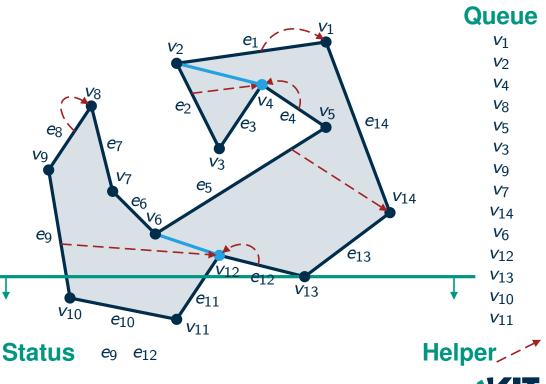
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

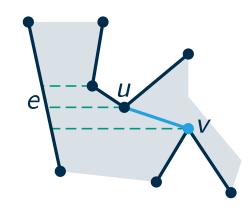
- \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Queue

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

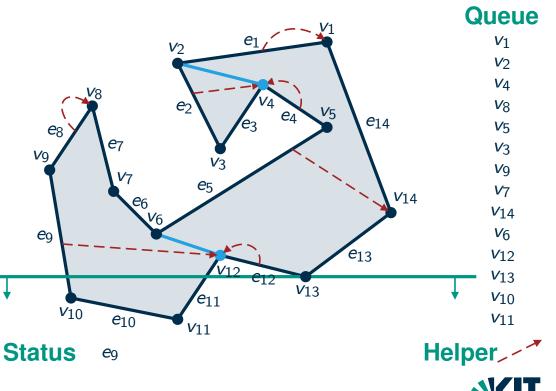
Sweep Line Status

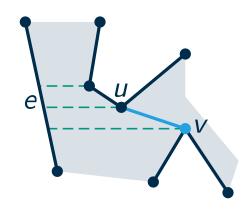
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue

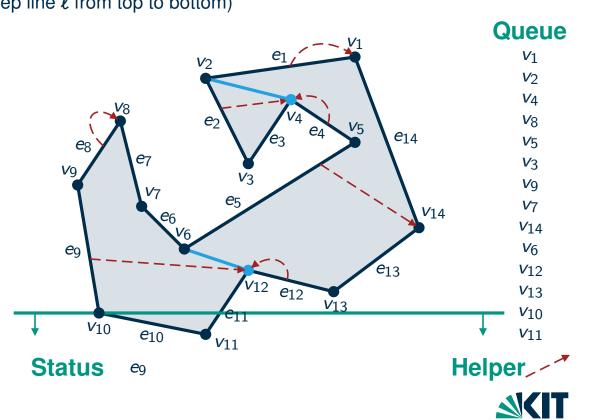

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

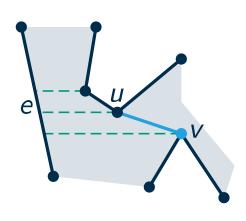
Sweep Line Status

- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations


- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

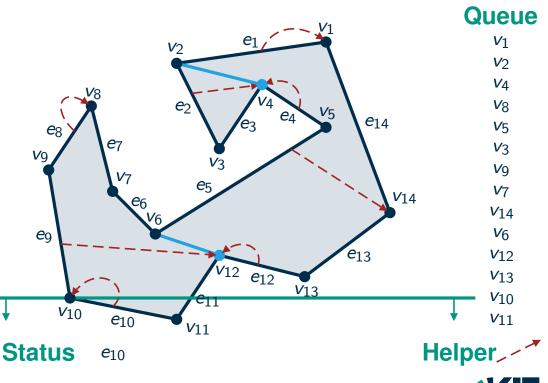

Event Queue

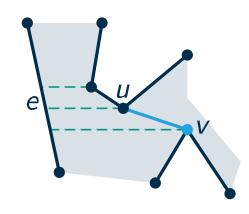
- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

- edges that intersect *l* sorted by *x*-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

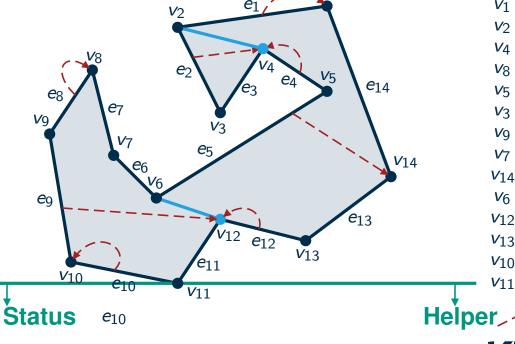
Sweep Line Status

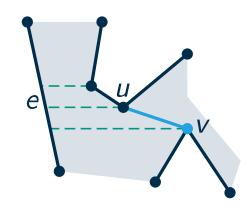
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Observations

- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*


Event Queue


- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

Sweep Line Status

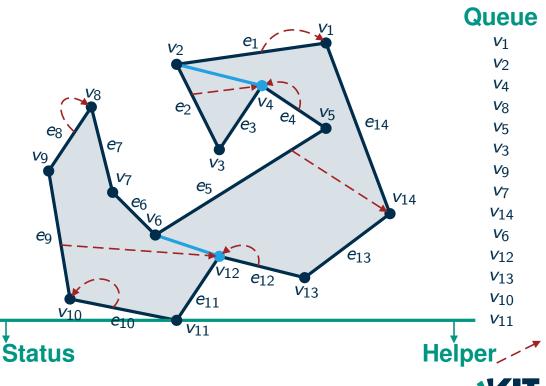
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge

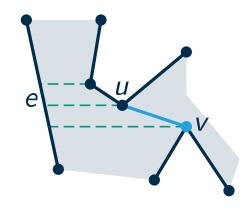
- \Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

Queue

Observations

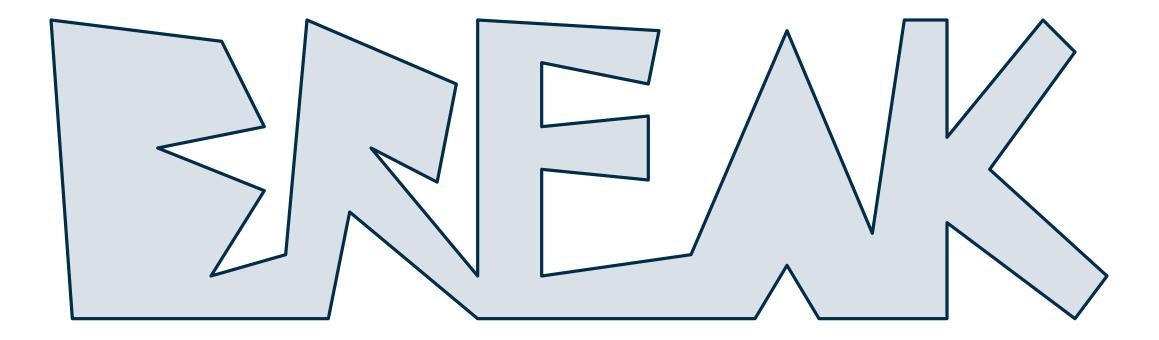
- goal for split vertex v: find edge e to the left of v and helper of e
- e lies (partially) above v
- the helper of *e* lies above *v*

