

Computational Geometry Line Segment Intersection

Thomas Bläsius

Where Are Bridges?

- given: roads and rivers (each as sets of line segments)
- **goal:** find all bridges

Where Are Bridges?

- given: roads and rivers (each as sets of line segments)
- **goal:** find all bridges

Where Are Bridges?

- given: roads and rivers (each as sets of line segments)
- **goal:** find all bridges

(each as polygons)

Forests With A Lot Of Rainfall

- **given:** forests and regions with more than 1500mm rainfall
- **goal:** compute the intersection of both

Where Are Bridges?

- given: roads and rivers (each as sets of line segments)
- **goal:** find all bridges

(each as polygons)

Forests With A Lot Of Rainfall

- **given:** forests and regions with more than 1500mm rainfall
- **goal:** compute the intersection of both

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

at most two segments intersect in one point

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

- at most two segments intersect in one point
- no end point on a different edge

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

• check each pair for intersection $\rightarrow O(n^2)$

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

- check each pair for intersection $\rightarrow O(n^2)$
- can in general not be improved

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

- check each pair for intersection $\rightarrow O(n^2)$
- can in general not be improved

Potential Improvement

Problem: Line Segment Intersection Given *n* line segments, compute all pairwise intersections.

Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

- check each pair for intersection $\rightarrow O(n^2)$
- can in general not be improved

Potential Improvement

- few intersections ⇒ better running time
- running time depends on output size \rightarrow output sensitive algorithm

Idea

 don't compare segments if one lies fully above the other

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting *l*

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting *l*

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- sweep-line status
 - current status of the sweep line

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting ℓ

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting *l*

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ
- event queue
 - future positions of the sweep line where something interesting happens (typically status changes)

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting *l*

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ
- event queue
 - future positions of the sweep line where something interesting happens (typically status changes)
 - here: start and end points of segments (vertices)

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment → check for intersection with segments intersecting ℓ

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ
- event queue
 - future positions of the sweep line where something interesting happens (typically status changes)
 - here: start and end points of segments (vertices)
- event handler

Idea

- don't compare segments if one lies fully above the other
- move horizontal line ℓ top \rightarrow bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ
- event queue
 - future positions of the sweep line where something interesting happens (typically status changes)
 - here: start and end points of segments (vertices)
- event handler
 - endpoint of segment $s \to \mathsf{set}\ S_{\boldsymbol\ell} = S_{\boldsymbol\ell} s$
 - start point of $s \rightarrow$ check if *s* intersects segments in S_{ℓ} and set $S_{\ell} = S_{\ell} + s$

function FINDINTERSECTIONS(*S*)

Input: set of line segments S

Output: all intersections (with segment pairs)

function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

- Q = vertices sorted top to bottom
- // event queue

 $S_{\ell} = \text{empty list}$

// sweep-line status

```
function FINDINTERSECTIONS(S)Input: set of line segments SOutput: all intersections (with segment pairs)Q = vertices sorted top to bottomS_{\ell} = empty listwhile Q \neq \emptysetp = min\{Q\} and Q = Q - pHANDLEEVENTPOINT(p)// event handler
```

```
function FINDINTERSECTIONS(S)
Input: set of line segments S
Output: all intersections (with segment pairs)
 Q = vertices sorted top to bottom
  S_{\ell} = \text{empty list}
 while Q \neq \emptyset
   p = \min\{Q\} and Q = Q - p
   HANDLEEVENTPOINT(p)
                                           // event handler
```

// event queue // sweep-line status **function** HANDLEEVENTPOINT(*p*)

s = line segment with vertex p $\text{if } s \in S_{\ell} \\$ // segment ends $S_\ell = S_\ell - s$

