AT

Computational Geometry
Line Segment Intersection

Thomas Blasius

Line Segment Intersection: Motivation

Where Are Bridges?

= given: roads and rivers
(each as sets of line segments)

m goal: find all bridges

S e —— — — | — — —

Forests With A Lot Of Rainfall
= given: forests and regions with more than 1500mm rainfall

= goal: compute the intersection of both

(each as polygons)

2 Thomas Blasius — Computational Geometry ﬂ(IT

Some First Observations

Problem: Line Segment Intersection

Given n line segments, compute all pairwise intersections.

Assumption: General Position

® at most two segments intersect in one point

= no end point on a different edge
= no shared endpoints
= no horizontal or vertical segments

R

e

=

Trivial Algorithm
= check each pair for intersection — O(n?)
= can in general not be improved

Potential Improvement
= few intersections = better running time

® running time depends on output size
— output sensitive algorithm

AKIT

A Simple Sweep-Line Algorithm

Idea

= don’'t compare segments if one lies
fully above the other

= move iGrizontallineitop — bottom
= [new'segment — check for intersec-

tion with segments intersecting £

¢ />/ 7

Sweep-Line: More Formally
m sweep-line status

- current status of the sweep line
- here: set S, of segments that intersect ¢
= event queue

- future positions of the sweep line where something
interesting happens (typically status changes)

- here: start and end points of segments (vertices)
= event handler
- endpoint of segment s — set S, = S5, — s

- start point of s — check if s intersects segments in
SpandsetS;, =S, +s

AKIT

A Simple Sweep-Line Algorithm

function FINDINTERSECTIONS(S) function HANDLEEVENTPOINT(p)
Input: set of line segments S s = line segment with vertex p
Output: all intersections (with segment pairs) ifsc S, // segment ends
Q = vertices sorted top to bottom // event queue S¢e=51—s
S¢ = empty list // sweep-line status else /I segment starts
while Q # 0 foralls' € S,
p=min{Q}and Q = Q — p if sNs’ #Qoutput (sNs',s,s)
HANDLEEVENTPOINT(p) /| event handler Se=5¢+s

Problem: slow (O(n?)), if |S,| is usually large Y/\\([

Observation: intersecting segments are at some point next to each other on the sweep line

Solution: only compare adjacent segments (adjacent: next to each other on the current sweep line)

AKIT

Only Checking Adjacent Segments

What Changes?

= sweep-line status: segments crossing £, ordered from left to right N / .,

= event handler v \° /+
- segment starts: check only with adjacent segments
- segment starts: insert segment into status — maintain left-to-right ordering N / /
- segment ends: check for newly adjacent segments i % '

- Intersection: order in sweep-line status changes — check newly adjacent
- Intersection found: insert intersection into event queue

Which Data Structure?

= sweep-line status: insert, delete, find successor / predecessor } search tree: O(log n)

= event queue: insert, extract minimum, search (e.g., (a, b)-tree, red-black tree)

one way to handle finding the same intersection multiple times

AKIT

Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)
Input: set of line segments S
Output: all intersections (with segment pairs)

Q = empty queue // event queue

forpgec S
Q=Q+p+gqg

T = search tree // status

while Q # 0
p=min{Q}tand Q =Q — p
HANDLEEVENT(p) // event handler

function HANDLEEVENT(p)
if p is vertex of a segment
HANDLEVERTEX(p)

else
HANDLEINTERSECTION(p)

) s/ ° ,S+

.
I ‘P+l l/p/l

]
function HANDLEVERTEX(p)

s~ = predecessorof sin T

sT = successorofsinT

ifscT // segment ends
CHECKINTERSECTION(s™, s™, p)
T=T-—s

else // segment starts
T=T-+s

CHECKINTERSECTION(s ™, s, p)
CHECKINTERSECTION(s™, s, p)

function HANDLEINTERSECTION(p)

output (p, s, s') (s<s'inT)
swapsands' inT (s’ <s)
s~ = predecessor of s’ in T

st =successorof sin T
CHECKINTERSECTION(s ™, s/, p)

CHECKINTERSECTION(s™, s, p)

function CHECKINTERSECTION(s—, s, p)
g=s"NsT
ifg#0and p, < g,and g ¢ Q
Q=Q+gq

AKIT

Improved Sweep-Line Algorithm

8 Thomas Blasius — Computational Geometry ﬂ(IT

How Many Events Are In The Event Queue?