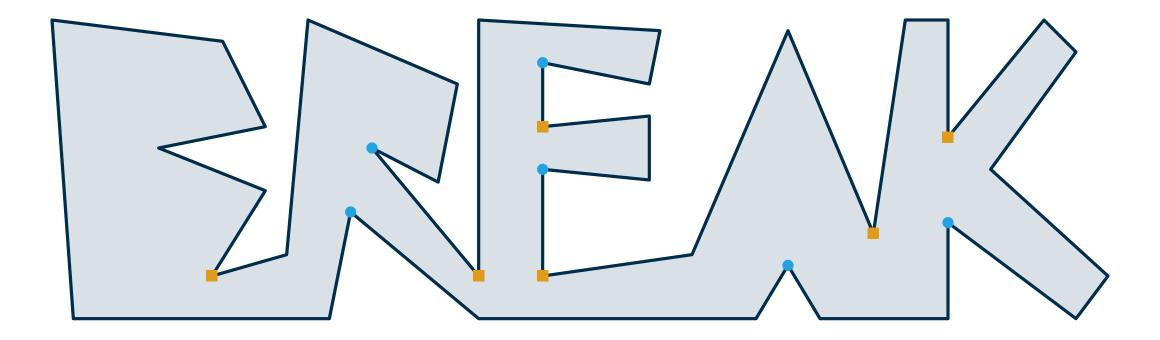

Event Queue

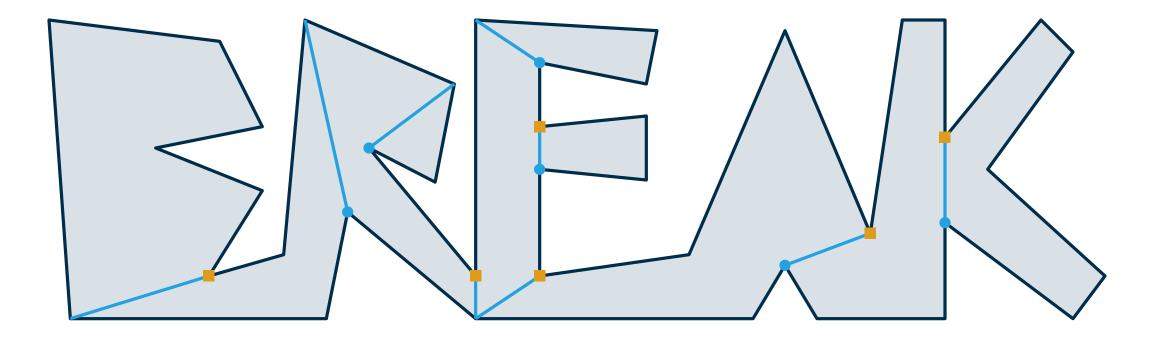

- vertices of the polygon
- sorted by y-coordinate (or lexicographic by yx)

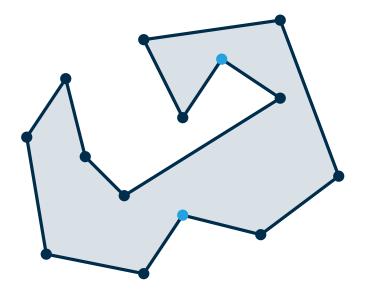
Sweep Line Status

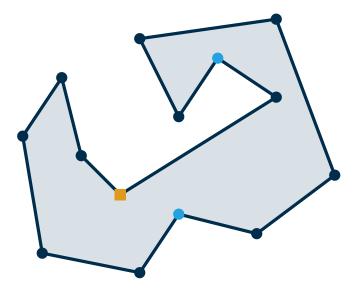
- edges that intersect ℓ sorted by x-coordinate
- edges that have the polygon to their right suffice
- current helper for every edge


\Rightarrow sweep line seems to be a good idea (horizontal sweep line ℓ from top to bottom)

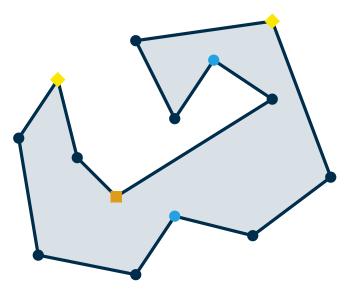

How many diagonals do we need at least to get *y*-monotone polygons?

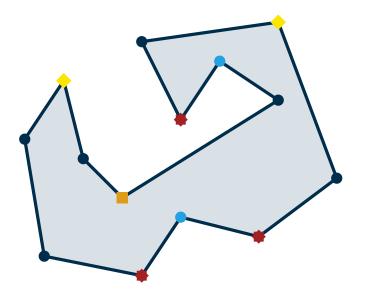

How many diagonals do we need at least to get *y*-monotone polygons?

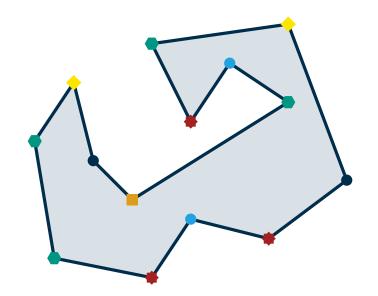

How many diagonals do we need at least to get *y*-monotone polygons?



Different Vertex Types

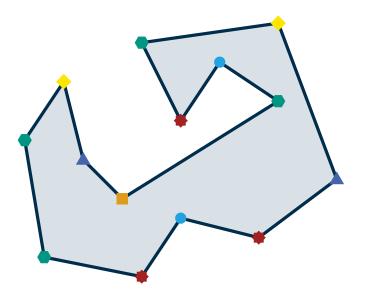

split: edges below, polygon above


- split: edges below, polygon above
- merge: edges above, polygon below

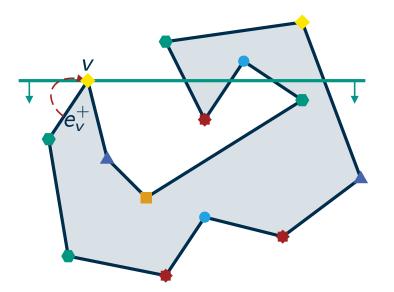

- split: edges below, polygon above
- merge: edges above, polygon below
- start: edges below, polygon below

