

Computational Geometry Line Segment Intersection

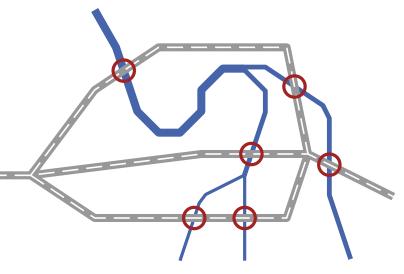
Thomas Bläsius

Line Segment Intersection: Motivation

Where Are Bridges?

given: roads and rivers (each as sets of line segments)

goal: find all bridges



Forests With A Lot Of Rainfall

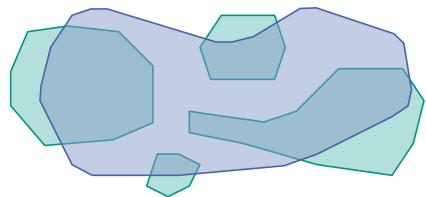
given: forests and regions with more than 1500mm rainfall

goal: compute the intersection of both

(each as polygons)

Problem: Line Segment Intersection

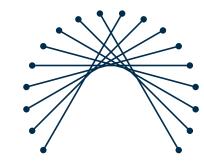
Given *n* line segments, compute all pairwise intersections.



Some First Observations

Problem: Line Segment Intersection

Given *n* line segments, compute all pairwise intersections.



Assumption: General Position

- at most two segments intersect in one point
- no end point on a different edge
- no shared endpoints
- no horizontal or vertical segments

Trivial Algorithm

- check each pair for intersection $\rightarrow O(n^2)$
- can in general not be improved

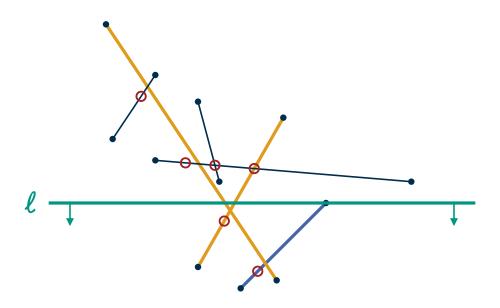
Potential Improvement

- few intersections ⇒ better running time
- running time depends on output size
 → output sensitive algorithm

A Simple Sweep-Line Algorithm

Idea

- don't compare segments if one lies fully above the other
- move horizontal line \(\ell \) top \(\to \) bottom
- new segment \rightarrow check for intersection with segments intersecting ℓ



Sweep-Line: More Formally

- sweep-line status
 - current status of the sweep line
 - here: set S_{ℓ} of segments that intersect ℓ
- event queue
 - future positions of the sweep line where something interesting happens (typically status changes)
 - here: start and end points of segments (vertices)
- event handler
 - endpoint of segment $s \to \mathsf{set}\ S_\ell = S_\ell s$
 - start point of $s \to \text{check}$ if s intersects segments in S_ℓ and set $S_\ell = S_\ell + s$

A Simple Sweep-Line Algorithm

```
function FINDINTERSECTIONS(S)

Input: set of line segments S

Output: all intersections (with segment pairs)

Q = \text{vertices sorted top to bottom} // \text{ event queue}

S_{\ell} = \text{empty list} // \text{ sweep-line status}

while Q \neq \emptyset

P = \min\{Q\} \text{ and } Q = Q - P

HANDLEEVENTPOINT(P) // event handler
```

```
function HANDLEEVENTPOINT(p)
```

```
s = 	ext{line segment with vertex } p

if s \in S_{\ell} // segment ends

S_{\ell} = S_{\ell} - s

else // segment starts

for all s' \in S_{\ell}

if s \cap s' \neq \emptyset output (s \cap s', s, s')

S_{\ell} = S_{\ell} + s
```

Problem: slow $(O(n^2))$, if $|S_{\ell}|$ is usually large

Observation: intersecting segments are at some point next to each other on the sweep line

Solution: only compare adjacent segments

(adjacent: next to each other on the current sweep line)

Only Checking Adjacent Segments

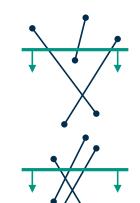
What Changes?

- sweep-line status: segments crossing ℓ , ordered from left to right
- event handler
 - segment starts: check only with adjacent segments
 - segment starts: insert segment into status → maintain left-to-right ordering
 - segment ends: check for newly adjacent segments
 - intersection: order in sweep-line status changes → check newly adjacent
 - intersection found: insert intersection into event queue

Which Data Structure?

