

Computational Geometry Introduction and Convex Hull

Thomas Bläsius

Wikipedia

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.

Wikipedia

- Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.
- Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.

Wikipedia

- Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.
- Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With

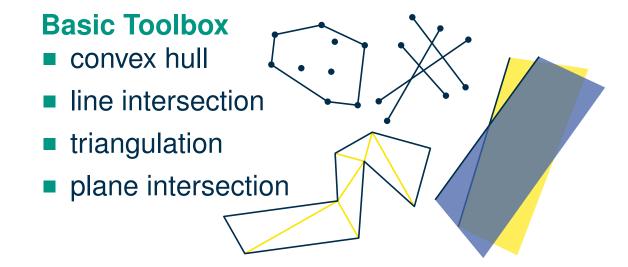
points, lines, line segments, circles, polygons, ...

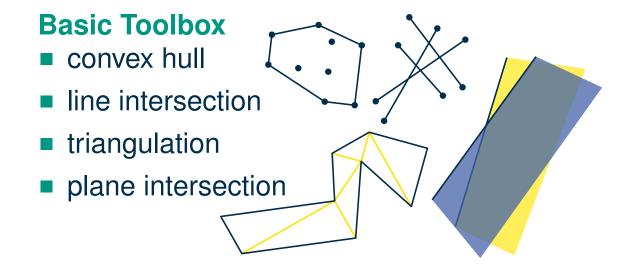
Wikipedia

- Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.
- Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With

- points, lines, line segments, circles, polygons, ...
- but not: pixels





Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location

Basic Toolbox
convex hull
line intersection

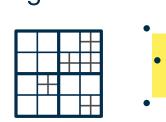
- triangulation
- plane intersection

Advanced Toolbox

- Voronoi diagrams
- Delaunay triangulations
- randomized algorithms
- complexity

Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location



Basic Toolbox

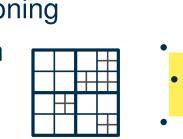
- convex hull
- line intersection
- triangulation
- plane intersection

Advanced Toolbox

- Voronoi diagrams
- Delaunay triangulations
- randomized algorithms
- complexity

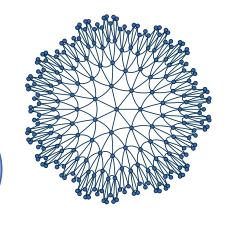
Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location



Related Topics

- What is geometry?
- hyperbolic geometry
- geometric graphs



4

Thomas

Jean-Pierre

Marcus

Wendy

Thomas

Jean-Pierre

Marcus

Wendy

Thomas Bläsius – Computational Geometry 4

Thomas

Jean-Pierre

Marcus

Wendy

You

Materials & Infos

slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

Thomas Je

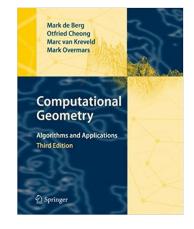
Jean-Pierre

Marcus

Wendy

Materials & Infos

- slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/
- Book: Computational Geometry



Thomas J

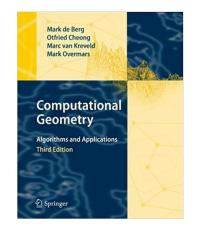
Jean-Pierre

Marcus

Wendy

Materials & Infos

- slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/
- Book: Computational Geometry
- Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)



Thomas

Jean-Pierre

Marcus

Wendy

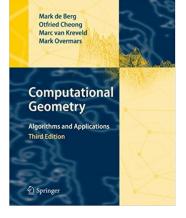
You

Materials & Infos

- slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/
- Book: Computational Geometry
- Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)

Requirements

- good algorithmic understanding
- no (little) prior knowledge



Wee	ek i					wee	ek <i>i</i> -	+ 1					wee	ek i	+ 2					wee	ek i	+ 3		
Mo Tu We T	h Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su
(i even)					exe	ercis	se sl	neet	$t\frac{i}{2}$					Т				е	xero	cise	she	et $\frac{1}{2}$	$\frac{i}{2} +$	1

Lecture

- lecture with slides
- new topics

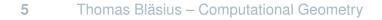
we	ek i			W	veek i	+1				۷	vee	k <i>i</i> -	+ 2					wee	ek i	+ 3	;	
Mo Tu We T	<mark>Fh</mark> Fr S	Sa Su	Mo ⁻	Tu M	Ve Th	Fr	Sa	Su I	Mo 1	īu 🛛	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su
(<i>i</i> even)				exer	cise s	heet	$\frac{i}{2}$									е	xer	cise	she	et 🚽	$\frac{i}{2} +$	1

Lecture

- lecture with slides
- new topics

Exercise Sheet

- hand in in groups of two or three
- graded by us



we	ek i					wee	ek i	+1					wee	k <i>i</i> -	+ 2					wee	ek i	+ 3		
Mo Tu We T	Г <mark>h</mark> Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su
(<i>i</i> even)					exe	ercis	se sl	heet	$t\frac{i}{2}$									е	xer	cise	she	et $\frac{i}{2}$	+	1

Lecture

- lecture with slides
- new topics

Exercise Sheet

- hand in in groups of two or three
- graded by us

Exercise Session (Week *i* + 1)with Marcus, Wendy, Jean-Pierre

recap

- support solving exercise sheets
- ???

week i			wee	ek <i>i</i> -	+1				wee	k i	+ 2					wee	ek i	+ 3		
Mo Tu We Th Fr	Sa Su	Mo T	Tu We	Th	Fr	Sa	Su <mark>M</mark>	<mark>o</mark> Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su
(<i>i</i> even)		(exercis	se sł	neet	$\frac{i}{2}$								e	xerc	cise	she	et $\frac{i}{2}$	<u>+</u>	1

Lecturelecture with slidesnew topics	Exercise Sheethand in in groups of two or threegraded by us
 Active Session if it's not a Holiday training additional skills curiosities 	 Exercise Session (Week <i>i</i> + 1) with Marcus, Wendy, Jean-Pierre recap support solving exercise sheets ???

wee	k i					wee	ek i	+1					wee	k <i>i</i> -	+ 2					wee	ek i	+3	3	
Mo Tu We Th	n Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	ι Su
(<i>i</i> even)					exe	ercis	se sl	heet	<u>i</u> 2									е	xer	cise	she	et :	$\frac{i}{2} +$	1

Exercise Sheet

graded by us

Active Session

new topics

Lecture

if it's not a Holiday

lecture with slides

- training additional skills
- curiosities

Exercise Session (Week *i* + 1)
with Marcus, Wendy, Jean-Pierre

hand in in groups of two or three

recap

support solving exercise sheets

???

Exam

- oral exam (20 min)
- admission only with exercise certificate

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

you get points for explaining what you tried and why it did not work

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

- you get points for explaining what you tried and why it did not work
- and: there are many ways to get support
 - talk to your peers
 - ask in the exercise session or on discord

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

- you get points for explaining what you tried and why it did not work
- and: there are many ways to get support
 - talk to your peers
 - ask in the exercise session or on discord

What If I Can't Manage To Hand In An Exercise Sheet?

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

- you get points for explaining what you tried and why it did not work
- and: there are many ways to get support
 - talk to your peers
 - ask in the exercise session or on discord

What If I Can't Manage To Hand In An Exercise Sheet?

- sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
- talk to us, we'll find a solution

we don't want to make your life hard and we also don't bite we just want you to learn something and have fun doing so

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

- you get points for explaining what you tried and why it did not work
- and: there are many ways to get support
 - talk to your peers
 - ask in the exercise session or on discord

What If I Can't Manage To Hand In An Exercise Sheet?

- sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
- talk to us, we'll find a solution

we don't want to make your life hard and we also don't bite we just want you to learn something and have fun doing so

Our Goal

- you spend some time with the content of the lecture and write down your solution
- then, the exercise certificate should not be a big obstacle

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

- oil contains components A and B
- two springs: A B spring 1 35% 10% spring 2 20% 16%

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

- oil contains components A and B
- two springs:
 A B spring 1 35% 10%
 spring 2 20% 16%

Can we achieve 30% A and 12% B?

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

- oil contains components A and B
- two springs:
 A B spring 1 35% 10%
 spring 2 20% 16%

Can we achieve 30% *A* and 12% *B*? 2 : 1

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

two springs:
 A B spring 1
 35%
 10%
 spring 2
 20%
 16%

Can we achieve 30% *A* and 12% *B*? 2 : 1

What about 22% A and 13% B?

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

two springs:		A	В
	spring 1	35%	10%
	spring 2	20%	16%
third spring:	spring 3	15%	7%

Can we achieve 30% *A* and 12% *B*? 2 : 1

What about 22% A and 13% B?

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

two springs:		A	В
	spring 1	35%	10%
	spring 2	20%	16%
third spring:	spring 3	15%	7%

 Can we achieve 30% A and 12% B?
 2:1

 What about 22% A and 13% B?
 1:3:1

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

two springs:		A	В
	spring 1	35%	10%
	spring 2	20%	16%
third spring:	spring 3	15%	7%

What Is The Relation To Geometry?

 Can we achieve 30% A and 12% B?
 2 : 1

 What about 22% A and 13% B?
 1 : 3 : 1

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

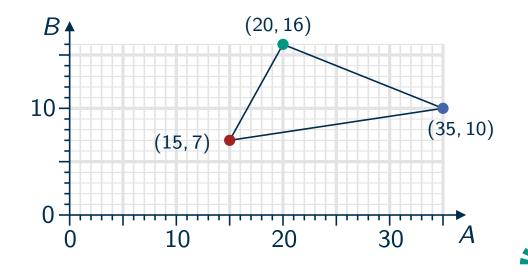
two springs:		A	В
	spring 1	35%	10%
	spring 2	20%	16%
third spring:	spring 3	15%	7%

What Is The Relation To Geometry?

ratios can be interpreted as points

Can we achieve 30% *A* and 12% *B*? 2 : 1

1:3:1



Motivation

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

• oil contains components A and B

two springs:		A	В
	spring 1	35%	10%
	spring 2	20%	16%
third spring:	spring 3	15%	7%

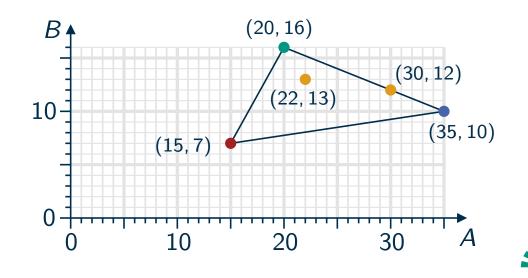
What Is The Relation To Geometry?

- ratios can be interpreted as points
- desired ratio is possible points lies "between" the available points

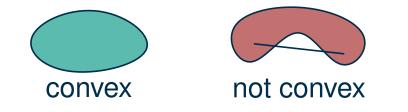
Can we achieve 30% *A* and 12% *B*? 2 : 1

What about 22% A and 13% B?

1:3:1



Definition A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.

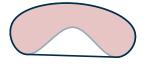


Definition

A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.

Definition

For $P \subseteq \mathbb{R}^d$, the **convex hull** $\mathcal{CH}(P)$ is the minimal subset of \mathbb{R}^d such that $\mathcal{CH}(P)$ is convex and $P \subseteq \mathcal{CH}(P)$.



Definition A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.

Definition

For $P \subseteq \mathbb{R}^d$, the **convex hull** $\mathcal{CH}(P)$ is the minimal subset of \mathbb{R}^d such that $\mathcal{CH}(P)$ is convex and $P \subseteq \mathcal{CH}(P)$.

Equivalent Definitions

• intersection of all convex sets in \mathbb{R}^d that contain *P*

Definition A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.

Definition

For $P \subseteq \mathbb{R}^d$, the **convex hull** $\mathcal{CH}(P)$ is the minimal subset of \mathbb{R}^d such that $\mathcal{CH}(P)$ is convex and $P \subseteq \mathcal{CH}(P)$.



Equivalent Definitions

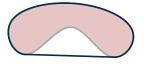
- intersection of all convex sets in \mathbb{R}^d that contain P
- union of all simplices with corners in P

simplices in different dimensions:

Definition A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.

Definition

For $P \subseteq \mathbb{R}^d$, the **convex hull** $\mathcal{CH}(P)$ is the minimal subset of \mathbb{R}^d such that $\mathcal{CH}(P)$ is convex and $P \subseteq \mathcal{CH}(P)$.



you might know this from the

barycentric coordinate system

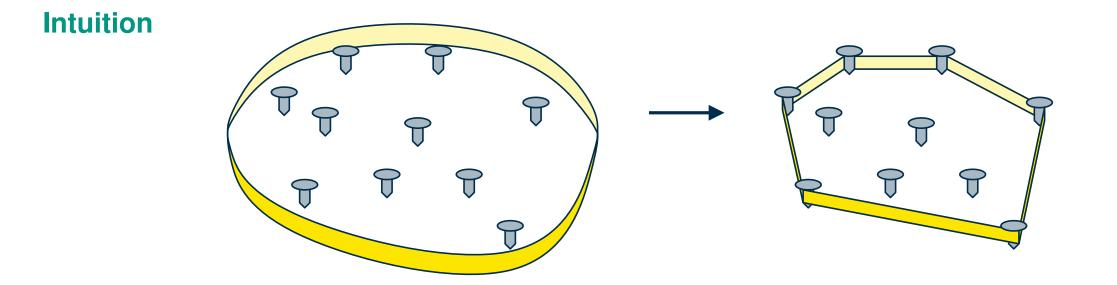
Equivalent Definitions

- intersection of all convex sets in \mathbb{R}^d that contain P
- union of all simplices with corners in P simplices in different dimensions:
- set of all points that are convex combinations of points in P

convex combination:
$$\sum_{i=1}^{n} a_i \cdot p_i$$
 with $p_i \in P$, $a_i \in \mathbb{R}$, $a_i \ge 0$, and $\sum_{i=1}^{n} a_i = 1$

CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

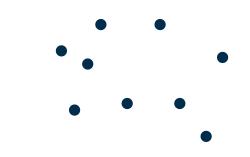
CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

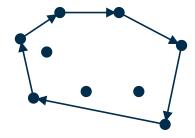
assumption: points are in general position



