

Computational Geometry Introduction and Convex Hull

Thomas Bläsius

What Is Computational Geometry?

Wikipedia

- Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry.
- Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry.

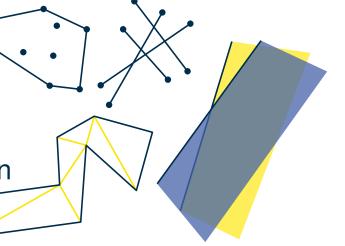
The Things We Deal With

- points, lines, line segments, circles, polygons, . . .
- but not: pixels

What Does That Mean Specifically?

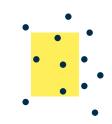
Basic Toolbox

- convex hull
- line intersection
- triangulation
- plane intersection



Geometric Data Structures

- orthogonal range searching
- space partitioning
- point location



Advanced Toolbox

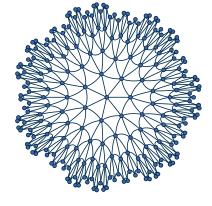
- Voronoi diagrams
- Delaunay triangulations
- randomized algorithms
- complexity

Related Topics

- What is geometry?
- hyperbolic geometry

geometric graphs





Before We Start

Jean-Pierre

Marcus

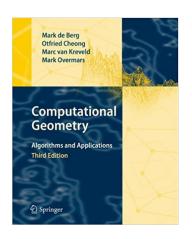
Wendy

Materials & Infos

- slides, exercise sheets on our homepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/
- Book: Computational Geometry
- Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send !help join to the scale-bot)

Requirements

- good algorithmic understanding
- no (little) prior knowledge



Rough Schedule

week i				week $i+1$						week <i>i</i> + 2							week $i+3$								
Mo Tu We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su
(i even) exercise sheet $\frac{i}{2}$ exercise sheet $\frac{i}{2}+1$										1															

Lecture

- lecture with slides
- new topics

Exercise Sheet

- hand in in groups of two or three
- graded by us

Active Session

- if it's not a Holiday
- training additional skills
- curiosities

Exercise Session (Week i + 1)

- with Marcus, Wendy, Jean-Pierre
- recap
- support solving exercise sheets
- ???

Exam

- oral exam (20 min)
- admission only with exercise certificate

Exercise Certificate

Goal: $\frac{1}{2}$ of the points in total **and** $\frac{1}{4}$ on every exercise sheet

What If I Don't Find The Solution?

- you get points for explaining what you tried and why it did not work
- and: there are many ways to get support
 - talk to your peers
 - ask in the exercise session or on discord

What If I Can't Manage To Hand In An Exercise Sheet?

- sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)
- talk to us, we'll find a solution

we don't want to make your life hard and we also don't bite we just want you to learn something and have fun doing so

Our Goal

- you spend some time with the content of the lecture and write down your solution
- then, the exercise certificate should not be a big obstacle

Motivation

Different Mixtures Of Oil

- the exact ratio between different components depends on the oil spring
- goal: mix oil from different springs, such that the result is easy to process

Example

- oil contains components A and B
- two springs:
 spring 1
 35%
 10%

spring 2 20% 16%

third spring: spring 3 15% 7%

What Is The Relation To Geometry?

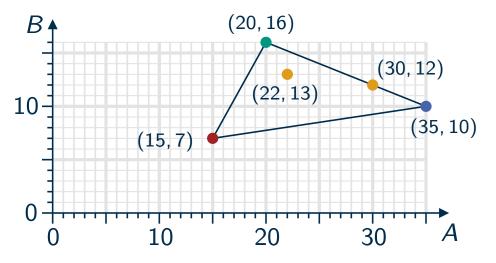
- ratios can be interpreted as points
- desired ratio is possible ⇔ corresponding points lies "between" the available points

Can we achieve 30% A and 12% B?

2:1

What about 22% A and 13% B?

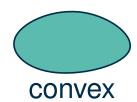
1:3:1

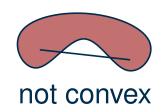


Convex Hull

Definition

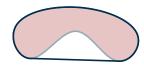
A point set $P \subseteq \mathbb{R}^d$ is **convex** if for any two points $p, q \in P$, the line segment pq lies in P.