- sweep-line status: insert, delete, find successor / predecessor
- event queue: insert, extract minimum, search

one way to handle finding the same intersection multiple times



Improved Sweep-Line Algorithm

function FINDINTERSECTIONS(S)

Input: set of line segments *S*

Output: all intersections (with segment pairs)

```
Q= empty queue // event queue for pq\in S Q=Q+p+q T= search tree // status while Q\neq\emptyset
```

 $p = \min\{Q\}$ and Q = Q - p

HANDLEEVENT(p) // event handler

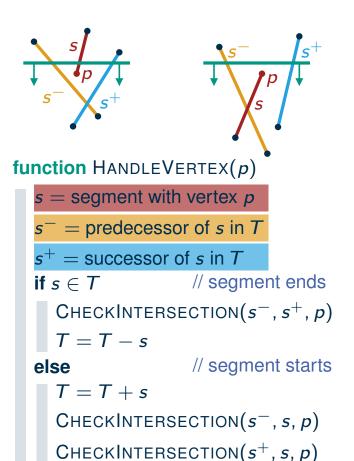
function HANDLEEVENT(p)

if p is vertex of a segment

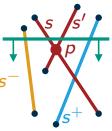
HANDLE VERTEX(p)

else

 \blacksquare HandleIntersection(p)



Running time?



function HANDLEINTERSECTION(p)

s, s' = segments intersecting in poutput (p, s, s') (s < s' in T)swap s and s' in T (s' < s) $s^- = predecessor of s' in T$ $s^+ = successor of s in T$ CHECKINTERSECTION (s^-, s', p) CHECKINTERSECTION (s^+, s, p)

function CHECKINTERSECTION (s^-, s^+, p)

$$q = s^- \cap s^+$$
if $q \neq \emptyset$ and $p_y < q_y$ and $q \notin Q$
 $\square Q = Q + q$

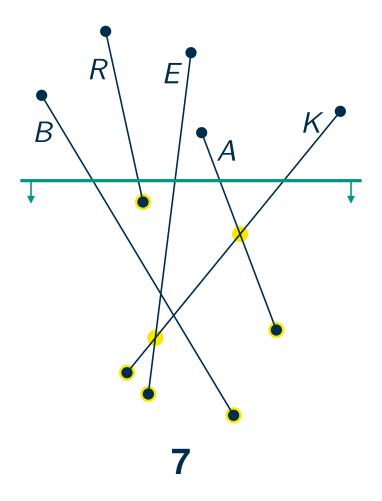
Improved Sweep-Line Algorithm

Theorem

assumption: general position

The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

How Many Events Are In The Event Queue?



Do We Need General Position?

Theorem

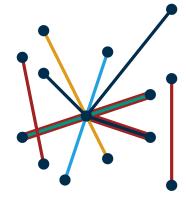
assumption: general position

The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Problem: Multiple Events At The Same Point

- three things can happen at an event point:
 - one or multiple segments start
 - one or multiple segments end
 - segments intersect

plan: handle of them together



What happens to horizontal edges?

- let start(p), end(p), and int(p) be the sets of segments that start at, end at, and intersect p
- updating the sweep-line status T:
 - remove $\operatorname{end}(p) \cup \operatorname{int}(p)$
 - insert $int(p) \cup start(p)$ (using the order slightly below p)
- check newly adjacent segments afterwards

Sweep-Line Algo – No General Position Assumption

$\mathsf{HANDLEEVENT}(p)$

```
get / find \operatorname{start}(p), \operatorname{end}(p), \operatorname{int}(p) // \operatorname{end}(p), \operatorname{int}(p) can be found in T, \operatorname{start}(p) has to be saved with p if |\operatorname{start}(p) \cup \operatorname{end}(p) \cup \operatorname{int}(p)| > 1

output p (with \operatorname{start}(p) \cup \operatorname{end}(p) \cup \operatorname{int}(p))

remove \operatorname{end}(p) \cup \operatorname{int}(p) from T

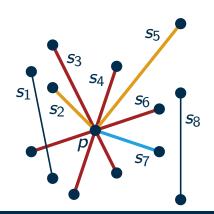
T: S_1 S_2 S_3 S_4 S_5 S_6 S_8 \to S_1 S_8

insert \operatorname{int}(p) \cup \operatorname{start}(p) into T

T: S_1 S_8 \to S_1 S_6 S_4 S_3 S_7 S_8

if \operatorname{start}(p) \cup \operatorname{int}(p) = \emptyset

S^- = \operatorname{predecessor} \operatorname{of} p \operatorname{in} T
```

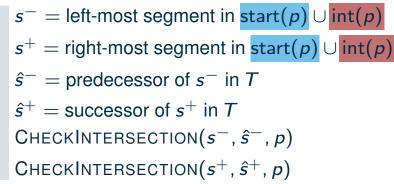


s- p/s+

How can this be done using a search tree?

