
1

Computational Geometry

Thomas Bläsius

Introduction and Convex Hull

Thomas Bläsius – Computational Geometry2

What Is Computational Geometry?

Wikipedia
Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.

Thomas Bläsius – Computational Geometry2

What Is Computational Geometry?

Wikipedia
Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.
Some purely geometrical problems arise out of the study of computational geometric algo-
rithms, and such problems are also considered to be part of computational geometry.

Thomas Bläsius – Computational Geometry2

What Is Computational Geometry?

Wikipedia
Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.
Some purely geometrical problems arise out of the study of computational geometric algo-
rithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With
points, lines, line segments, circles, polygons, . . .

Thomas Bläsius – Computational Geometry2

What Is Computational Geometry?

Wikipedia
Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.
Some purely geometrical problems arise out of the study of computational geometric algo-
rithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With
points, lines, line segments, circles, polygons, . . .
but not: pixels

Thomas Bläsius – Computational Geometry3

What Does That Mean Specifically?

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Thomas Bläsius – Computational Geometry3

What Does That Mean Specifically?

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Thomas Bläsius – Computational Geometry3

What Does That Mean Specifically?

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
randomized algorithms
complexity

Thomas Bläsius – Computational Geometry3

What Does That Mean Specifically?

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
randomized algorithms
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs

Thomas Bläsius – Computational Geometry4

Before We Start

Thomas MarcusJean-Pierre Wendy

Thomas Bläsius – Computational Geometry4

Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Thomas Bläsius – Computational Geometry4

Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Materials & Infos
slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start

Thomas Bläsius – Computational Geometry4

Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Materials & Infos
slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

Book: Computational Geometry

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start

Thomas Bläsius – Computational Geometry4

Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Materials & Infos
slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)

Book: Computational Geometry

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start
https://discord.gg/4jam9m7C

Thomas Bläsius – Computational Geometry4

Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Materials & Infos
slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)

Book: Computational Geometry

Requirements
good algorithmic understanding
no (little) prior knowledge

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start
https://discord.gg/4jam9m7C

Thomas Bläsius – Computational Geometry5

Rough Schedule

week i + 1 week i + 2 week i + 3week i

(i even) exercise sheet i
2
+ 1exercise sheet i

2

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuSuSuSu Su

Lecture
lecture with slides
new topics

Thomas Bläsius – Computational Geometry5

Rough Schedule

week i + 1 week i + 2 week i + 3week i

(i even) exercise sheet i
2
+ 1exercise sheet i

2

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuSuSuSu Su

Lecture
lecture with slides
new topics

Exercise Sheet
hand in in groups of two or three
graded by us

Thomas Bläsius – Computational Geometry5

Rough Schedule

week i + 1 week i + 2 week i + 3week i

(i even) exercise sheet i
2
+ 1exercise sheet i

2

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuSuSuSu Su

Lecture
lecture with slides
new topics

Exercise Session (Week i + 1)
with Marcus, Wendy, Jean-Pierre

support solving exercise sheets
recap

???

Exercise Sheet
hand in in groups of two or three
graded by us

Thomas Bläsius – Computational Geometry5

Rough Schedule

week i + 1 week i + 2 week i + 3week i

(i even) exercise sheet i
2
+ 1exercise sheet i

2

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuSuSuSu Su

Lecture
lecture with slides
new topics

Exercise Session (Week i + 1)
with Marcus, Wendy, Jean-Pierre

support solving exercise sheets
recap

???

Active Session
if it’s not a Holiday
training additional
skills
curiosities

Exercise Sheet
hand in in groups of two or three
graded by us

Thomas Bläsius – Computational Geometry5

Rough Schedule

week i + 1 week i + 2 week i + 3week i

(i even) exercise sheet i
2
+ 1exercise sheet i

2

Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa SuMo Tu We Th Fr Sa SuSuSuSu Su

Lecture
lecture with slides
new topics

Exercise Session (Week i + 1)
with Marcus, Wendy, Jean-Pierre

support solving exercise sheets
recap

???