5


```
function FINDINTERSECTIONS(S)
Input: set of line segments S
Output: all intersections (with segment pairs)
 Q = vertices sorted top to bottom
                                           // event queue
                                           // sweep-line status
  S_{\ell} = \text{empty list}
 while Q \neq \emptyset
   p = \min\{Q\} and Q = Q - p
   HANDLEEVENTPOINT(p)
```

```
// event handler
```

function HANDLEEVENTPOINT(*p*)

s = line segment with vertex pif $s \in S_{\ell}$ // segment ends $S_\ell = S_\ell - s$ // segment starts else for all $s' \in S_{\ell}$ if $s \cap s' \neq \emptyset$ output $(s \cap s', s, s')$ $S_{\ell} = S_{\ell} + s$

```
function FINDINTERSECTIONS(S)Input: set of line segments SOutput: all intersections (with segment pairs)Q = vertices sorted top to bottomS_{\ell} = empty listwhile \ Q \neq \emptysetp = \min{Q} and Q = Q - pHANDLEEVENTPOINT(p)// event handler
```

Problem: slow $(O(n^2))$, if $|S_{\ell}|$ is usually large

function HANDLEEVENTPOINT(*p*)

s = line segment with vertex pif $s \in S_{\ell}$ // segment ends $S_{\ell} = S_{\ell} - s$ else // segment starts for all $s' \in S_{\ell}$ if $s \cap s' \neq \emptyset$ output $(s \cap s', s, s')$ $S_{\ell} = S_{\ell} + s$


```
function FINDINTERSECTIONS(S)
Input: set of line segments S
Output: all intersections (with segment pairs)
 Q = vertices sorted top to bottom
                                           // event queue
 S_{\ell} = \text{empty list}
 while Q \neq \emptyset
   p = \min\{Q\} and Q = Q - p
   HANDLEEVENTPOINT(p)
```

// sweep-line status

// event handler

function HANDLEEVENTPOINT(p)

s = line segment with vertex pif $s \in S_{\ell}$ // segment ends $S_\ell = S_\ell - s$ // segment starts else for all $s' \in S_{\ell}$ if $s \cap s' \neq \emptyset$ output $(s \cap s', s, s')$ $S_{\ell} = S_{\ell} + s$

Problem: slow $(O(n^2))$, if $|S_{\ell}|$ is usually large

5

A Simple Sweep-Line Algorithm

```
function FINDINTERSECTIONS(S)
                                                                              function HANDLEEVENTPOINT(p)
                                                                                 s = line segment with vertex p
Input: set of line segments S
Output: all intersections (with segment pairs)
                                                                                if s \in S_{\ell}
                                                                                                          // segment ends
                                                                                S_\ell = S_\ell - s
  Q = vertices sorted top to bottom
                                              // event queue
                                                                                                           // segment starts
                                                                                else
                                              // sweep-line status
  S_{\ell} = \text{empty list}
                                                                                  for all s' \in S_{\ell}
  while Q \neq \emptyset
                                                                                  if s \cap s' \neq \emptyset output (s \cap s', s, s')
   p = \min\{Q\} and Q = Q - p
                                                                                  S_{\ell} = S_{\ell} + s
    HANDLEEVENTPOINT(p)
                                              // event handler
```

Problem: slow ($O(n^2)$), if $|S_{\ell}|$ is usually large

Observation: intersecting segments are at some point next to each other on the sweep line

A Simple Sweep-Line Algorithm

```
function HANDLEEVENTPOINT(p)
function FINDINTERSECTIONS(S)
                                                                                 s = line segment with vertex p
Input: set of line segments S
Output: all intersections (with segment pairs)
                                                                                if s \in S_{\ell}
                                                                                                          // segment ends
                                                                                S_\ell = S_\ell - s
  Q = vertices sorted top to bottom
                                              // event queue
                                                                                                           // segment starts
                                                                                else
                                              // sweep-line status
  S_{\ell} = \text{empty list}
                                                                                  for all s' \in S_{\ell}
  while Q \neq \emptyset
                                                                                  if s \cap s' \neq \emptyset output (s \cap s', s, s')
   p = \min\{Q\} and Q = Q - p
                                                                                  S_{\ell} = S_{\ell} + s
    HANDLEEVENTPOINT(p)
                                              // event handler
```

Problem: slow ($O(n^2)$), if $|S_{\ell}|$ is usually large

Observation: intersecting segments are at some point next to each other on the sweep line

Solution: only compare adjacent segments

(adjacent: next to each other on the current sweep line)

What Changes?