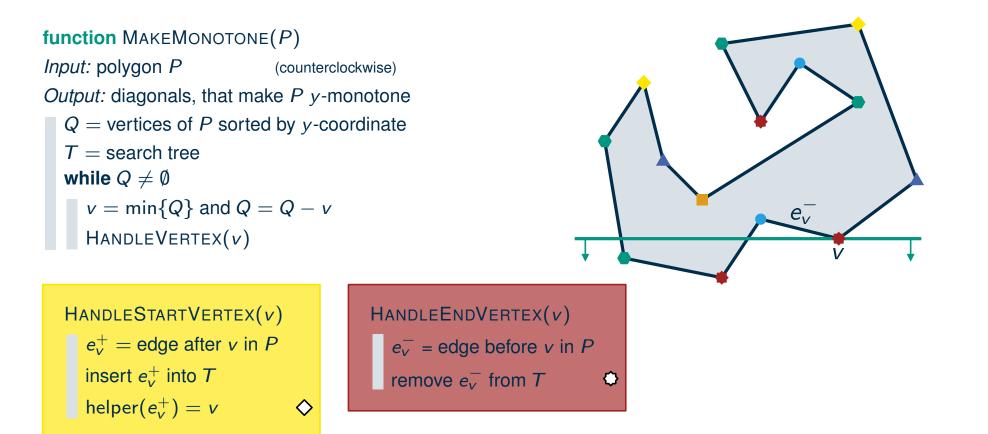
- split: edges below, polygon above
- merge: edges above, polygon below
- start: edges below, polygon below
- end: edges above, polygon above

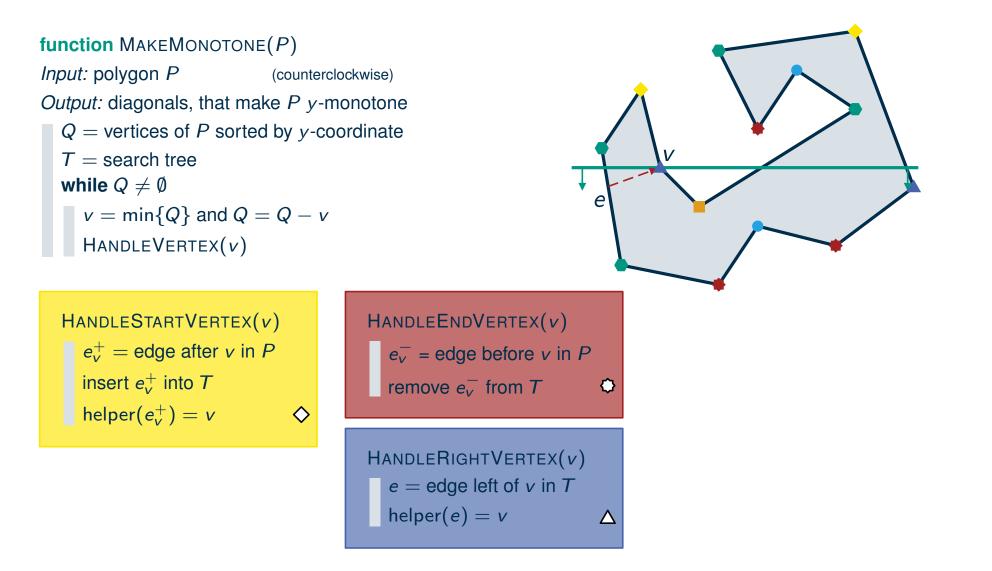
- split: edges below, polygon above
- merge: edges above, polygon below
- start: edges below, polygon below
- end: edges above, polygon above
- left: y-monoton, polygon right



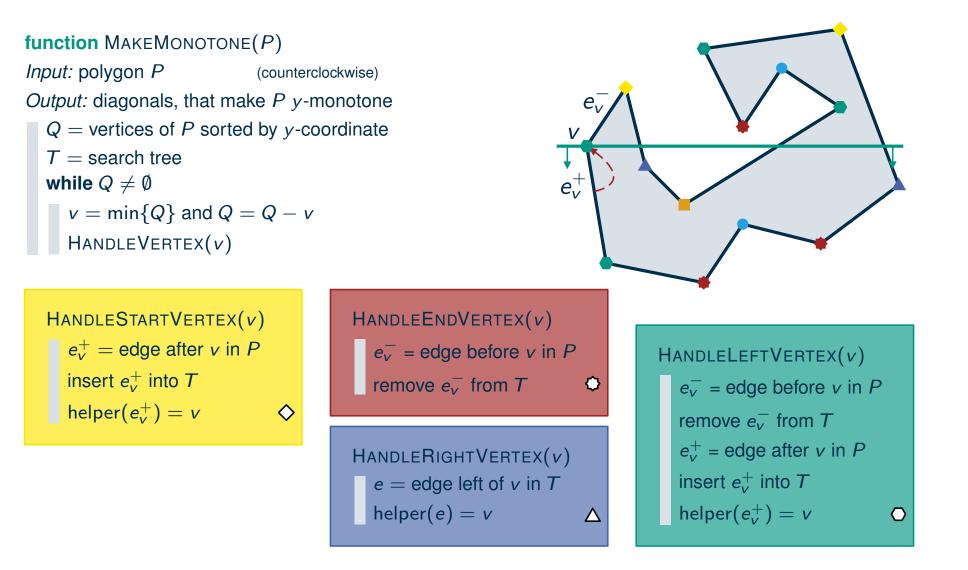
- split: edges below, polygon above
- merge: edges above, polygon below
- start: edges below, polygon below
- end: edges above, polygon above
- left: y-monoton, polygon right
- right: y-monoton, polygon left