Definition

For $P \subseteq \mathbb{R}^d$, the **convex hull** $\mathcal{CH}(P)$ is the minimal subset of \mathbb{R}^d such that $\mathcal{CH}(P)$ is convex and $P \subseteq \mathcal{CH}(P)$.



Equivalent Definitions

- intersection of all convex sets in \mathbb{R}^d that contain P
- union of all simplices with corners in P simplices in different dimensions:

convex combination:
$$\sum_{i=1}^n a_i \cdot p_i$$
 with $p_i \in P$, $a_i \in \mathbb{R}$, $a_i \geq 0$, and $\sum_{i=1}^n a_i = 1$

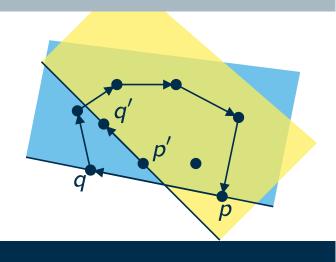
you might know this from the barycentric coordinate system

Convex Hull – Trivial Algorithm

CONVEX HULL Problem (2D): Given *n* points $P \subseteq \mathbb{R}^2$, compute the convex hull $\mathcal{CH}(P)$.

Notes And General Observations

- assumption: points are in general position
- boundary of $\mathcal{CH}(P)$ is a polygon \rightarrow output is a sequence of points
- pq edge of $\mathcal{CH}(P) \Leftrightarrow$ all points of P lie in the half space right of pq



Running Time: $\Theta(n^3)$

Trivial Algorithm

- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct the polygon (as sequence of points) from the saved edges

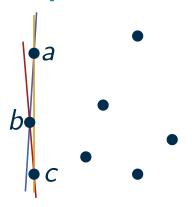
When is pq an edge of CH(P)?

Convex Hull – Trivial Algorithm

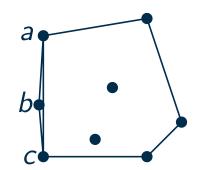
Trivial Algorithm

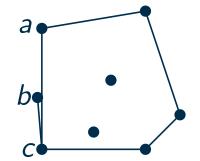
- iterate over all pairs of points $(p, q) \in P \times P$ (oriented)
 - check if all points of P lie to the right of pq
 - if yes: save the edge pq
- construct polygon (sequence of points) from the saved edges

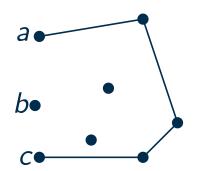
Example For Lacking Robustness



- three decisions "lies to the right of" are close
- wrong decision → output maybe not a polygon







- the algorithm is slow
- the algorithm is not robust

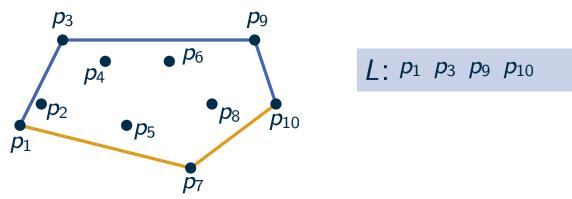
Andrews Monotone Chain Algorithm

(variant of the Graham Scan)

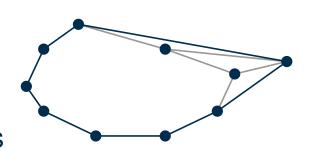
Idea: Iterative Approach

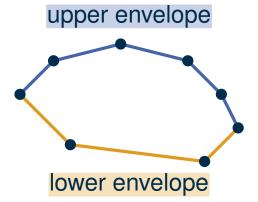
- add points one after another
- update convex hull in each step
- observe: convex hull makes only right bends
- order: from left to right
- for now: only the upper envelope

Example



analogously: lower envelope





Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

Andrews Algorithm – Analysis

Andrews Algorithm Sort P (left to right): p₁,..., p_n insert p₁ and p₂ into a L for each remaining point p_i: append p_i to the back of L while last three points form a left bend: remove the second-to-last point Running Time: O(n log n) O(n) O(n) O(1) O(1) (amortized) happens at most once to each point