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

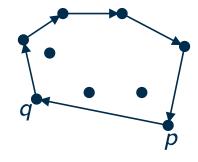
- assumption: points are in general position
- boundary of CH(P) is a polygon \rightarrow output is a sequence of points



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

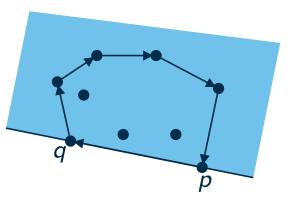
- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

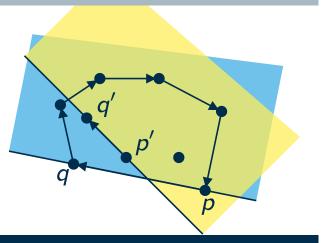
- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

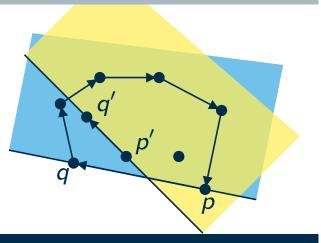
- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq



CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq



Trivial Algorithm

CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq

CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge *pq*
- construct the polygon (as sequence of points) from the saved edges

CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of *P* lie to the right of *pq*
 - if yes: save the edge *pq*
- construct the polygon (as sequence of points) from the saved edges Running Time:

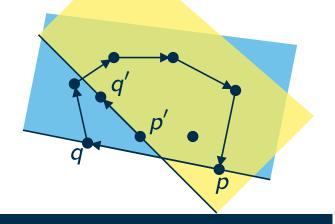
CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $CH(P) \Leftrightarrow$ all points of P lie in the half space right of pq

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge *pq*
- construct the polygon (as sequence of points) from the saved edges Running Time: $\Theta(n^3)$



Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct polygon (sequence of points) from the saved edges

Problems

the algorithm is slow

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct polygon (sequence of points) from the saved edges

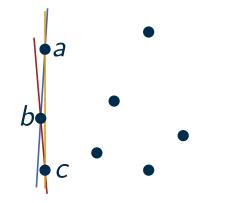
Problems

- the algorithm is slow
- the algorithm is not robust

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct polygon (sequence of points) from the saved edges

Example For Lacking Robustness



three decisions "lies to the right of" are close

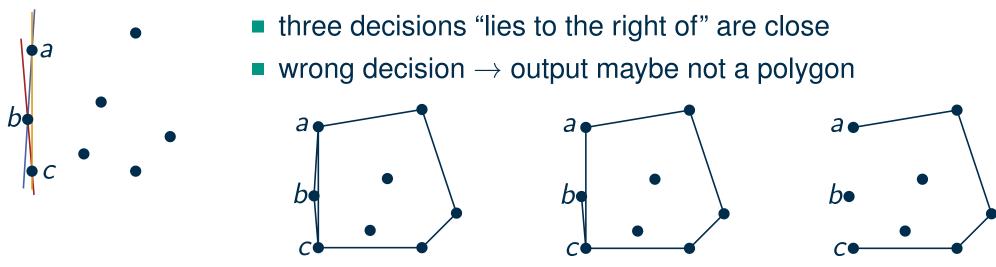
Problems

- the algorithm is slow
- the algorithm is not robust

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct polygon (sequence of points) from the saved edges

Example For Lacking Robustness

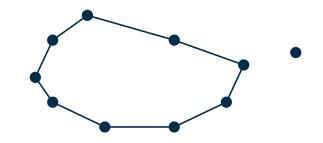


Problems

- the algorithm is slow
- the algorithm is not robust

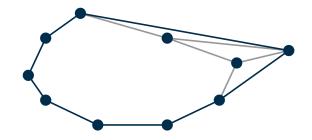
(variant of the Graham Scan)

- add points one after another
- update convex hull in each step



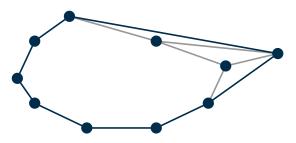
(variant of the Graham Scan)

- add points one after another
- update convex hull in each step



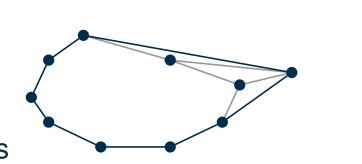
(variant of the Graham Scan)

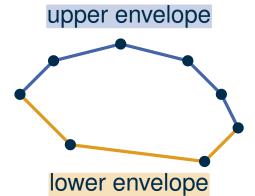
- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends



(variant of the Graham Scan)

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope



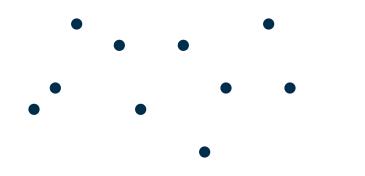


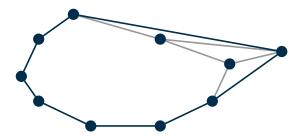
(variant of the Graham Scan)

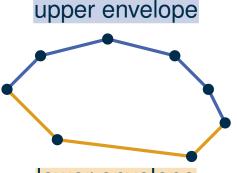
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







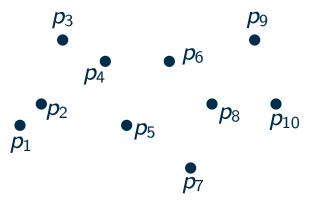
lower envelope

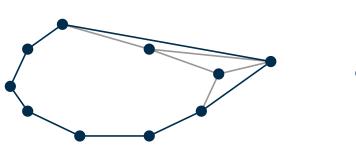
(variant of the Graham Scan)

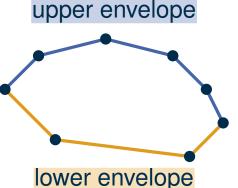
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







Andrews Algorithm

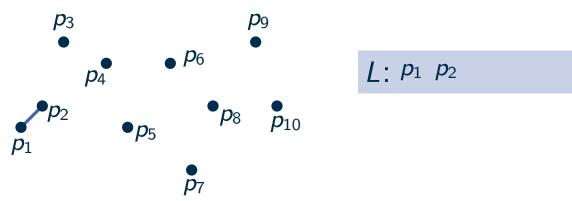
• sort P (left to right): p_1, \ldots, p_n

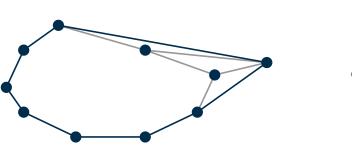
(variant of the Graham Scan)

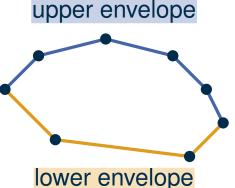
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







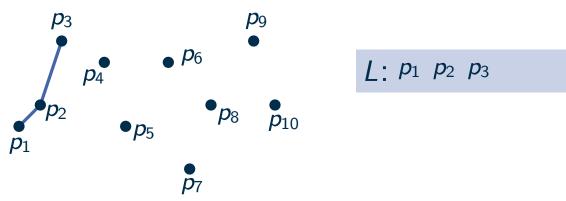
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L

