

Computational Geometry EMST & Clustering

Thomas Bläsius

Euclidean MST

Problem: EMST Let $P \subset \mathbb{R}^2$ be a set of points. Compute a tree T = (P, E) with vertices P such that its total edge length $\sum_{pq \in E} ||p - q||$ is minimized.

Euclidean MST

Problem: EMST Let $P \subset \mathbb{R}^2$ be a set of points. Compute a tree T = (P, E) with vertices P such that its total edge length $\sum_{pq \in E} ||p - q||$ is minimized.

How fast can you compute the EMST? (assuming a real-RAM)

How fast can you compute the EMST?

(assuming integer coordinates and a word-RAM)

Goal

given a set of points, find a reasonable clustering

Goal

given a set of points, find a reasonable clustering

Goal

- given a set of points, find a reasonable clustering
- requirements for the algorithm:
 - scaling invariance: scaling all distances with the same factor do not change the clustering

Goal

- given a set of points, find a reasonable clustering
- requirements for the algorithm:
 - scaling invariance: scaling all distances with the same factor do not change the clustering
 - consistency: decreasing distances within clusters and increasing distances between clusters does not change the clustering

Goal

- given a set of points, find a reasonable clustering
- requirements for the algorithm:
 - scaling invariance: scaling all distances with the same factor do not change the clustering
 - consistency: decreasing distances within clusters and increasing distances between clusters does not change the clustering
 - richness: every clustering is in principle possible

Goal

- given a set of points, find a reasonable clustering
- requirements for the algorithm:
 - scaling invariance: scaling all distances with the same factor do not change the clustering
 - consistency: decreasing distances within clusters and increasing distances between clusters does not change the clustering
 - richness: every clustering is in principle possible

Why can there be no such algorithm?

Goal

- given a set of points, find a reasonable clustering
- requirements for the algorithm:
 - scaling invariance: scaling all distances with the same factor do not change the clustering
 - consistency: decreasing distances within clusters and increasing distances between clusters does not change the clustering
 - richness: every clustering is in principle possible

Why can there be no such algorithm?

Which of the three requirements would you drop or relax?