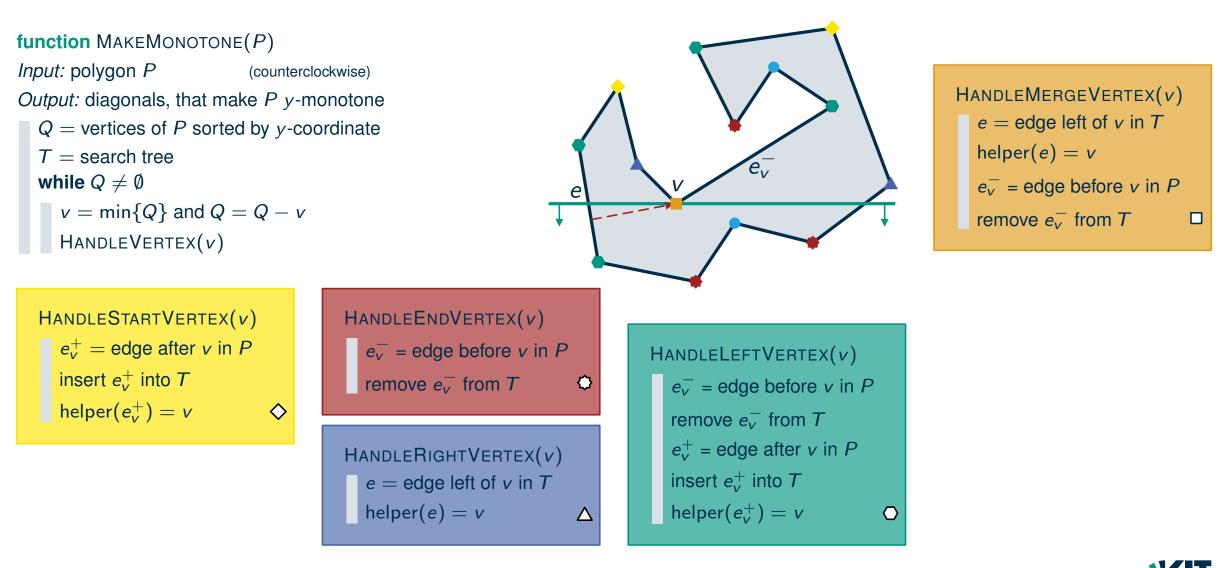

function MAKEMONOTONE(P) Input: polygon P (counterclockwise) Output: diagonals, that make P y-monotone Q = vertices of P sorted by y-coordinate T = search tree while $Q \neq \emptyset$ $v = \min\{Q\}$ and Q = Q - vHANDLEVERTEX(v)

