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Polygon Triangulation

Let’s Simplify First
convex polygons are easy to triangulate
idea: subdivide P into convex pieces then triangulate those pieces
problem: finding a convex subdivision is not much easier

Our Plan
find a weaker condition than convexity

triangulating the pieces becomes more difficult
subdividing P into pieces with this property becomes easier

Problem
Given P , find diagonals that triangulate P .

Definition
A triangulation of a polygon P is a planar sub-
division of P such that each face is a triangle.

Does this always exist?
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y -Monotone Polygons

not y -monotone y -monotone

Remark
convex polygons are monotone in every direction

Our Plan
subdivide arbitrary polygon in O(n log n) time in y -monotone pieces
triangulate a y -monotone polygon in O(n) time

→ today

→ exercise sheet

x- and y -monotone ⇒ convex?

Definition
A polygon is y -monotone if the intersection
with every horizontal line is connected.

disclaimer: I will not be super consistent whether
“polygon” refers to its interior or its boundary; but
it will be always clear from the context
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What Makes A Polygon Not y -Monotone?

Split Vertex
edges lie below
polygon lies above
polygon splits (coming from above)

Merge Vertex
edges lie above
polygon lies below
polygons parts merge

Observation
a merge or split vertex exists ⇒ the polygon is not y -monotone

Goal
eliminate all split and merge vertices by inserting diagonals
upwards for split vertices and downwards for merge vertices

Lemma (y -monotonicity)
A polygon is y -monotone if and only if it has no split or merge vertex.

proof by picture
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Eliminating Split Vertices

Why?

Idea For Split Vertex v

idea: connect v to vertex u that is above v and close to v

e: edge to the left of v

v
e

choose u to be the upper vertex of e

u

Issue (And How To Fix It)

v
euv might intersect another edge of the polygon

fix: choose for u the lowest vertex above v such that e is to the left of u

u

we call u the helper of e (note: it depends on v )

Proof
the quadrilateral between uv
and e contains no vertex
no edge intersects uv

(“to the left of”: the next edge you hit when shooting a ray from v to the left)

Lemma (the helper is helpful)
Let v be a split vertex, e the edge left of v , and u
the helper of e (wrt v ). Then uv does not intersect
an edge of the polygon (except in u and v ).
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Eliminating Split Vertices

v
e uObservations

e lies (partially) above v

the helper of e lies above v
⇒ sweep line seems to be a good idea

Event Queue
vertices of the polygon
sorted by y -coordinate (or lexicographic by yx)

Sweep Line Status
edges that intersect ‘ sorted by x-coordinate

(horizontal sweep line ‘ from top to bottom)

edges that have the polygon to their right suffice
current helper for every edge

Status

Queuev1
v2

v3

v4 v5

v6

v7

v8

v9

v10
v11

v12
v13

v14

e1

e2
e3

e4

e5
e6

e7
e8

e9

e10
e11

e12

e13

e14

v1
v2

v3

v4

v5

v6

v7

v8

v9

v10
v11

v12
v13

v14

Helper

goal for split vertex v : find edge e to the left of v and helper of e

|{z
}
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Short Break

How many diagonals do we need at least to get y -monotone polygons?
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Sweep-Line With Different Vertex Types

Different Vertex Types
split: edges below, polygon above
merge: edges above, polygon below
start: edges below, polygon below
end: edges above, polygon above
left: y -monoton, polygon right
right: y -monoton, polygon left
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Sweep-Line With Different Vertex Types

v
e+v

e u

(counterclockwise)

function MAKEMONOTONE(P )

Input: polygon P

Output: diagonals, that make P y -monotone
Q = vertices of P sorted by y -coordinate
T = search tree
while Q ̸= ∅

HANDLEVERTEX(v)

v = min{Q} and Q = Q− v

HANDLESTARTVERTEX(v)

e+v = edge after v in P

helper(e+v ) = v

insert e+v into T

HANDLEENDVERTEX(v)

e−v = edge before v in P

remove e−v from T

HANDLERIGHTVERTEX(v)

e = edge left of v in T

helper(e) = v

HANDLELEFTVERTEX(v)

e−v = edge before v in P

e+v = edge after v in P

remove e−v from T

insert e+v into T

helper(e+v ) = v

HANDLEMERGEVERTEX(v)

e = edge left of v in T

helper(e) = v

e−v = edge before v in P

remove e−v from T

HANDLESPLITVERTEX(v)

e = edge left of v in T

output diagonal uv
u = helper(e)

helper(e) = v

e+v = edge after v in P

insert e+v into T

helper(e+v ) = v
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We Create No Intersections

Recall
the inserted diagonals do not intersect the polygon
core argument: the quadrilateral between uv and e contains no vertex

Can We Get An Intersection With A Previously Inserted Diagonal?

v
e usame argument: the extended quadrilateral also contains no vertex

both vertices of a previously inserted diagonal lie above v

⇒ uv does not intersect a previous diagonal

v
e u

extend the quadrilateral to the right
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And What About Merge Vertices?

Recall: Split Vertex v

v
e u

v
e

u

mirroring translates v into a merge vertex

Handling A Merge Vertex v

v
e

u

e: edge to the left of v

if it doesn’t exist: choose u as the upper vertex of e
u: lowest vertex above v that has e to its left

connect v with u

ve

u

(helper of e)

solution for the lazy theoretician:
just run it again in the opposite direction

alternative:

when e ends at u or gets a new helper u:
current helper v is merge vertex → insert uv

observe: v is the helper of e when we process u
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Wrap-Up

What Else Have We Learned Today?
additional application of the sweep line technique
concept of monotonicity
splitting a complicated problem into two simpler subproblems

What Else Is There?
lower bound of Ω(n log n) if the polygon can have holes
O(n log log n), O(n log∗ n), and even O(n) is possible, if the polygon has no holes
corresponding 3-dimensional problem is NP-hard

Theorem (subdivision into y -monotone pieces)
A polygon with n vertices can be subdivided into y -monotone pieces in O(n log n) time.
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