
1

Computational Geometry

Thomas Bläsius

Line Segment Intersection

Thomas Bläsius – Computational Geometry2

Line Segment Intersection: Motivation

Where Are Bridges?
given: roads and rivers

goal: find all bridges
(each as sets of line segments)

Thomas Bläsius – Computational Geometry2

Line Segment Intersection: Motivation

Where Are Bridges?
given: roads and rivers

goal: find all bridges
(each as sets of line segments)

Thomas Bläsius – Computational Geometry2

Line Segment Intersection: Motivation

Where Are Bridges?
given: roads and rivers

goal: find all bridges
(each as sets of line segments)

Forests With A Lot Of Rainfall
given: forests and regions with more than 1500mm rainfall

(each as polygons)goal: compute the intersection of both

Thomas Bläsius – Computational Geometry2

Line Segment Intersection: Motivation

Where Are Bridges?
given: roads and rivers

goal: find all bridges
(each as sets of line segments)

Forests With A Lot Of Rainfall
given: forests and regions with more than 1500mm rainfall

(each as polygons)goal: compute the intersection of both

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge
no shared endpoints

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Trivial Algorithm

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Trivial Algorithm
check each pair for intersection → O(n2)

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Trivial Algorithm
check each pair for intersection → O(n2)

can in general not be improved

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Trivial Algorithm
check each pair for intersection → O(n2)

can in general not be improved

Potential Improvement

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry3

Some First Observations

Assumption: General Position
at most two segments intersect in one point
no end point on a different edge

no horizontal or vertical segments
no shared endpoints

Trivial Algorithm
check each pair for intersection → O(n2)

can in general not be improved

Potential Improvement

running time depends on output size
→ output sensitive algorithm

few intersections ⇒ better running time

Problem: Line Segment Intersection
Given n line segments, compute all pairwise intersections.

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line
here: set S‘ of segments that intersect ‘

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line
here: set S‘ of segments that intersect ‘

event queue
future positions of the sweep line where something
interesting happens (typically status changes)

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line
here: set S‘ of segments that intersect ‘

event queue
future positions of the sweep line where something
interesting happens (typically status changes)

here: start and end points of segments (vertices)

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line
here: set S‘ of segments that intersect ‘

event queue
future positions of the sweep line where something
interesting happens (typically status changes)

here: start and end points of segments (vertices)
event handler

Thomas Bläsius – Computational Geometry4

A Simple Sweep-Line Algorithm

Idea
don’t compare segments if one lies
fully above the other
move horizontal line ‘ top → bottom
new segment → check for intersec-
tion with segments intersecting ‘

‘

Sweep-Line: More Formally
sweep-line status

current status of the sweep line
here: set S‘ of segments that intersect ‘

event queue
future positions of the sweep line where something
interesting happens (typically status changes)

here: start and end points of segments (vertices)
event handler

start point of s → check if s intersects segments in
S‘ and set S‘ = S‘ + s

endpoint of segment s → set S‘ = S‘ − s

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler
p = min{Q} and Q = Q− p

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

S‘ = S‘ − s

p = min{Q} and Q = Q− p

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

else // segment starts
S‘ = S‘ − s

S‘ = S‘ + s

for all s ′ ∈ S‘

if s ∩ s ′ ̸= ∅ output (s ∩ s ′; s; s ′)p = min{Q} and Q = Q− p

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

else // segment starts
S‘ = S‘ − s

S‘ = S‘ + s

for all s ′ ∈ S‘

if s ∩ s ′ ̸= ∅ output (s ∩ s ′; s; s ′)p = min{Q} and Q = Q− p

Problem: slow (O(n2)), if |S‘| is usually large

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

else // segment starts
S‘ = S‘ − s

S‘ = S‘ + s

for all s ′ ∈ S‘

if s ∩ s ′ ̸= ∅ output (s ∩ s ′; s; s ′)p = min{Q} and Q = Q− p

Problem: slow (O(n2)), if |S‘| is usually large

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

else // segment starts
S‘ = S‘ − s

S‘ = S‘ + s

for all s ′ ∈ S‘

if s ∩ s ′ ̸= ∅ output (s ∩ s ′; s; s ′)p = min{Q} and Q = Q− p

Problem: slow (O(n2)), if |S‘| is usually large

Observation: intersecting segments are at some point next to each other on the sweep line