Active Session
if it’s not a Holiday
training additional
skills
curiosities

Exercise Sheet
hand in in groups of two or three

Exam
oral exam (20 min)
admission only with
exercise certificate

graded by us

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?
sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
talk to us, we’ll find a solution we don’t want to make your life hard and we also don’t bite

we just want you to learn something and have fun doing so

Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?
sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
talk to us, we’ll find a solution

Our Goal
you spend some time with the content of the lecture and write down your solution
then, the exercise certificate should not be a big obstacle

we don’t want to make your life hard and we also don’t bite
we just want you to learn something and have fun doing so

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA
spring 1 10%35%
spring 2 16%20%

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA
spring 1 10%35%
spring 2 16%20%

Can we achieve 30% A and 12% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

2 : 1

spring 1 10%35%
spring 2 16%20%

Can we achieve 30% A and 12% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

2 : 1

spring 1 10%35%
spring 2 16%20%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

1 : 3 : 1spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

1 : 3 : 1

What Is The Relation To Geometry?

spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

1 : 3 : 1

What Is The Relation To Geometry?
ratios can be interpreted as points

B

A10 20 30

10

0
0

(35; 10)
(15; 7)

(20; 16)

spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry7

Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

1 : 3 : 1

What Is The Relation To Geometry?
ratios can be interpreted as points

B

A10 20 30

10

0
0

(35; 10)
(15; 7)

(20; 16)

(30; 12)

(22; 13)

desired ratio is possible ⇔ corresponding
points lies “between” the available points

spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?

Thomas Bläsius – Computational Geometry8

Convex Hull

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

convex not convex

Thomas Bläsius – Computational Geometry8

Convex Hull

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

Definition
For P ⊆ Rd , the convex hull CH(P) is
the minimal subset of Rd such that CH(P)
is convex and P ⊆ CH(P).

convex not convex

Thomas Bläsius – Computational Geometry8

Convex Hull

Equivalent Definitions
intersection of all convex sets in Rd that contain P

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

Definition
For P ⊆ Rd , the convex hull CH(P) is
the minimal subset of Rd such that CH(P)
is convex and P ⊆ CH(P).

convex not convex

Thomas Bläsius – Computational Geometry8

Convex Hull

Equivalent Definitions
intersection of all convex sets in Rd that contain P

union of all simplices with corners in P

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

Definition
For P ⊆ Rd , the convex hull CH(P) is
the minimal subset of Rd such that CH(P)
is convex and P ⊆ CH(P).

simplices in different dimensions:

convex not convex

Thomas Bläsius – Computational Geometry8

Convex Hull

Equivalent Definitions
intersection of all convex sets in Rd that contain P

union of all simplices with corners in P

set of all points that are convex combinations of points in P

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

Definition
For P ⊆ Rd , the convex hull CH(P) is
the minimal subset of Rd such that CH(P)
is convex and P ⊆ CH(P).

you might know this from the
barycentric coordinate system

convex combination:
nX

i=1

ai · pi with pi ∈ P; ai ∈ R; ai ≥ 0; and
nX

i=1

ai = 1

simplices in different dimensions:

convex not convex

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Intuition

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations
assumption: points are in general position

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
assumption: points are in general position

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points

p
q

assumption: points are in general position

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

assumption: points are in general position

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

Trivial Algorithm

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct the polygon (as sequence of points) from the saved edges

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct the polygon (as sequence of points) from the saved edges Running Time:

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry9

Convex Hull – Trivial Algorithm

Notes And General Observations

boundary of CH(P) is a polygon → output is a sequence of points
pq edge of CH(P) ⇔ all points of P lie in the half space right of pq

p
q

q′

p′

assumption: points are in general position

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct the polygon (as sequence of points) from the saved edges Running Time: Θ
`
n3
´

CONVEX HULL Problem (2D): Given n points P ⊆ R2, compute the convex hull CH(P).

When is pq an edge of CH(P)?