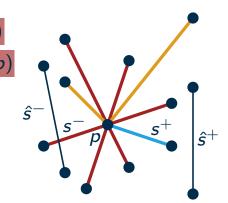
→ comparator depending on position of the sweep line

else



 $s^+ =$ successor of p in T

CHECKINTERSECTION(s^-, s^+, p)



What is left to show?

Theorem

The k intersections of n line segments can be computed in $O((n+k)\log n)$ time.

Running Time Analysis

Theorem

The *k* intersections of *n* line segments can be computed in $O((n + k) \log n)$ time.

Proof (Running Time)

■ initialization: insert 2*n* event points into queue

 $O(n \log n)$

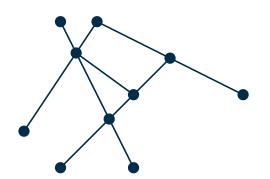
queue operations at event: extract minimum, insert at most 2 new events

$$O((n+k)\log n)$$

- operations on the sweep-line status
 - m(p) intersecting segments at event point $p \Rightarrow \Theta(m(p))$ operations
 - cost over all event points: $m \log n$ mit $m = \sum_{p} m(p)$

$$O(m \log n)$$

- segments form plane graph G = (V, E)
- $|V| \le 2n + k \text{ und } 2|E| = m$
- for planar graphs: $|E| \le 3|V| 6$ $\Rightarrow m \in O(n+k)$



Does $m \in O(n + k)$ hold?

Memory Consumption

Why Should We Care?

- memory is a more critical resource than time
- you can wait for an algorithm with running time $O(n^2)$
- $O(n^2)$ memory consumption is usually not ok

How Large Can The Sweep-Line Status?

■ at most n Segments $\rightarrow O(n)$

How Large Can The Event Queue Be?

- obvious bound: n + k
- intersections may be in the queue for quite some time before they are processed
- lacktriangle option: only keep intersections in the queue corresponding to adjacent segments o O(n)

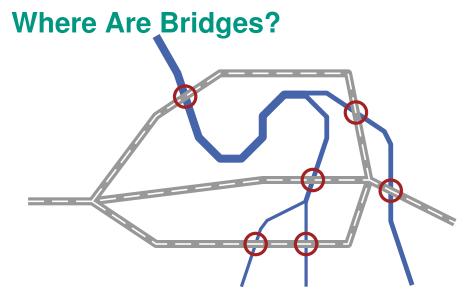
Back To Our Motivation

Did We Reach Our Goal?

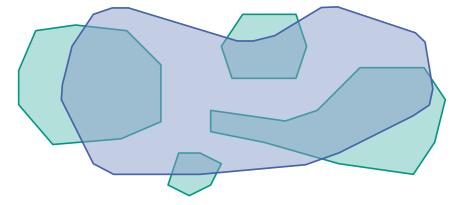
- we can find bridges
- we cannot yet compute the intersection of polygons

In The Following

- data structure that helps with computing the intersection
- actually using it: exercise sheet



Forests With A Lot Of Rainfall



Doubly-Connected Edge List

Doubly Connected Edge List

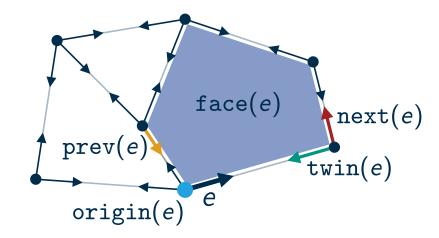
■ each edge has two incident vertices → store each edge twice

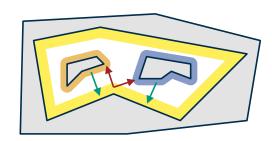
For Every "Half Edge" e

- corresponding vertex: origin(e)
- half edge at the opposite vertex: twin(e)
- incident face (left): face(e)
- next/previous edge along this face: next(e), prev(e)
- for every node v and face f: one incident edge edge(v) / edge(f)

Derived Operations & Notes

- clockwise successor of e around origin(e): next(twin(e))
- clockwise predecessor of e around origin(e): twin(prev(e))
- you should adapt this to your use case





adaptation for multiple connected components

15

Wrap-Up

What Have We Learned Today?

- output sensitive algorithm for segment intersection: $O((n + k) \log n)$
- sweep line technique: discretization of continuous geometry using a finite set of events
- like last week: initially ignoring special cases helps
- doubly-connected edge list

What Else Is There?

- extension to map overlay and Boolean operations on polygons
- lower bound: $\Omega(n \log n + k)$
- can be solved in $O(n \log n + k)$ time with O(n) space
- extensions to the sweep-line approach
 - the sweep line might move differently (e.g., rotate)
 - the sweep line does not need to be a line