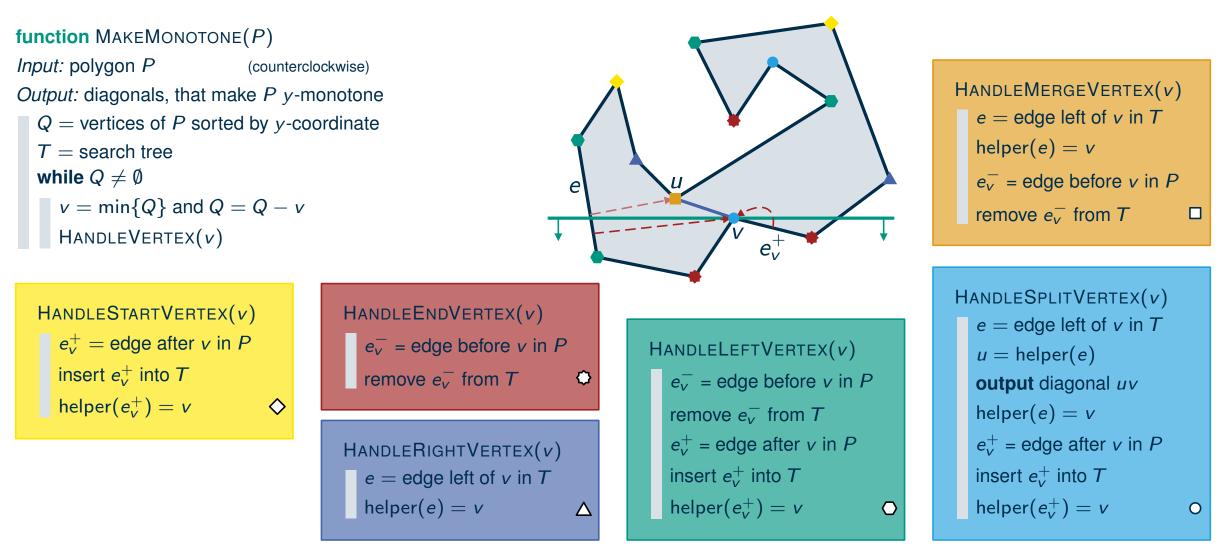


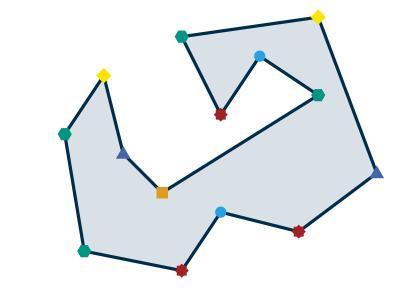

function MAKEMONOTONE(P) Input: polygon P (counterclockwise) Output: diagonals, that make P y-monotone Q = vertices of P sorted by y-coordinate T = search tree while $Q \neq \emptyset$ $v = \min{Q}$ and Q = Q - vHANDLEVERTEX(v)

HANDLESTARTVERTEX(v) $e_v^+ = \text{edge after } v \text{ in } P$ insert e_v^+ into Thelper $(e_v^+) = v$





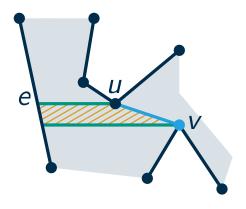




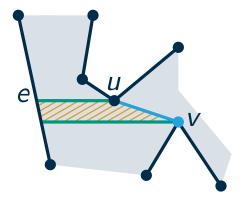
function MAKEMONOTONE(P) Input: polygon P (counterclockwise) Output: diagonals, that make P y-monotone Q = vertices of P sorted by y-coordinate T = search tree while $Q \neq \emptyset$ $v = \min\{Q\}$ and Q = Q - vHANDLEVERTEX(v)

HANDLEMERGEVERTEX(
$$v$$
)
 $e = edge \ left \ of \ v \ in \ T$
 $helper(e) = v$
 $e_v^- = edge \ before \ v \ in \ P$
 $remove \ e_v^- \ from \ T$

HANDLESTARTVERTEX(v) $e_v^+ = edge after v in P$ insert e_v^+ into T helper $(e_v^+) = v$ HANDLEENDVERTEX(v) $e_v^- = edge before v in P$ remove e_v^- from T HANDLERIGHTVERTEX(v) e = edge left of v in T


helper(e) = v

HANDLELEFTVERTEX(v) $e_v^- = edge before v in P$ remove e_v^- from T $e_v^+ = edge after v in P$ insert e_v^+ into T helper(e_v^+) = v HANDLESPLITVERTEX(v) $e = edge \ left \ of \ v \ in \ T$ u = helper(e) **output** diagonal uvhelper(e) = v $e_v^+ = edge \ after \ v \ in \ P$ insert e_v^+ into Thelper(e_v^+) = v

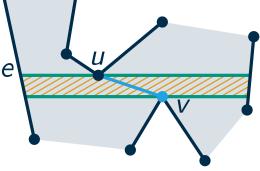

Recall

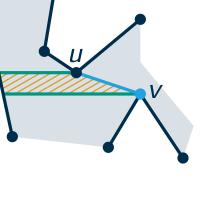
- the inserted diagonals do not intersect the polygon
- core argument: the quadrilateral between *uv* and *e* contains no vertex

Recall

- the inserted diagonals do not intersect the polygon
- core argument: the quadrilateral between *uv* and *e* contains no vertex

Can We Get An Intersection With A Previously Inserted Diagonal?