Thomas Bläsius – Computational Geometry5

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)
Q = vertices sorted top to bottom // event queue
S‘ = empty list // sweep-line status
while Q ̸= ∅

HANDLEEVENTPOINT(p) // event handler

function HANDLEEVENTPOINT(p)

if s ∈ S‘ // segment ends
s = line segment with vertex p

else // segment starts
S‘ = S‘ − s

S‘ = S‘ + s

for all s ′ ∈ S‘

if s ∩ s ′ ̸= ∅ output (s ∩ s ′; s; s ′)p = min{Q} and Q = Q− p

Problem: slow (O(n2)), if |S‘| is usually large

Solution: only compare adjacent segments

Observation: intersecting segments are at some point next to each other on the sweep line

(adjacent: next to each other on the current sweep line)

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?
sweep-line status: insert, delete, find successor / predecessor
event queue: insert, extract minimum, search

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?
sweep-line status: insert, delete, find successor / predecessor
event queue: insert, extract minimum, search |{z

}

search tree: O(log n)
(e.g., (a; b)-tree, red-black tree)

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?
sweep-line status: insert, delete, find successor / predecessor
event queue: insert, extract minimum, search |{z

}

search tree: O(log n)
(e.g., (a; b)-tree, red-black tree)

Why not a heap for the event queue?

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?
sweep-line status: insert, delete, find successor / predecessor
event queue: insert, extract minimum, search |{z

}

search tree: O(log n)
(e.g., (a; b)-tree, red-black tree)

Why not a heap for the event queue?Why do we need “search” for the event queue?

Thomas Bläsius – Computational Geometry6

Only Checking Adjacent Segments

What Changes?
sweep-line status: segments crossing ‘, ordered from left to right
event handler

segment starts: check only with adjacent segments
segment starts: insert segment into status → maintain left-to-right ordering
segment ends: check for newly adjacent segments
intersection: order in sweep-line status changes → check newly adjacent
intersection found: insert intersection into event queue

Which Data Structure?
sweep-line status: insert, delete, find successor / predecessor
event queue: insert, extract minimum, search |{z

}

search tree: O(log n)
(e.g., (a; b)-tree, red-black tree)

one way to handle finding the same intersection multiple times

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

Q = empty queue

Q = Q+ p + q

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts

s

p

s

p

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts

s− = predecessor of s in T

s

p
s− s+ s

p

s− s+

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

s

p
s− s+ s

p

s− s+

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

T = T + s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; s; p)

CHECKINTERSECTION(s+; s; p)

s

p
s− s+ s

p

s− s+

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

T = T + s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; s; p)

CHECKINTERSECTION(s+; s; p)

s; s ′ = segments intersecting in p

output (p; s; s ′)

s

p
s− s+ s

p

s− s+

p

s s ′

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

function HANDLEINTERSECTION(p)

(s < s′ in T)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

T = T + s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; s; p)

CHECKINTERSECTION(s+; s; p)

s; s ′ = segments intersecting in p

output (p; s; s ′)

swap s and s ′ in T (s ′ < s)

s− = predecessor of s ′ in T

CHECKINTERSECTION(s−; s ′; p)

CHECKINTERSECTION(s+; s; p)

s

p
s− s+ s

p

s− s+

p

s s ′

s−

s+

s+ = successor of s in T

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

function HANDLEINTERSECTION(p)

(s < s′ in T)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

T = T + s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; s; p)

CHECKINTERSECTION(s+; s; p)

s; s ′ = segments intersecting in p

output (p; s; s ′)

swap s and s ′ in T (s ′ < s)

s− = predecessor of s ′ in T

CHECKINTERSECTION(s−; s ′; p)