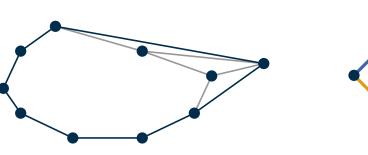
(variant of the Graham Scan)

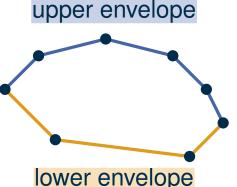
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







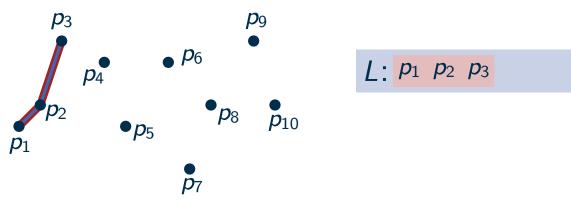
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L

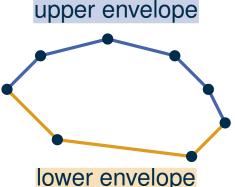
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





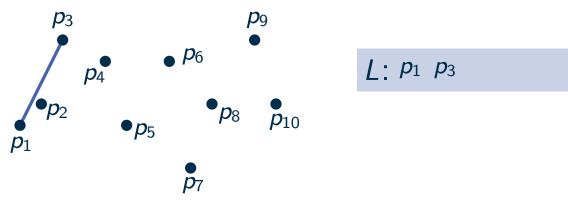
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

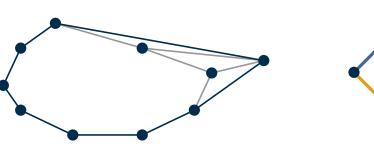
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





upper envelope

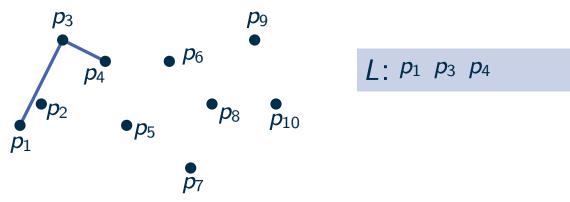
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

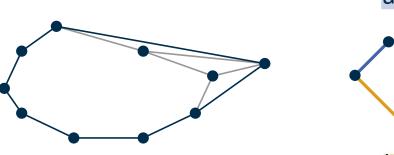
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





upper envelope

lower envelope

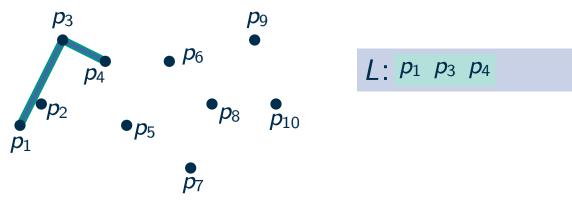
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

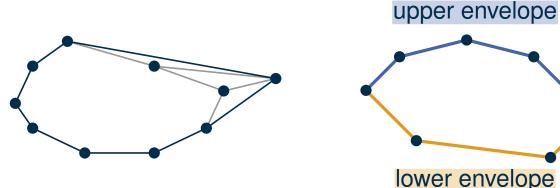
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





....

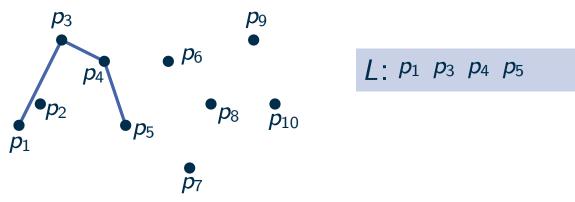
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

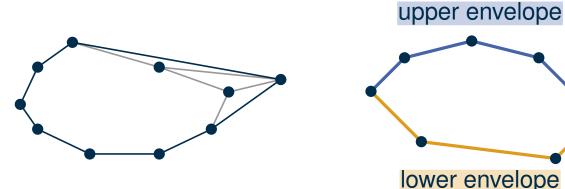
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





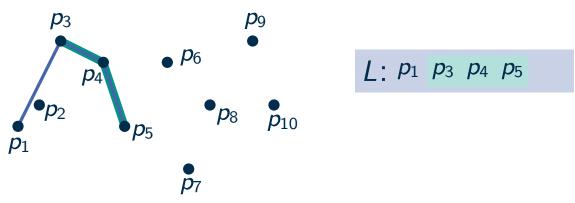
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

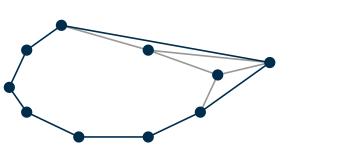
(variant of the Graham Scan)

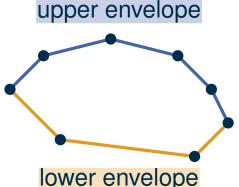
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







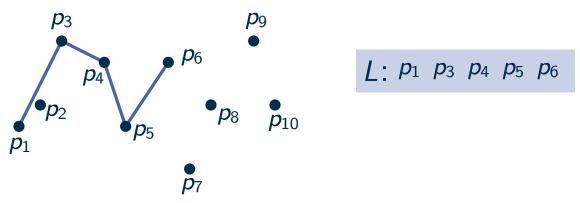
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

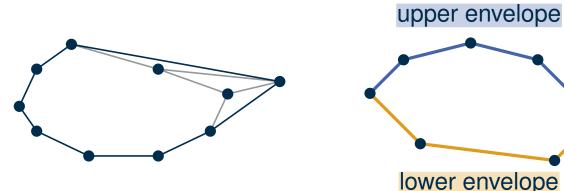
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





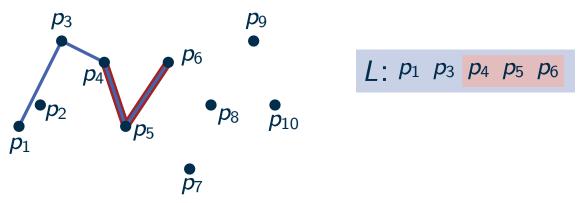
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

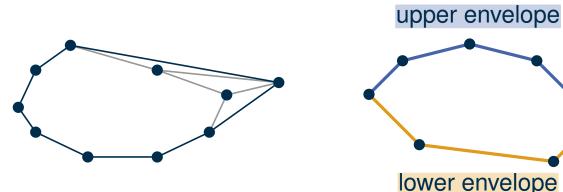
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

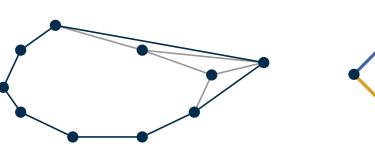
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





upper envelope

lower envelope

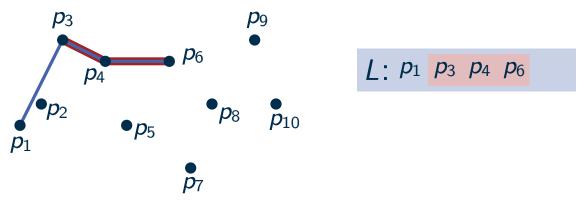
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