• sweep-line status: segments crossing ℓ , ordered from left to right

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler

6

- segment starts: check only with adjacent segments
- segment starts: insert segment into status \rightarrow maintain left-to-right ordering
- segment ends: check for newly adjacent segments

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

search tree: $O(\log n)$ (e.g., (*a*, *b*)-tree, red-black tree)

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

Why not a heap for the event queue?


```
search tree: O(\log n)
(e.g., (a, b)-tree, red-black tree)
```

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

Why do we need "search" for the event queue?

search tree: $O(\log n)$ (e.g., (*a*, *b*)-tree, red-black tree)

What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status \rightarrow maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes \rightarrow check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

search tree: $O(\log n)$ (e.g., (*a*, *b*)-tree, red-black tree)

one way to handle finding the same intersection multiple times

function FINDINTERSECTIONS(*S*) *Input:* set of line segments *S Output:* all intersections (with segment pairs) Q = empty queue// event queue for $pq \in S$ Q = Q + p + qT =search tree // status while $Q \neq \emptyset$ $p = \min\{Q\}$ and Q = Q - pHANDLEEVENT(*p*) // event handler


```
function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

Q = \text{empty queue} // event queue

for pq \in S

Q = Q + p + q

T = \text{search tree} // status

while Q \neq \emptyset

p = \min{Q} and Q = Q - p

HANDLEEVENT(p) // event handler

function HANDLEEVENT(p)

if p is vertex of a segment
```

```
HANDLEVERTEX(p)
```

else

HANDLEINTERSECTION(p)

function FINDINTERSECTIONS(*S*) *Input:* set of line segments *S Output:* all intersections (with segment pairs) Q = empty queue// event queue for $pq \in S$ Q = Q + p + qT = search tree // status while $Q \neq \emptyset$ $p = \min\{Q\}$ and Q = Q - pHANDLEEVENT(p)// event handler **function** HANDLEEVENT(*p*) if p is vertex of a segment HANDLEVERTEX(p)else

HANDLEINTERSECTION(p)

function FINDINTERSECTIONS(S)Input: set of line segments SOutput: all intersections (with segment pairs)Q = empty queue $for pq \in S$ Q = Q + p + qT = search tree $Mile Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p)

```
function HANDLEEVENT(p)
```

if p is vertex of a segment

```
HANDLEVERTEX(p)
```

else

HANDLEINTERSECTION(p)

else

// segment starts

function FINDINTERSECTIONS(S) Input: set of line segments S Output: all intersections (with segment pairs) Q = empty queue // event queue for $pq \in S$ Q = Q + p + q T = search tree // status while $Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p) // event handler

```
function HANDLEEVENT(p)
if p is vertex of a segment
HANDLEVERTEX(p)
else
```

HANDLEINTERSECTION(*p*)

function FINDINTERSECTIONS(S)Input: set of line segments SOutput: all intersections (with segment pairs)Q = empty queue $for pq \in S$ Q = Q + p + qT = search treey statuswhile $Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p)// event handler

```
function HANDLEVERTEX(p)
  s = segment with vertex p
  s^- = predecessor of s in T
  s^+ = successor of s in T
                   // segment ends
  if s \in T
    CHECKINTERSECTION(s^-, s^+, p)
    T = T - s
                   // segment starts
  else
    T = T + s
    CHECKINTERSECTION(s^{-}, s, p)
    CHECKINTERSECTION(s^+, s, p)
```

if *p* is vertex of a segment

HANDLEINTERSECTION(p)

HANDLEVERTEX(p)

else

function FINDINTERSECTIONS(*S*) Input: set of line segments *S* Output: all intersections (with segment pairs) Q = empty queue // event queue for $pq \in S$ Q = Q + p + q T = search tree // status while $Q \neq \emptyset$ $p = \min\{Q\}$ and Q = Q - pHANDLEEVENT(p) // event handler function HANDLEEVENT(p)

```
function HANDLEVERTEX(p)
  s = segment with vertex p
  s^- = predecessor of s in T
  s^+ = successor of s in T
                   // segment ends
  if s \in T
    CHECKINTERSECTION(s^-, s^+, p)
    T = T - s
                   // segment starts
  else
    T = T + s
    CHECKINTERSECTION(s^-, s, p)
    CHECKINTERSECTION(s^+, s, p)
```


if p is vertex of a segment

HANDLEINTERSECTION(p)