Thomas Bläsius – Computational Geometry10

Convex Hull – Trivial Algorithm

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct polygon (sequence of points) from the saved edges

Problems
the algorithm is slow

Thomas Bläsius – Computational Geometry10

Convex Hull – Trivial Algorithm

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct polygon (sequence of points) from the saved edges

Problems
the algorithm is slow
the algorithm is not robust

Thomas Bläsius – Computational Geometry10

Convex Hull – Trivial Algorithm

a

b

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct polygon (sequence of points) from the saved edges

Problems
the algorithm is slow
the algorithm is not robust

Example For Lacking Robustness
three decisions “lies to the right of” are close

c

Thomas Bläsius – Computational Geometry10

Convex Hull – Trivial Algorithm

a

b

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct polygon (sequence of points) from the saved edges

Problems
the algorithm is slow
the algorithm is not robust

Example For Lacking Robustness
three decisions “lies to the right of” are close
wrong decision → output maybe not a polygon

c

a

b

c

a

b

c

a

b

c

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step
observe: convex hull makes only right bends

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm

Example

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pnExample

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p2

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p2 p3

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p2 p3

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p5

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p5

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p5 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p5 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p4 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p7

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p7

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p7 p8

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p7 p8

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p8

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p8

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p8 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p8 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p6 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9 p10

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9 p10

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9 p10

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry11

Andrews Monotone Chain Algorithm

Idea: Iterative Approach
add points one after another
update convex hull in each step

order: from left to right
for now: only the upper envelope

upper envelope

lower envelope
observe: convex hull makes only right bends

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Example

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

L: p1 p3 p9 p10

analogously: lower envelope

(variant of the Graham Scan)

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time:Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time:
O(n log n)

O(1)

O(??)

O(1)

O(??)

O(n)

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time:
O(n log n)

O(1)

O(??)

O(1)

O(??)

O(n)

happens at most once to each point

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time:
O(n log n)

O(1)

O(??)

O(1)

O(??)

O(n)

happens at most once to each point
O(1) (amortized)

O(n log n)

O(n)

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate
lexicographic order (first x , then y)

p1

p2

p3

p4

p5

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

make consistent with lower envelope

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y)
p1

p2

p3

p4

p5

p1

p2

p3

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

make consistent with lower envelope

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y)
p1

p2

p3

p4

p5

p1

p2

p3

p2 should not be part of the output
check for right instead of left bend

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

make consistent with lower envelope

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y)
p1

p2

p3

p4

p5

p1

p2

p3

p2 should not be part of the output
check for right instead of left bend

Robustness

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

What if a check for left bend goes wrong?

make consistent with lower envelope

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y)
p1

p2

p3

p4

p5

p1

p2

p3

p2 should not be part of the output
check for right instead of left bend

Robustness
resulting polygon maybe has a slight left bend
a point may lie slightly outside the resulting polygon

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

What if a check for left bend goes wrong?

make consistent with lower envelope

Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y)
p1

p2

p3

p4

p5

p1

p2

p3

p2 should not be part of the output
check for right instead of left bend

Robustness
resulting polygon maybe has a slight left bend
a point may lie slightly outside the resulting polygon
but: the result is always a polygon that is similar to CH(P)

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

What if a check for left bend goes wrong?

make consistent with lower envelope

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

show: L connects p1 with pn, such that

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

correct after the initialization (i = 2)
p1

p2

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

After Step i : L Goes From p1 To pi

correct after the initialization (i = 2)
p1

p2

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

obvious, as the last point is never deleted
After Step i : L Goes From p1 To pi

correct after the initialization (i = 2)
p1

p2

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

After Step i : L Has Only Right Bends

correct after the initialization (i = 2)
p1

p2

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

After Step i : L Has Only Right Bends

correct after the initialization (i = 2)
p1

p2

after step i , L consists of two parts
prefix of the polygon L from the previous step i−1