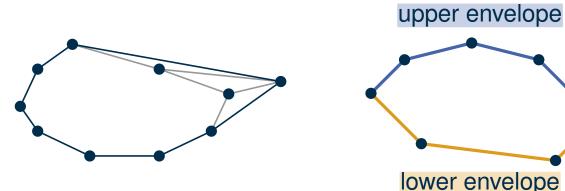
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





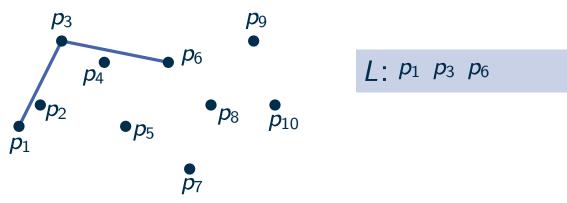
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

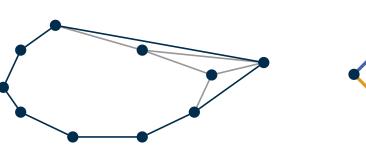
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





upper envelope

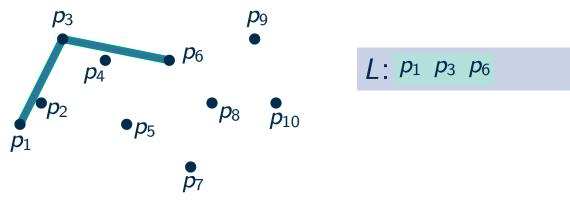
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

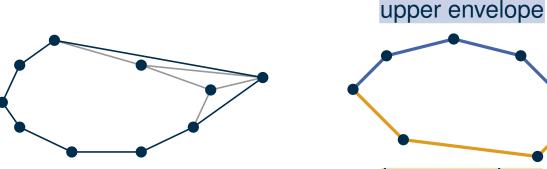
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

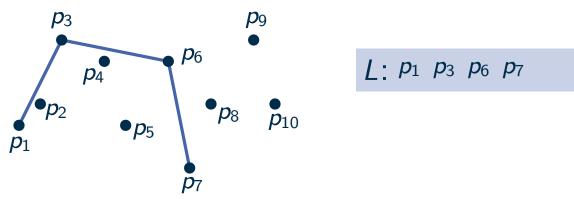
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

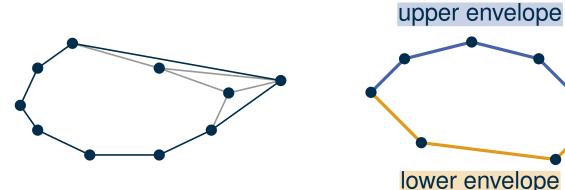
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





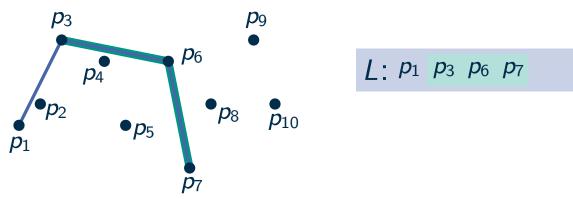
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

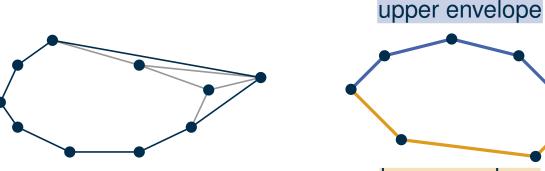
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

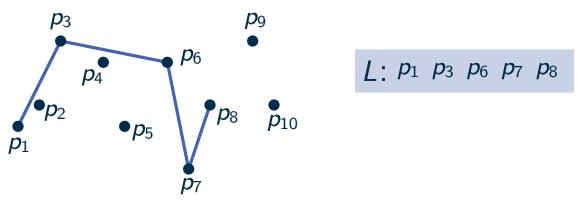
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

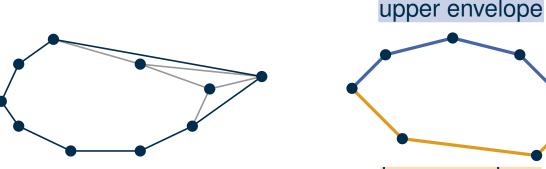
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

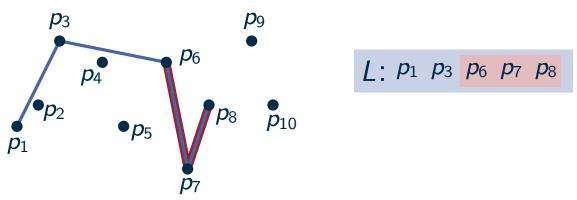
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

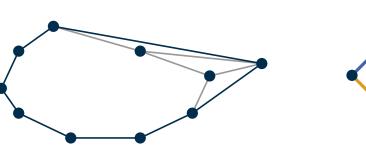
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





upper envelope

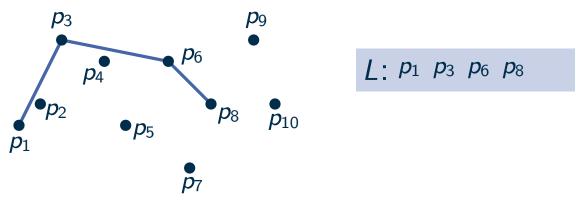
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

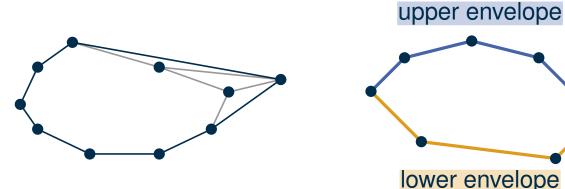
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





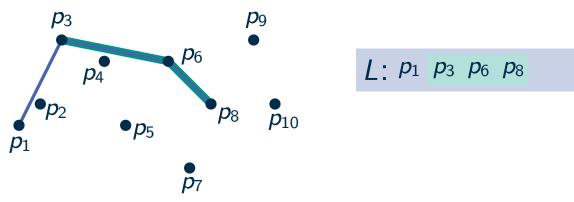
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

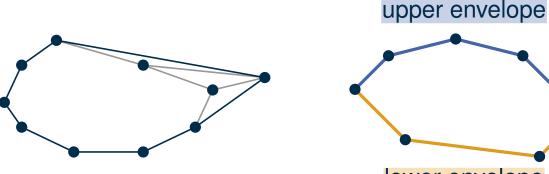
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

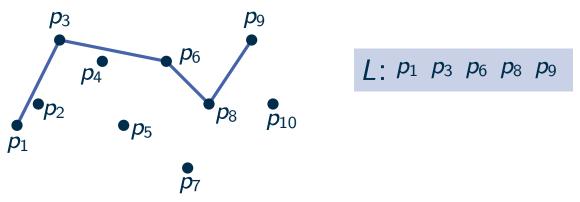
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

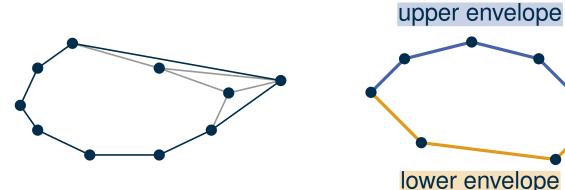
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