HANDLEVERTEX(p)

else

function FINDINTERSECTIONS(*S*) Input: set of line segments *S* Output: all intersections (with segment pairs) Q = empty queue // event queue for $pq \in S$ Q = Q + p + q T = search tree // status while $Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p) // event handler function HANDLEEVENT(p)

```
if p is vertex of a segment
```

HANDLEVERTEX(p)

else

HANDLEINTERSECTION(p)

CHECKINTERSECTION (s^+, s, p)

function FINDINTERSECTIONS(*S*) Input: set of line segments *S* Output: all intersections (with segment pairs) Q = empty queue // event queue for $pq \in S$ Q = Q + p + q T = search tree // status while $Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p) // event handler function HANDLEEVENT(p)

```
function HANDLEVERTEX(p)
  s = segment with vertex p
  s^- = predecessor of s in T
  s^+ = successor of s in T
                    // segment ends
  if s \in T
    CHECKINTERSECTION(s^{-}, s^{+}, p)
    T = T - s
                   // segment starts
  else
    T = T + s
    CHECKINTERSECTION(s^{-}, s, p)
    CHECKINTERSECTION(s^+, s, p)
```


function CHECKINTERSECTION (s^-, s^+, p) $q = s^- \cap s^+$ if $q \neq \emptyset$ and $p_y < q_y$ and $q \notin Q$ Q = Q + q

if p is vertex of a segment

HANDLEINTERSECTION(p)

HANDLEVERTEX(p)

else

function FINDINTERSECTIONS(S)Input: set of line segments SOutput: all intersections (with segment pairs)Q = empty queue $for pq \in S$ Q = Q + p + qT = search tree $while Q \neq \emptyset$ $p = \min{Q}$ and Q = Q - pHANDLEEVENT(p)

```
function HANDLEEVENT(p)
```

if *p* is vertex of a segment

```
HANDLEVERTEX(p)
```

else

HANDLEINTERSECTION(p)

Running time?

function CHECKINTERSECTION (s^-, s^+, p) $q = s^- \cap s^+$ if $q \neq \emptyset$ and $p_y < q_y$ and $q \notin Q$ Q = Q + q

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

How Many Events Are In The Event Queue?

How Many Events Are In The Event Queue?

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Event Points With Equal *y***-Coordinate**

- use lexicographical order with respect to (y, x)
- equivalent to slight clockwise rotation

Theorem

Theorem

assumption: general position

The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

assumption: general position

Theorem assumption The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

plan: handle of them together

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

Theorem

• let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

> plan: handle of them together

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

Theorem

• let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

> plan: handle of them together

updating the sweep-line status T:

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

Theorem

• let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

> plan: handle of them together

- updating the sweep-line status T:
 - remove $end(p) \cup int(p)$
 - insert $int(p) \cup start(p)$ (using the order slightly below p)

Do We Need General Position?

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

Theorem

It start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

> plan: handle of them together

- updating the sweep-line status T:
 - remove $end(p) \cup int(p)$
 - insert $int(p) \cup start(p)$ (using the order slightly below p)

What happens to horizontal edges?

Do We Need General Position?

assumption: general position

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

Theorem

It start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p

> plan: handle of them together

- updating the sweep-line status T:
 - remove $end(p) \cup int(p)$
 - insert $int(p) \cup start(p)$ (using the order slightly below p)
- check newly adjacent segments afterwards

What happens to horizontal edges?

HANDLEEVENT(p)

get / find start(p), end(p), int(p) // end(p), int(p) can be found in T, start(p) has to be saved with p

 $\mathsf{if} \ |\mathsf{start}(p) \cup \mathsf{end}(p) \cup \mathsf{int}(p)| > 1$

output p (with start $(p) \cup end(p) \cup int(p)$)

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

■ initialization: insert 2*n* event points into queue

 $O(n \log n)$

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events

$$O(n \log n)$$

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events

 $O(n \log n)$ $O((n+k) \log n)$

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status

 $O(n \log n)$

 $O((n+k)\log n)$

Theorem The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations

 $O(n \log n)$ $O((n+k) \log n)$

Theorem

The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$

 $O(m \log n)$

Theorem

12

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$

 $O(n \log n)$ $O((n+k) \log n)$

 $O(m \log n)$

Does $m \in O(n + k)$ hold?