CHECKINTERSECTION(s+; s; p)

s

p
s− s+ s

p

s− s+

p

s s ′

s−

s+

function CHECKINTERSECTION(s−; s+; p)

if q ̸= ∅ and py < qy and q =∈ Q

q = s− ∩ s+

Q = Q+ q

s+ = successor of s in T

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

function HANDLEINTERSECTION(p)

(s < s′ in T)

Thomas Bläsius – Computational Geometry7

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

for pq ∈ S

// event queue

T = search tree // status
while Q ̸= ∅

HANDLEEVENT(p) // event handler

p = min{Q} and Q = Q− p

function HANDLEVERTEX(p)

if s ∈ T // segment ends

s = segment with vertex p

else // segment starts
T = T − s

T = T + s

s− = predecessor of s in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; s; p)

CHECKINTERSECTION(s+; s; p)

s; s ′ = segments intersecting in p

output (p; s; s ′)

swap s and s ′ in T (s ′ < s)

s− = predecessor of s ′ in T

CHECKINTERSECTION(s−; s ′; p)

CHECKINTERSECTION(s+; s; p)

s

p
s− s+ s

p

s− s+

p

s s ′

s−

s+

function CHECKINTERSECTION(s−; s+; p)

if q ̸= ∅ and py < qy and q =∈ Q

q = s− ∩ s+

Q = Q+ q

s+ = successor of s in T

s+ = successor of s in T

Q = empty queue

Q = Q+ p + q

function HANDLEEVENT(p)

if p is vertex of a segment

else
HANDLEVERTEX(p)

HANDLEINTERSECTION(p)

function HANDLEINTERSECTION(p)

(s < s′ in T)

Running time?

Thomas Bläsius – Computational Geometry8

Improved Sweep-Line Algorithm

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

Thomas Bläsius – Computational Geometry9

How Many Events Are In The Event Queue?

B

R E

A
K

Thomas Bläsius – Computational Geometry9

How Many Events Are In The Event Queue?

B

R E

A
K

7

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Event Points With Equal y -Coordinate
use lexicographical order with respect to (y; x) 42 3

1

5equivalent to slight clockwise rotation

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
updating the sweep-line status T :

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
updating the sweep-line status T :

remove end(p) ∪ int(p)

(using the order slightly below p)insert int(p) ∪ start(p)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
updating the sweep-line status T :

remove end(p) ∪ int(p)

(using the order slightly below p)insert int(p) ∪ start(p)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

What happens to horizontal edges?

Thomas Bläsius – Computational Geometry10

Do We Need General Position?

Problem: Multiple Events At The Same Point
three things can happen at an event point:

one or multiple segments start
one or multiple segments end
segments intersect

let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
updating the sweep-line status T :

remove end(p) ∪ int(p)

(using the order slightly below p)insert int(p) ∪ start(p)

check newly adjacent segments afterwards

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

assumption: general position

|{
z} plan: handle of them together

What happens to horizontal edges?

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))
s1

s2

s3
s4

s5

s6

s7

s8
p

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

CHECKINTERSECTION(s−; s+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

else
s− = left-most segment in start(p) ∪ int(p)

s+ = right-most segment in start(p) ∪ int(p)

ŝ− = predecessor of s− in T

ŝ+ = successor of s+ in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; ŝ−; p)

CHECKINTERSECTION(s+; ŝ+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

ŝ−
s+p ŝ+

s−

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

How can this be done using a search tree?

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

else
s− = left-most segment in start(p) ∪ int(p)

s+ = right-most segment in start(p) ∪ int(p)

ŝ− = predecessor of s− in T

ŝ+ = successor of s+ in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; ŝ−; p)

CHECKINTERSECTION(s+; ŝ+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

ŝ−
s+p ŝ+

s−

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

How can this be done using a search tree?