\\ h 7 |

AKIT

Do We Need General Position?

Theorem assumption: general position
The k intersections of n line segments can be computed in O((n + k) log n) time.

Problem: Multiple Events At The Same Point
= three things can happen at an event point:

- one or multiple segments start)
- one or multiple segments end } plan: handle of them together
- segments intersect)
= |et start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
m updating the sweep-line status T:
- remove end(p) U int(p)

- insert int(p) Ustart(p) (using the order slightly below p)
= check newly adjacent segments afterwards

What happens to horizontal edges?

AKIT

Sweep-Line Algo — No General Position Assumption

HANDLEEVENT(p) s
get / find start(p), end(p),- // end(p), int(p) can be found in T, start(p) has to be saved with p 53
if [start(p) Uend(p) Uint(p)| > 1 o\ @ s4 ..
output p (with start(p) U end(p) U int(p)) 2 53
remove end(p) U-from T T: s1/52 58 54 S5 8§ s5s — S1 Ss D -
insert-U start(p) into T T: s1 s3 — S1 |56 B4 B3 57 ss

if start(p) U IRE(R) = 0

s~ = predecessorof pin T

How can this be done using a search tree?

— comparator depending on position of the sweep line

What is left to show?
Theorem

¢+ The k intersections of n line segments
can be computed in O((n+ k) log n) time.

AKIT

sT = successor of pin T

CHECKINTERSECTION(s™, s™, p)

else
s~ = left-most segment in start(p) U-
st = right-most segment in start(p) U-

pa—

§— = predecessorof s~ in T

§T = successorof sTinT
CHECKINTERSECTION(s—, 57, p)

CHECKINTERSECTION(s™, §T, p)

Running Time Analysis

Theorem
The k intersections of n line segments can be computed in O((n + k) log n) time.

Proof (Running Time)
= initialization: insert 2n event points into queue O(nlog n)

= queue operations at event: extract minimum, insert at most 2 new events O((n+ k) log n)
= operations on the sweep-line status

- m(p) intersecting segments at event point p = ©(m(p)) operations

- cost over all event points: mlognmitm=3%__ m(p) O(mlog n)
= segments form plane graph G = (V, E)
" V[<2n+kund 2|E| = m Does m € O(n + k) hold?

= for planar graphs: |E| < 3|V|—6
= m € O(n+ k)

AKIT

Memory Consumption

Why Should We Care?
® memory is a more critical resource than time

= you can wait for an algorithm with running time O(n?)
= O(n?) memory consumption is usually not ok

How Large Can The Sweep-Line Status?
= at most n Segments — O(n)

How Large Can The Event Queue Be?
® obvious bound: n + k

= |ntersections may be in the queue for quite some time before they are processed
= option: only keep intersections in the queue corresponding to adjacent segments — O(n)

AKIT

Back To Our Motivation

Did We Reach Our Goal? Where Are Bridges?
= we can find bridges

= we cannot yet compute the intersection of polygons

In The Following
m data structure that helps with computing the intersection

m actually using it: exercise sheet

Forests With A Lot Of Rainfall

AKIT

Doubly-Connected Edge List

Doubly Connected Edge List
= each edge has two incident vertices — store each edge twice N

For Every “Half Edge” e

next(e)

= corresponding vertex: lorigin(e) prev(e)
= half edge at the opposite vertex: Ewin(e) L - twin(e)
= incident face (left): Eace(e) origin(e)

= next/previous edge along this face: BEXE(E), prev(e)

= for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

= clockwise successor of e around origin(e): next(twin(e)) @
= clockwise predecessor of e around origin(e): twin(prev(e))

= you should adapt this to your use case adaptation for multiple connected components

AKIT

Wrap-Up

What Have We Learned Today?

= output sensitive algorithm for segment intersection: O((n + k) log n)
= sweep line technique: discretization of continuous geometry using a finite set of events

m |ike last week: initially ignoring special cases helps

doubly-connected edge list

What Else Is There?

extension to map overlay and Boolean operations on polygons
lower bound: Q(nlog n + k)

can be solved in O(nlog n + k) time with O(n) space
extensions to the sweep-line approach

- the sweep line might move differently (e.g., rotate)

- the sweep line does not need to be a line

AKIT