Recall

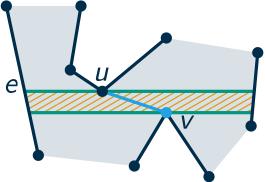

- the inserted diagonals do not intersect the polygon
- core argument: the quadrilateral between *uv* and *e* contains no vertex

Can We Get An Intersection With A Previously Inserted Diagonal?

- extend the quadrilateral to the right
- same argument: the extended quadrilateral also contains no vertex

e

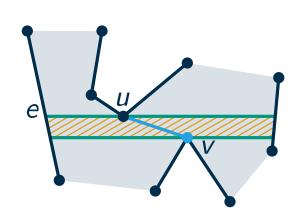


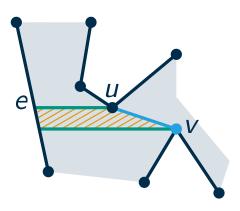

Recall

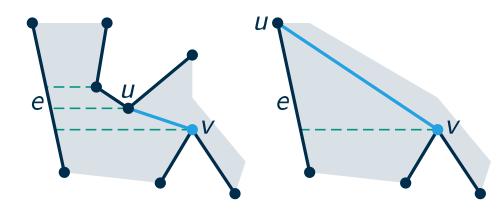
- the inserted diagonals do not intersect the polygon
- core argument: the quadrilateral between uv and e contains no vertex

Can We Get An Intersection With A Previously Inserted Diagonal?

- extend the quadrilateral to the right
- same argument: the extended quadrilateral also contains no vertex
- both vertices of a previously inserted diagonal lie above v

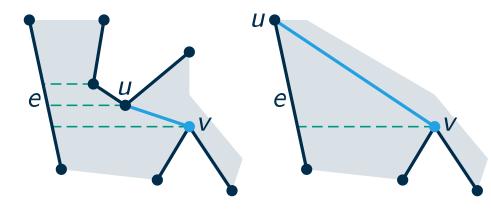



Recall

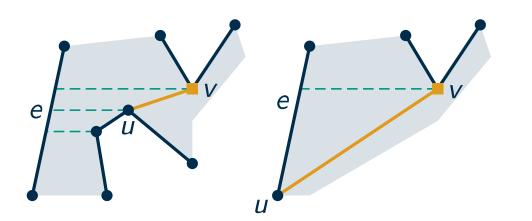

- the inserted diagonals do not intersect the polygon
- core argument: the quadrilateral between *uv* and *e* contains no vertex

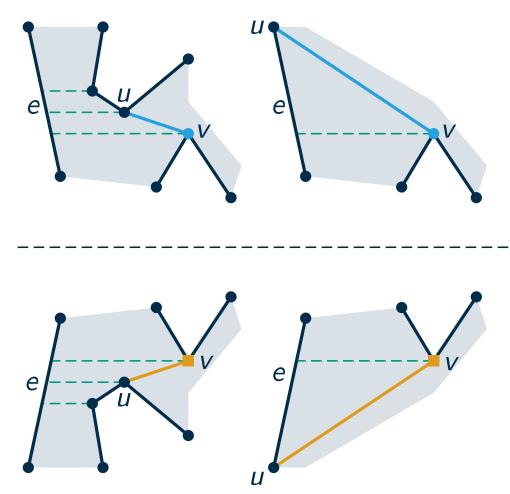
Can We Get An Intersection With A Previously Inserted Diagonal?

- extend the quadrilateral to the right
- same argument: the extended quadrilateral also contains no vertex
- both vertices of a previously inserted diagonal lie above v
- \Rightarrow *uv* does not intersect a previous diagonal



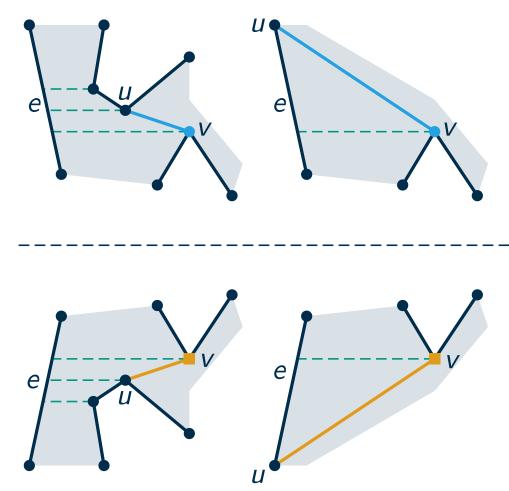
Recall: Split Vertex v


- *e*: edge to the left of *v*
- *u*: lowest vertex above *v* that has *e* to its left (helper of *e*)
- if it doesn't exist: choose *u* as the upper vertex of *e*
- connect *v* with *u*