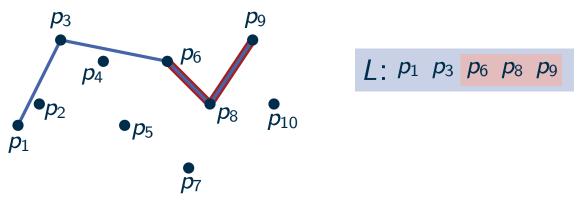
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

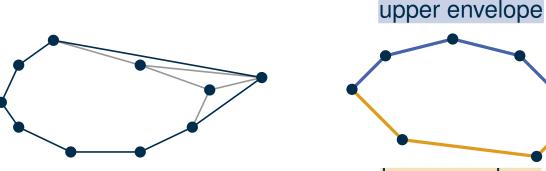
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

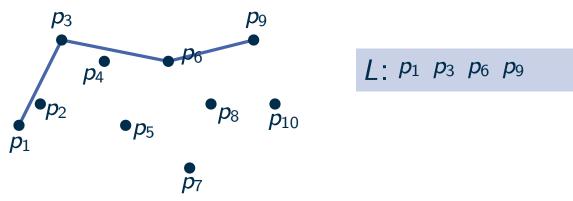
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

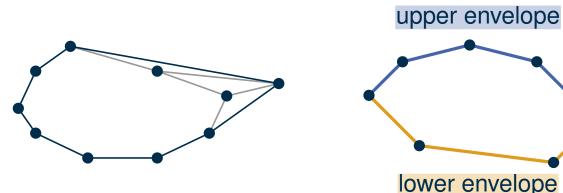
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





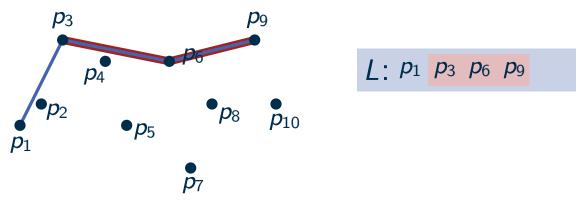
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

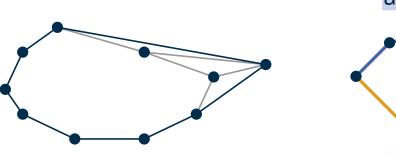
(variant of the Graham Scan)

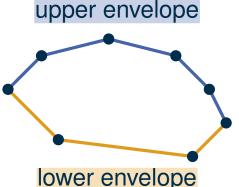
Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example







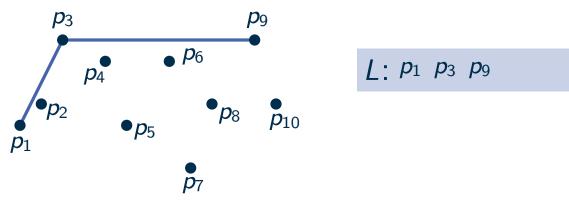
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

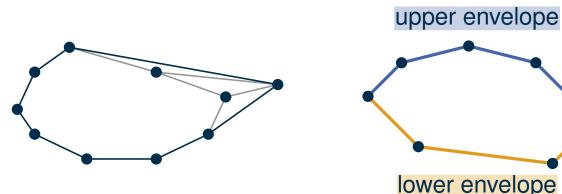
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





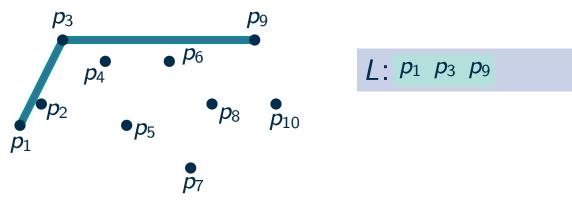
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

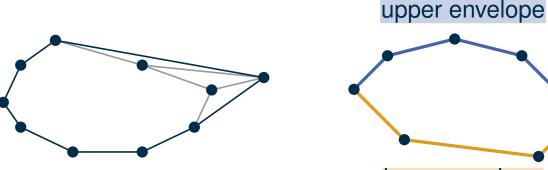
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

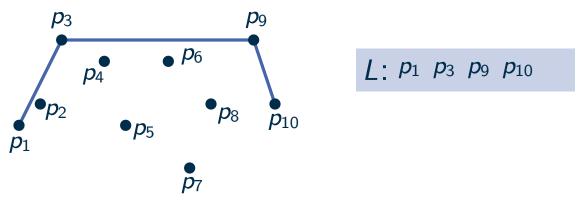
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

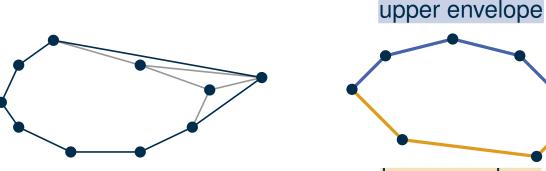
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

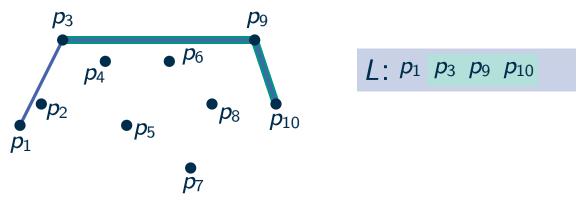
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

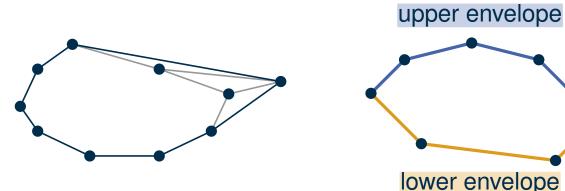
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





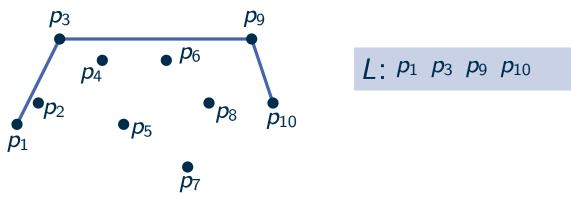
- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point

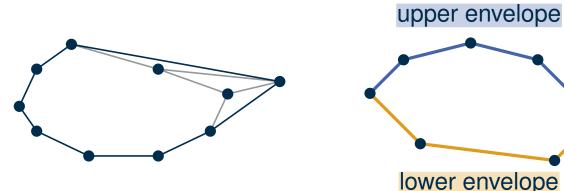
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





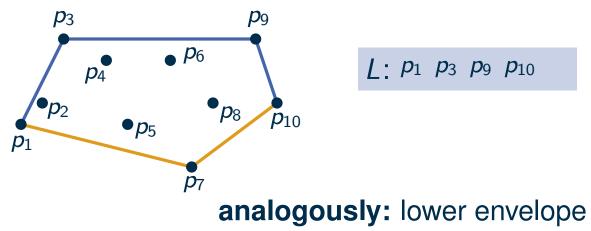
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

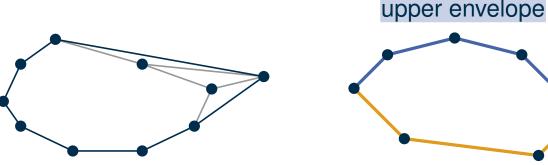
(variant of the Graham Scan)

Idea: Iterative Approach

- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example





lower envelope

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time:

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time:

 $O(n \log n)$ O(1)O(??)O(1)

O(??)

