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What Is Computational Geometry?

Wikipedia
Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.
Some purely geometrical problems arise out of the study of computational geometric algo-
rithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With
points, lines, line segments, circles, polygons, . . .
but not: pixels
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What Does That Mean Specifically?

Basic Toolbox
convex hull
line intersection
triangulation
plane intersection

Geometric Data Structures
orthogonal range searching
space partitioning
point location

Advanced Toolbox
Voronoi diagrams
Delaunay triangulations
randomized algorithms
complexity

Related Topics
What is geometry?
hyperbolic geometry
geometric graphs
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Before We Start

?
Thomas Marcus YouJean-Pierre Wendy

Materials & Infos
slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)

Book: Computational Geometry

Requirements
good algorithmic understanding
no (little) prior knowledge

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start
https://discord.gg/4jam9m7C
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Lecture
lecture with slides
new topics

Exercise Session (Week i + 1)
with Marcus, Wendy, Jean-Pierre

support solving exercise sheets
recap

???

Active Session
if it’s not a Holiday
training additional
skills
curiosities

Exercise Sheet
hand in in groups of two or three

Exam
oral exam (20 min)
admission only with
exercise certificate

graded by us



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?
sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
talk to us, we’ll find a solution we don’t want to make your life hard and we also don’t bite

we just want you to learn something and have fun doing so



Thomas Bläsius – Computational Geometry6

Exercise Certificate

Goal: 1
2 of the points in total and 1

4 on every exercise sheet

What If I Don’t Find The Solution?
you get points for explaining what you tried and why it did not work
and: there are many ways to get support

ask in the exercise session or on discord
talk to your peers

What If I Can’t Manage To Hand In An Exercise Sheet?
sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
talk to us, we’ll find a solution

Our Goal
you spend some time with the content of the lecture and write down your solution
then, the exercise certificate should not be a big obstacle

we don’t want to make your life hard and we also don’t bite
we just want you to learn something and have fun doing so
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Motivation

Different Mixtures Of Oil
the exact ratio between different components depends on the oil spring
goal: mix oil from different springs, such that the result is easy to process

oil contains components A and B

Example

two springs: BA

third spring:

2 : 1

1 : 3 : 1

What Is The Relation To Geometry?
ratios can be interpreted as points

B

A10 20 30

10

0
0

(35; 10)
(15; 7)

(20; 16)

(30; 12)

(22; 13)

desired ratio is possible ⇔ corresponding
points lies “between” the available points

spring 1 10%35%
spring 2 16%20%
spring 3 7%15%

Can we achieve 30% A and 12% B?

What about 22% A and 13% B?
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Convex Hull

Equivalent Definitions
intersection of all convex sets in Rd that contain P

union of all simplices with corners in P

set of all points that are convex combinations of points in P

Definition
A point set P ⊆ Rd is convex if for any two
points p; q ∈ P , the line segment pq lies in P .

Definition
For P ⊆ Rd , the convex hull CH(P ) is
the minimal subset of Rd such that CH(P )
is convex and P ⊆ CH(P ).

you might know this from the
barycentric coordinate system

convex combination:
nX

i=1

ai · pi with pi ∈ P; ai ∈ R; ai ≥ 0; and
nX

i=1

ai = 1

simplices in different dimensions:

convex not convex
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Convex Hull – Trivial Algorithm

a

b

Trivial Algorithm
iterate over all pairs of points (p; q) ∈ P × P (oriented)

check if all points of P lie to the right of pq
if yes: save the edge pq

construct polygon (sequence of points) from the saved edges

Problems
the algorithm is slow
the algorithm is not robust

Example For Lacking Robustness
three decisions “lies to the right of” are close
wrong decision → output maybe not a polygon

c

a

b

c

a

b

c

a

b

c
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Idea: Iterative Approach
add points one after another
update convex hull in each step
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for now: only the upper envelope
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Running Time:Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop
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happens at most once to each point

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop



Thomas Bläsius – Computational Geometry12

Andrews Algorithm – Analysis

Running Time:
O(n log n)

O(1)

O(??)

O(1)

O(??)

O(n)
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Special Case: Same x-Coordinate
lexicographic order (first x , then y )
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p2

p3

p4
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Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

make consistent with lower envelope
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check for right instead of left bend
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Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
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L is the upper envelop

What if a check for left bend goes wrong?

make consistent with lower envelope
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Running Time: O(n log n)

Special Case: Same x-Coordinate

Special Case: Collinear Points

lexicographic order (first x , then y )
p1

p2

p3

p4

p5

p1

p2

p3

p2 should not be part of the output
check for right instead of left bend

Robustness
resulting polygon maybe has a slight left bend
a point may lie slightly outside the resulting polygon
but: the result is always a polygon that is similar to CH(P )

Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

What if a check for left bend goes wrong?

make consistent with lower envelope
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Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop
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L is the upper envelop

Lemma
In the end, L is the upper envelope of P .
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show: L connects p1 with pn, such that

correct after the initialization (i = 2)
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Andrews Algorithm
sort P (left to right): p1; : : : ; pn
insert p1 and p2 into a L

for each remaining point pi :
append pi to the back of L
while last three points form a left bend:
remove the second-to-last point

L is the upper envelop

Lemma
In the end, L is the upper envelope of P .

Theorem
Andrews algorithm computes the convex hull of n points in O(n log n) time.
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Proof
given: n numbers a1; : : : ; an

construct n points P = {p1; : : : ; pn} with pi = (ai ; a
2
i )

Example
a1 = 2, a2 = 1, a3 = 3, a4 = 0

1 2 3

1

4

9

CH(P ) contains the points sorted by ai

p1

p2

p3

p4

order can be obtained in O(n) from CH(P )

Lower Bound
comparison based sorting: Ω(n log n)
Andrews algorithm is optimal

(unless you want to do crazy stuff with numbers)

Theorem
If the convex hull of n points can be computed in time f (n), then we can sort n numbers in
O(f (n) + n) time.
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Gift Wrapping (Jarvis March)

Alternative Approach
assumption: we already know parts of the upper envelope
goal: find the next point on the upper envelope
choose point with the smallest angle

Running Time
each step: find minimum → O(n)

h steps, for h = |CH(P )|

Comment
such an algorithm is called output sensitive
beats the lower bound on certain instances

Theorem
The Gift Wrapping algorithm computes the
convex hull of n points P in O(hn) time,
where h is the number of points of CH(P ). (small h)
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Wrap-Up

What Have We Learned Today?
algorithm for computing the convex hull in time O(n log n)

Ω(n log n) lower bound
output sensitive algorithm with running time O(hn)

robustness is an important aspect in computational geometry

What Else Is There?
one can achieve running time O(n log h)

higher dimensions
convex hull of a simple polygon can be computed in O(n) time

initially assuming general position helps with algorithm design