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

else
s− = left-most segment in start(p) ∪ int(p)

s+ = right-most segment in start(p) ∪ int(p)

ŝ− = predecessor of s− in T

ŝ+ = successor of s+ in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; ŝ−; p)

CHECKINTERSECTION(s+; ŝ+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

ŝ−
s+p ŝ+

s−

→ comparator depending on position of the sweep line

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

How can this be done using a search tree?

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

else
s− = left-most segment in start(p) ∪ int(p)

s+ = right-most segment in start(p) ∪ int(p)

ŝ− = predecessor of s− in T

ŝ+ = successor of s+ in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; ŝ−; p)

CHECKINTERSECTION(s+; ŝ+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

ŝ−
s+p ŝ+

s−
Theorem
The k intersections of n line segments
can be computed in O((n+ k) log n) time.

→ comparator depending on position of the sweep line

Thomas Bläsius – Computational Geometry11

Sweep-Line Algo – No General Position Assumption

How can this be done using a search tree?

insert int(p) ∪ start(p) into T

HANDLEEVENT(p)

// end(p), int(p) can be found in T , start(p) has to be saved with pget / find start(p), end(p); int(p)

if |start(p) ∪ end(p) ∪ int(p)| > 1

output p (with start(p) ∪ end(p) ∪ int(p))

remove end(p) ∪ int(p) from T

if start(p) ∪ int(p) = ∅
s− = predecessor of p in T

s+ = successor of p in T

else
s− = left-most segment in start(p) ∪ int(p)

s+ = right-most segment in start(p) ∪ int(p)

ŝ− = predecessor of s− in T

ŝ+ = successor of s+ in T

CHECKINTERSECTION(s−; s+; p)

CHECKINTERSECTION(s−; ŝ−; p)

CHECKINTERSECTION(s+; ŝ+; p)

s1
s2

s3
s4

s5

s6

s7

s8

T : s1 s2 s3 s4 s5 s6 s8 s1 s8

T : s1 s3s4 s7s6 s8s1 s8

p

ps− s+

ŝ−
s+p ŝ+

s−
Theorem
The k intersections of n line segments
can be computed in O((n+ k) log n) time.

What is left to show?

→ comparator depending on position of the sweep line

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events O((n + k) log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status

O((n + k) log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations

O((n + k) log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations
cost over all event points: m log n mit m =

P
p m(p) O(m log n)

O((n + k) log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Does m ∈ O(n + k) hold?

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations
cost over all event points: m log n mit m =

P
p m(p) O(m log n)

O((n + k) log n)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Does m ∈ O(n + k) hold?

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations
cost over all event points: m log n mit m =

P
p m(p) O(m log n)

O((n + k) log n)

segments form plane graph G = (V; E)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Does m ∈ O(n + k) hold?

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations
cost over all event points: m log n mit m =

P
p m(p) O(m log n)

O((n + k) log n)

segments form plane graph G = (V; E)

|V | ≤ 2n + k und 2|E| = m

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry12

Running Time Analysis

Does m ∈ O(n + k) hold?

Proof (Running Time)
initialization: insert 2n event points into queue O(n log n)

queue operations at event: extract minimum, insert at most 2 new events
operations on the sweep-line status
m(p) intersecting segments at event point p ⇒ Θ(m(p)) operations
cost over all event points: m log n mit m =

P
p m(p) O(m log n)

O((n + k) log n)

segments form plane graph G = (V; E)

|V | ≤ 2n + k und 2|E| = m

for planar graphs: |E| ≤ 3|V | − 6
⇒ m ∈ O(n + k)

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

How Large Can The Sweep-Line Status?

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

How Large Can The Sweep-Line Status?
at most n Segments → O(n)

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

How Large Can The Sweep-Line Status?
at most n Segments → O(n)

How Large Can The Event Queue Be?