O(n)

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time:

 $O(n \log n)$ O(1) O(??) O(1) O(1) O(??) O(??)happens at most once to each point O(n)

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$ $O(n \log n)$ O(1) O(n) O(1) O(1) O(1) (amortized) — happens at most once to each point O(n)

Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$

Special Case: Same x-Coordinate

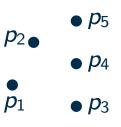
Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$

Special Case: Same *x***-Coordinate**

- Iexicographic order (first x, then y)
- make consistent with lower envelope

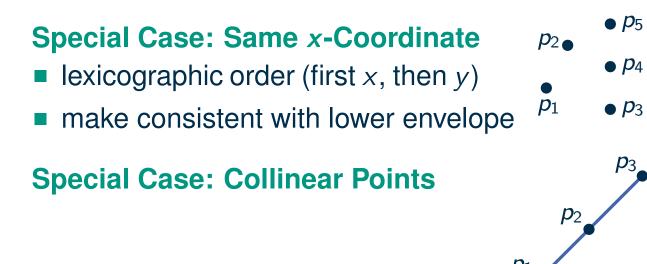


 p_1

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$



Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

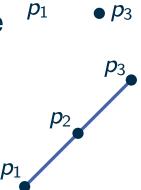
Running Time: $O(n \log n)$

Special Case: Same x-Coordinate

- Iexicographic order (first x, then y)
- make consistent with lower envelope

Special Case: Collinear Points

- p2 should not be part of the output
- check for right instead of left bend



 p_2

• *p*₅

• *p*₄

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Robustness

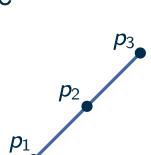
Running Time: $O(n \log n)$

Special Case: Same *x***-Coordinate**

- Iexicographic order (first x, then y)
- make consistent with lower envelope

Special Case: Collinear Points

p2 should not be part of the output



 p_2

 p_1

• *p*₅

• *p*₄

• **P**₃

check for right instead of left bend

What if a check for left bend goes wrong?

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$

Special Case: Same *x***-Coordinate**

- Iexicographic order (first x, then y)
- make consistent with lower envelope

Special Case: Collinear Points

- p2 should not be part of the output
- p_3 p_2 p_1

 p_2

 p_1

• *p*₅

• *p*₄

• **P**₃

check for right instead of left bend

Robustness

12

- resulting polygon maybe has a slight left bend
- a point may lie slightly outside the resulting polygon

What if a check for left bend goes wrong?

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Running Time: $O(n \log n)$

Special Case: Same *x***-Coordinate**

- Iexicographic order (first x, then y)
- make consistent with lower envelope

Special Case: Collinear Points

- p2 should not be part of the output
- p_3 p_2 p_1

 p_2

 p_1

• *p*₅

• *p*₄

• **P**₃

check for right instead of left bend

Robustness

- resulting polygon maybe has a slight left bend
- a point may lie slightly outside the resulting polygon
- but: the result is always a polygon that is similar to CH(P)

What if a check for left bend goes wrong?

Andrews Algorithm – Correctness

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point *p_i*:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Andrews Algorithm – Correctness

Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Lemma In the end, *L* is the upper envelope of *P*.

Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L

Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) P_2

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: *L* Goes From p_1 To p_i

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) $p_1^{p_2}$

Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: *L* Goes From p_1 To p_i

obvious, as the last point is never deleted

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) $p_1^{p_2}$

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: *L* Has Only Right Bends

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) P_2

Andrews Algorithm

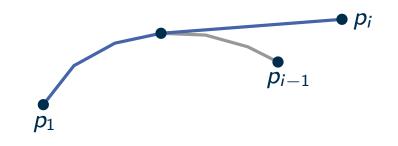
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: *L* Has Only Right Bends

- after step i, L consists of two parts
 - prefix of the polygon *L* from the previous step i-1
 - edge to p_i

Lemma

- show: L connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$



Andrews Algorithm

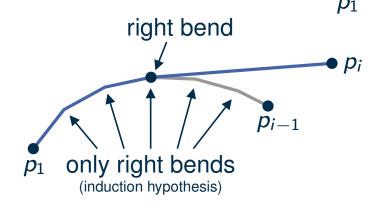
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step i: L Has Only Right Bends

- after step *i*, *L* consists of two parts
 - prefix of the polygon *L* from the previous step i-1
 - edge to p_i

Lemma

- show: L connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2)



Andrews Algorithm

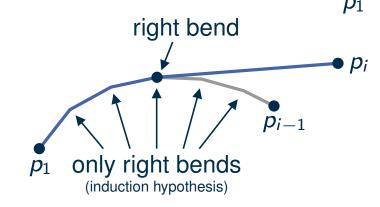
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step i: L Has Only Right Bends

- after step i, L consists of two parts
 - prefix of the polygon *L* from the previous step i-1
 - edge to $p_i \Rightarrow$ only right bends

Lemma

- show: L connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2)



Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: Every Point In $P_i \setminus L$ Lies Below L

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$

• correct after the initialization (
$$i = 2$$
) $p_1^{p_2}$

Andrews Algorithm

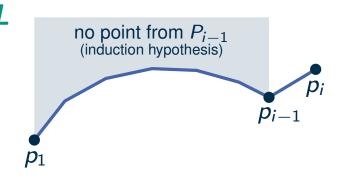
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: Every Point In $P_i \setminus L$ Lies Below L

still true after inserting *p_i*

Lemma

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) $p_1^{p_2}$



Andrews Algorithm

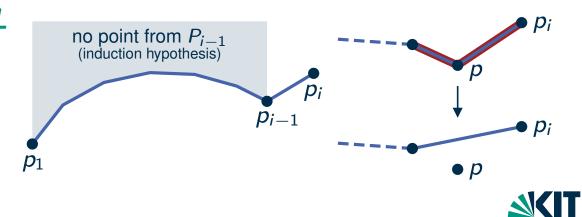
- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

After Step *i*: Every Point In $P_i \setminus L$ Lies Below L

- still true after inserting *p_i*
- removing a point p from L moves L further up
- and afterwards, p itself lies below L

Lemma

- show: L connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$



Andrews Algorithm

- sort *P* (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i:
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- *L* is the upper envelop

Lemma

In the end, *L* is the upper envelope of *P*.

- show: *L* connects p_1 with p_n , such that
 - *L* makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) p_2

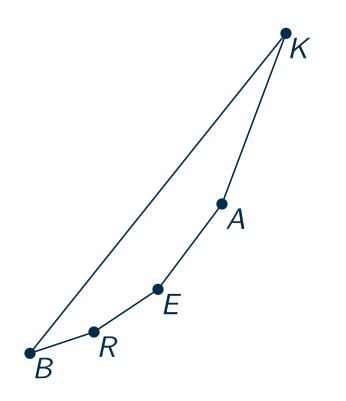
Theorem Andrews algorithm computes the convex hull of *n* points in $O(n \log n)$ time.