Theorem

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$
- segments form plane graph G = (V, E)

Does $m \in O(n + k)$ hold?

 $O(m \log n)$

Theorem

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$
- segments form plane graph G = (V, E)
- $|V| \le 2n + k \text{ und } 2|E| = m$

$$O(n \log n)$$
$$O((n+k) \log n)$$

 $O(m \log n)$

Does $m \in O(n + k)$ hold?

Theorem

The k intersections of n line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

- initialization: insert 2*n* event points into queue
- queue operations at event: extract minimum, insert at most 2 new events
- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$
- segments form plane graph G = (V, E)
- $|V| \le 2n + k \text{ und } 2|E| = m$
- for planar graphs: $|E| \le 3|V| 6$ $\Rightarrow m \in O(n+k)$

 $O(n \log n)$ $O((n+k)\log n)$

 $O(m \log n)$

Why Should We Care?

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

• at most *n* Segments $\rightarrow O(n)$

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

• at most *n* Segments $\rightarrow O(n)$

How Large Can The Event Queue Be?

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

• at most *n* Segments $\rightarrow O(n)$

How Large Can The Event Queue Be?

- obvious bound: n + k
- intersections may be in the queue for quite some time before they are processed

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

• at most *n* Segments $\rightarrow O(n)$

How Large Can The Event Queue Be?

- obvious bound: n + k
- intersections may be in the queue for quite some time before they are processed
- option: only keep intersections in the queue corresponding to adjacent segments $\rightarrow O(n)$

Did We Reach Our Goal?

Where Are Bridges?

Forests With A Lot Of Rainfall

Did We Reach Our Goal?we can find bridges

Where Are Bridges?

Forests With A Lot Of Rainfall

Did We Reach Our Goal?

- we can find bridges
- we cannot yet compute the intersection of polygons

Forests With A Lot Of Rainfall

Did We Reach Our Goal?

- we can find bridges
- we cannot yet compute the intersection of polygons

In The Following

- data structure that helps with computing the intersection
- actually using it: exercise sheet

Forests With A Lot Of Rainfall

Geometric Graphs

Geometric Graphs

vertices with coordinates

Geometric Graphs

- vertices with coordinates
- edges

Geometric Graphs

- vertices with coordinates
- edges
- faces

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

corresponding vertex: origin(e)

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)

next/previous edge along this face: next(e), prev(e)

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Doubly Connected Edge List

• each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

clockwise successor of e around origin(e):

15 Thomas Bläsius – Computational Geometry

Doubly-Connected Edge List

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

clockwise successor of e around origin(e): next(twin(e))

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

- clockwise successor of e around origin(e): next(twin(e))
- clockwise predecessor of e around origin(e):

15

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

- clockwise successor of e around origin(e): next(twin(e))
- clockwise predecessor of e around origin(e): twin(prev(e))

Thomas Bläsius – Computational Geometry

15

Doubly-Connected Edge List

Doubly Connected Edge List

 \blacksquare each edge has two incident vertices \rightarrow store each edge twice

For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

- clockwise successor of e around origin(e): next(twin(e))
- clockwise predecessor of e around origin(e): twin(prev(e))
- you should adapt this to your use case

adaptation for multiple connected components

What Have We Learned Today?

• output sensitive algorithm for segment intersection: $O((n+k) \log n)$

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps
- doubly-connected edge list

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps
- doubly-connected edge list

What Else Is There?

extension to map overlay and Boolean operations on polygons

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps
- doubly-connected edge list

What Else Is There?

- extension to map overlay and Boolean operations on polygons
- lower bound: $\Omega(n \log n + k)$
- can be solved in $O(n \log n + k)$ time with O(n) space

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps
- doubly-connected edge list

What Else Is There?

- extension to map overlay and Boolean operations on polygons
- lower bound: $\Omega(n \log n + k)$
- can be solved in $O(n \log n + k)$ time with O(n) space
- extensions to the sweep-line approach
 - the sweep line might move differently (e.g., rotate)
 - the sweep line does not need to be a line