p1

pi−1

pi

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

edge to pi

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

After Step i : L Has Only Right Bends

correct after the initialization (i = 2)
p1

p2

after step i , L consists of two parts
prefix of the polygon L from the previous step i−1

only right bends

right bend

p1
(induction hypothesis)

pi−1

pi

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

edge to pi

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

After Step i : L Has Only Right Bends

correct after the initialization (i = 2)
p1

p2

after step i , L consists of two parts
prefix of the polygon L from the previous step i−1

only right bends⇒ only right bends

right bend

p1
(induction hypothesis)

pi−1

pi

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

edge to pi

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

correct after the initialization (i = 2)
p1

p2

After Step i : Every Point In Pi \ L Lies Below L

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

correct after the initialization (i = 2)
p1

p2

After Step i : Every Point In Pi \ L Lies Below L

still true after inserting pi

p1

pi−1

pi

no point from Pi−1
(induction hypothesis)

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

correct after the initialization (i = 2)
p1

p2

After Step i : Every Point In Pi \ L Lies Below L

still true after inserting pi

p1

pi−1

pi

no point from Pi−1
(induction hypothesis)

removing a point p from L moves L further up
and afterwards, p itself lies below L

pi

p

pi

p

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Thomas Bläsius – Computational Geometry13

Andrews Algorithm – Correctness

L makes only right bends
every point in P \ L lies below L

induction over i for Pi = {p1; : : : ; pi}

show: L connects p1 with pn, such that

correct after the initialization (i = 2)
p1

p2

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Theorem
Andrews algorithm computes the convex hull of n points in O(n log n) time.

Thomas Bläsius – Computational Geometry14

Compute The Convex Hull

B
R

E

A

K

Thomas Bläsius – Computational Geometry14

Compute The Convex Hull

B
R

E

A

K

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i)

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i)

Example
a1 = 2, a2 = 1, a3 = 3, a4 = 0

1 2 3

1

4

9

p1

p2

p3

p4

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i)

Example
a1 = 2, a2 = 1, a3 = 3, a4 = 0

1 2 3

1

4

9

CH(P) contains the points sorted by ai

p1

p2

p3

p4

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i)

Example
a1 = 2, a2 = 1, a3 = 3, a4 = 0

1 2 3

1

4

9

CH(P) contains the points sorted by ai

p1

p2

p3

p4

order can be obtained in O(n) from CH(P)

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry15

Can We Be Faster?

Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i)

Example
a1 = 2, a2 = 1, a3 = 3, a4 = 0

1 2 3

1

4

9

CH(P) contains the points sorted by ai

p1

p2

p3

p4

order can be obtained in O(n) from CH(P)

Lower Bound
comparison based sorting: Ω(n log n)
Andrews algorithm is optimal

(unless you want to do crazy stuff with numbers)

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

h steps, for h = |CH(P)|

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

h steps, for h = |CH(P)|

Theorem
The Gift Wrapping algorithm computes the
convex hull of n points P in O(hn) time,
where h is the number of points of CH(P).

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

h steps, for h = |CH(P)|

Comment
such an algorithm is called output sensitive

Theorem
The Gift Wrapping algorithm computes the
convex hull of n points P in O(hn) time,
where h is the number of points of CH(P).

Thomas Bläsius – Computational Geometry16

Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

h steps, for h = |CH(P)|

Comment
such an algorithm is called output sensitive
beats the lower bound on certain instances

Theorem
The Gift Wrapping algorithm computes the
convex hull of n points P in O(hn) time,
where h is the number of points of CH(P). (small h)

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry
initially assuming general position helps with algorithm design

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry

What Else Is There?
one can achieve running time O(n log h)

initially assuming general position helps with algorithm design

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry

What Else Is There?
one can achieve running time O(n log h)

higher dimensions

initially assuming general position helps with algorithm design

Thomas Bläsius – Computational Geometry17

Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry

What Else Is There?
one can achieve running time O(n log h)

higher dimensions
convex hull of a simple polygon can be computed in O(n) time

initially assuming general position helps with algorithm design