Compute The Convex Hull

K •A E R в

14 Thomas Bläsius – Computational Geometry

Compute The Convex Hull



Theorem If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

Theorem

If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

- given: *n* numbers a_1, \ldots, a_n
- construct *n* points $P = \{p_1, \ldots, p_n\}$

Theorem

If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

- given: *n* numbers a_1, \ldots, a_n
- construct *n* points $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, a_i^2)$

$$a_1 = 2, a_2 = 1, a_3 = 3, a_4 = 0$$

9
4
4
1
• p_1
• p_2

 p_4 1 2 3

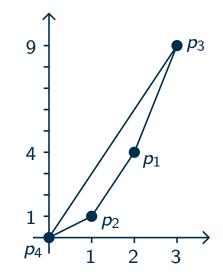
Theorem

If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

- given: *n* numbers a_1, \ldots, a_n
- construct *n* points $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, a_i^2)$
- CH(P) contains the points sorted by a_i

 $a_1 = 2, \, a_2 = 1, \, a_3 = 3, \, a_4 = 0$



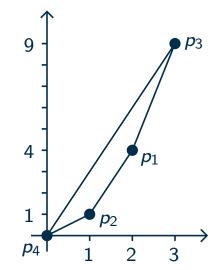
Theorem

If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

- given: *n* numbers a_1, \ldots, a_n
- construct *n* points $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, a_i^2)$
- CH(P) contains the points sorted by a_i
- order can be obtained in O(n) from $C\mathcal{H}(P)$

 $a_1 = 2, \, a_2 = 1, \, a_3 = 3, \, a_4 = 0$



Theorem

If the convex hull of *n* points can be computed in time f(n), then we can sort *n* numbers in O(f(n) + n) time.

Proof

15

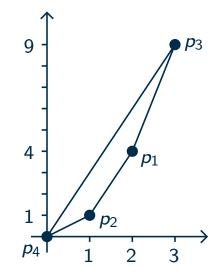
- given: *n* numbers a_1, \ldots, a_n
- construct *n* points $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, a_i^2)$
- CH(P) contains the points sorted by a_i
- order can be obtained in O(n) from $\mathcal{CH}(P)$

Lower Bound

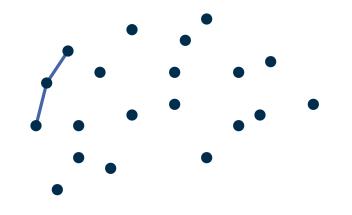
- comparison based sorting: $\Omega(n \log n)$
- Andrews algorithm is optimal (unless you want to do crazy stuff with numbers)

Example

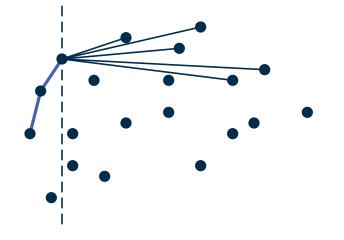
$$a_1=2,\,a_2=1,\,a_3=3,\,a_4=0$$



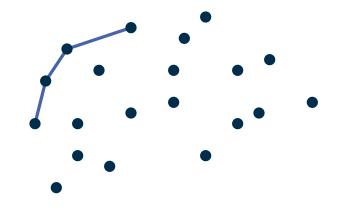
- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope



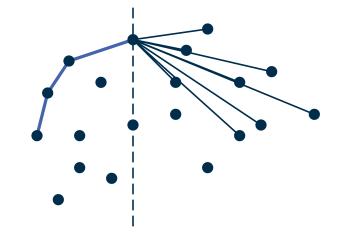
- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle



- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle



- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

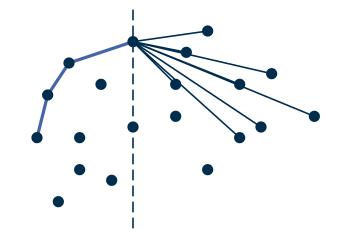


Alternative Approach

- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

• each step: find minimum $\rightarrow O(n)$

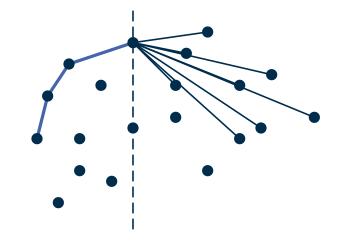


Alternative Approach

- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

- each step: find minimum $\rightarrow O(n)$
- *h* steps, for $h = |\mathcal{CH}(P)|$



Alternative Approach

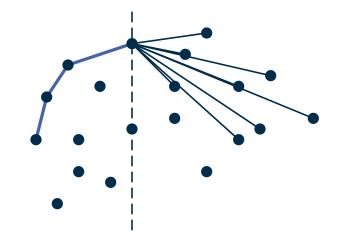
- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

- each step: find minimum $\rightarrow O(n)$
- *h* steps, for $h = |\mathcal{CH}(P)|$

Theorem

The Gift Wrapping algorithm computes the convex hull of *n* points *P* in O(hn) time, where *h* is the number of points of CH(P).



Alternative Approach

- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

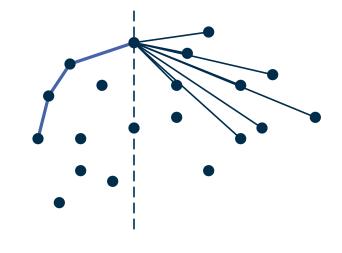
- each step: find minimum $\rightarrow O(n)$
- *h* steps, for $h = |\mathcal{CH}(P)|$

Theorem

The Gift Wrapping algorithm computes the convex hull of *n* points *P* in O(hn) time, where *h* is the number of points of CH(P).

Comment

such an algorithm is called **output sensitive**



Alternative Approach

- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

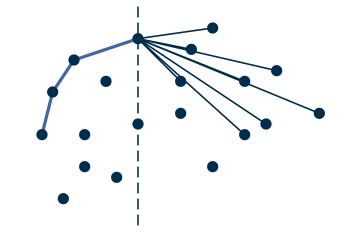
- each step: find minimum $\rightarrow O(n)$
- *h* steps, for $h = |\mathcal{CH}(P)|$

Theorem

The Gift Wrapping algorithm computes the convex hull of *n* points *P* in O(hn) time, where *h* is the number of points of CH(P).

Comment

- such an algorithm is called **output sensitive**
- beats the lower bound on certain instances (small h)



What Have We Learned Today?

• algorithm for computing the convex hull in time $O(n \log n)$

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry
- initially assuming general position helps with algorithm design

What Have We Learned Today?

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry
- initially assuming general position helps with algorithm design

What Else Is There?

• one can achieve running time $O(n \log h)$

What Have We Learned Today?

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry
- initially assuming general position helps with algorithm design

What Else Is There?

- one can achieve running time $O(n \log h)$
- higher dimensions

What Have We Learned Today?

- algorithm for computing the convex hull in time $O(n \log n)$
- $\Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry
- initially assuming general position helps with algorithm design

What Else Is There?

- one can achieve running time $O(n \log h)$
- higher dimensions
- convex hull of a simple polygon can be computed in O(n) time