Recall: Split Vertex v

- e: edge to the left of v
- *u*: lowest vertex above v that has e to its left (helper of e)
- if it doesn't exist: choose *u* as the upper vertex of *e*
- connect v with u
- mirroring translates v into a merge vertex


Recall: Split Vertex v

- e: edge to the left of v
- *u*: lowest vertex above *v* that has *e* to its left (helper of *e*)
- if it doesn't exist: choose *u* as the upper vertex of *e*
- connect v with u
- mirroring translates v into a merge vertex

Handling A Merge Vertex v

- solution for the lazy theoretician:
 - just run it again in the opposite direction

Recall: Split Vertex v

- e: edge to the left of v
- u: lowest vertex above v that has e to its left (helper of e)
- if it doesn't exist: choose *u* as the upper vertex of *e*
- connect v with u
- mirroring translates v into a merge vertex

Handling A Merge Vertex v

- solution for the lazy theoretician:
 - just run it again in the opposite direction
- alternative:
 - observe: *v* is the helper of *e* when we process *u*
 - when *e* ends at *u* or gets a new helper *u*: current helper *v* is merge vertex \rightarrow insert *uv*

Theorem(subdivision into y-monotone pieces)A polygon with n vertices can be subdivided into y-monotone pieces in $O(n \log n)$ time.

Theorem (subdivision into *y*-monotone pieces) A polygon with *n* vertices can be subdivided into *y*-monotone pieces in $O(n \log n)$ time.

What Else Have We Learned Today?

- additional application of the sweep line technique
- concept of monotonicity
- splitting a complicated problem into two simpler subproblems

Theorem(subdivision into y-monotone pieces)A polygon with n vertices can be subdivided into y-monotone pieces in $O(n \log n)$ time.

What Else Have We Learned Today?

- additional application of the sweep line technique
- concept of monotonicity
- splitting a complicated problem into two simpler subproblems

What Else Is There?

• lower bound of $\Omega(n \log n)$ if the polygon can have holes

Theorem (subdivision into *y*-monotone pieces) A polygon with *n* vertices can be subdivided into *y*-monotone pieces in $O(n \log n)$ time.

What Else Have We Learned Today?

- additional application of the sweep line technique
- concept of monotonicity
- splitting a complicated problem into two simpler subproblems

What Else Is There?

- lower bound of $\Omega(n \log n)$ if the polygon can have holes
- $O(n \log \log n)$, $O(n \log^* n)$, and even O(n) is possible, if the polygon has no holes

Theorem (subdivision into *y*-monotone pieces) A polygon with *n* vertices can be subdivided into *y*-monotone pieces in $O(n \log n)$ time.

What Else Have We Learned Today?

- additional application of the sweep line technique
- concept of monotonicity
- splitting a complicated problem into two simpler subproblems

What Else Is There?

- lower bound of $\Omega(n \log n)$ if the polygon can have holes
- $O(n \log \log n)$, $O(n \log^* n)$, and even O(n) is possible, if the polygon has no holes
- corresponding 3-dimensional problem is NP-hard

References

$O(n \log \log n)$

- An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon Robert E. Tarjan, Christopher J. Van Wyk
- Polygon triangulation in O(n log log n) time with simple data structures David G. Kirkpatrick, Maria M. Klawe, Robert E. Tarjan

$O(n\log^* n)$

- A fast Las Vegas algorithm for triangulating a simple polygon Kenneth L. Clarkson, Robert E. Tarjan, Christopher J. Van Wyk
- **Randomization Yields Simple** $O(n \log^* n)$ Algorithms for Difficult $\Omega(n)$ Problems Olivier Devillers
- A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons (1991) Raimund Seidel
 https://doi.org/10.1016/0925-7721(91)90012-4

O(n)

- Triangulating a simple polygon in linear time Bernard Chazelle
- A Randomized Algorithm for Triangulating a Simple Polygon in Linear Time N. M. Amato, M. T. Goodrich, E. A. Ramos

https://doi.org/10.1137/0217010 (1988)

https://doi.org/10.1007/BF02187846 (1992)

https://doi.org/10.1007/BF02187741 (1989)

https://doi.org/10.1142/S021819599200007X (1992)

https://doi.org/10.1007/BF02574703 (1991)

https://doi.org/10.1007/s00454-001-0027-x (2001)