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

How Large Can The Sweep-Line Status?
at most n Segments → O(n)

How Large Can The Event Queue Be?
obvious bound: n + k

intersections may be in the queue for quite some time before they are processed

Thomas Bläsius – Computational Geometry13

Memory Consumption

Why Should We Care?
memory is a more critical resource than time

you can wait for an algorithm with running time O(n2)

O(n2) memory consumption is usually not ok

How Large Can The Sweep-Line Status?
at most n Segments → O(n)

How Large Can The Event Queue Be?
obvious bound: n + k

intersections may be in the queue for quite some time before they are processed
option: only keep intersections in the queue corresponding to adjacent segments → O(n)

Thomas Bläsius – Computational Geometry14

Back To Our Motivation

Did We Reach Our Goal? Where Are Bridges?

Forests With A Lot Of Rainfall

Thomas Bläsius – Computational Geometry14

Back To Our Motivation

Did We Reach Our Goal? Where Are Bridges?

Forests With A Lot Of Rainfall

we can find bridges

Thomas Bläsius – Computational Geometry14

Back To Our Motivation

Did We Reach Our Goal? Where Are Bridges?

Forests With A Lot Of Rainfall

we can find bridges
we cannot yet compute the intersection of polygons

Thomas Bläsius – Computational Geometry14

Back To Our Motivation

Did We Reach Our Goal? Where Are Bridges?

Forests With A Lot Of Rainfall

we can find bridges
we cannot yet compute the intersection of polygons

In The Following
data structure that helps with computing the intersection
actually using it: exercise sheet

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Geometric Graphs

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Geometric Graphs
vertices with coordinates

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Geometric Graphs
vertices with coordinates
edges

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Geometric Graphs
vertices with coordinates
edges
faces

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e

For Every “Half Edge” e

origin(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

origin(e)

twin(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e) origin(e)

twin(e)

face(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

Derived Operations & Notes
clockwise successor of e around origin(e):

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

Derived Operations & Notes
clockwise successor of e around origin(e): next(twin(e))

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

Derived Operations & Notes
clockwise successor of e around origin(e): next(twin(e))

clockwise predecessor of e around origin(e):

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

Derived Operations & Notes
clockwise successor of e around origin(e): next(twin(e))

clockwise predecessor of e around origin(e): twin(prev(e))

origin(e)

twin(e)

face(e)

prev(e)
next(e)

Thomas Bläsius – Computational Geometry15

Doubly-Connected Edge List

Doubly Connected Edge List
each edge has two incident vertices → store each edge twice

corresponding vertex: origin(e)

e
half edge at the opposite vertex: twin(e)

For Every “Half Edge” e

incident face (left): face(e)
next/previous edge along this face: next(e), prev(e)
for every node v and face f : one incident edge edge(v) / edge(f)

Derived Operations & Notes
clockwise successor of e around origin(e): next(twin(e))

clockwise predecessor of e around origin(e): twin(prev(e))

origin(e)

twin(e)

face(e)

prev(e)
next(e)

you should adapt this to your use case adaptation for multiple connected components

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events
like last week: initially ignoring special cases helps

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events
like last week: initially ignoring special cases helps
doubly-connected edge list

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events
like last week: initially ignoring special cases helps

What Else Is There?

doubly-connected edge list

extension to map overlay and Boolean operations on polygons

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events
like last week: initially ignoring special cases helps

What Else Is There?

lower bound: Ω(n log n + k)

can be solved in O(n log n + k) time with O(n) space

doubly-connected edge list

extension to map overlay and Boolean operations on polygons

Thomas Bläsius – Computational Geometry16

Wrap-Up

What Have We Learned Today?
output sensitive algorithm for segment intersection: O((n + k) log n)

sweep line technique: discretization of continuous geometry using a finite set of events
like last week: initially ignoring special cases helps

What Else Is There?

lower bound: Ω(n log n + k)

can be solved in O(n log n + k) time with O(n) space

doubly-connected edge list

extension to map overlay and Boolean operations on polygons

extensions to the sweep-line approach
the sweep line might move differently (e.g., rotate)
the sweep line does not need to be a line