O(n)

L is the upper envelop

Andrews Algorithm – Analysis

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

Running Time: $O(n \log n)$

Special Case: Same *x***-Coordinate**

- lexicographic order (first x, then y)
- make consistent with lower envelope

p_3

• **p**₃

Special Case: Collinear Points

- p2 should not be part of the output
- check for right instead of left bend

Robustness

- resulting polygon maybe has a slight left bend
- a point may lie slightly outside the resulting polygon
- but: the result is always a polygon that is similar to $\mathcal{CH}(P)$

What if a check for left bend goes wrong?

Andrews Algorithm – Correctness

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

After Step i: L Goes From p_1 To p_i

obvious, as the last point is never deleted

Lemma

In the end, L is the upper envelope of P.

- show: L connects p_1 with p_n , such that
 - L makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) P_2

Andrews Algorithm – Correctness

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

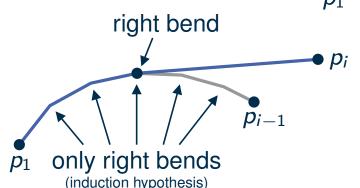
After Step i: L Has Only Right Bends

- after step *i*, *L* consists of two parts
 - prefix of the polygon L from the previous step i-1
 - edge to p_i \Rightarrow only right bends

Lemma

In the end, *L* is the upper envelope of *P*.

- show: L connects p_1 with p_n , such that
 - L makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over i for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2)



Andrews Algorithm – Correctness

Andrews Algorithm

- sort P (left to right): p_1, \ldots, p_n
- insert p_1 and p_2 into a L
- for each remaining point p_i :
 - append p_i to the back of L
 - while last three points form a left bend: remove the second-to-last point
- L is the upper envelop

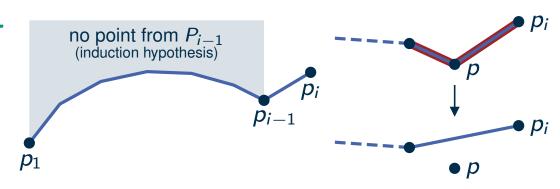
Lemma

In the end, *L* is the upper envelope of *P*.

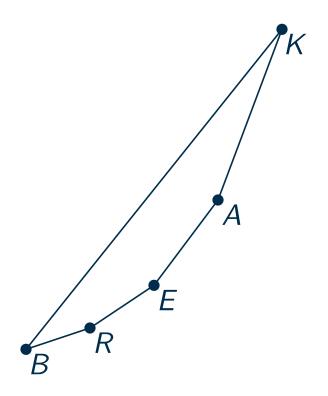
- show: L connects p_1 with p_n , such that
 - L makes only right bends
 - every point in $P \setminus L$ lies below L
- induction over *i* for $P_i = \{p_1, \ldots, p_i\}$
- correct after the initialization (i = 2) P_2

After Step i: Every Point In $P_i \setminus L$ Lies Below L

- \blacksquare still true after inserting p_i
- removing a point p from L moves L further up
- and afterwards, p itself lies below L



Compute The Convex Hull



Can We Be Faster?

Theorem

If the convex hull of n points can be computed in time f(n), then we can sort n numbers in O(f(n) + n) time.

Proof

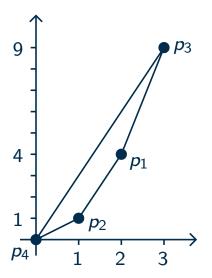
- given: n numbers a_1, \ldots, a_n
- construct n points $P = \{p_1, \ldots, p_n\}$ with $p_i = (a_i, a_i^2)$
- $\mathcal{CH}(P)$ contains the points sorted by a_i
- order can be obtained in O(n) from $\mathcal{CH}(P)$

Lower Bound

- comparison based sorting: $\Omega(n \log n)$
- Andrews algorithm is optimal (unless you want to do crazy stuff with numbers)

Example

$$a_1 = 2$$
, $a_2 = 1$, $a_3 = 3$, $a_4 = 0$



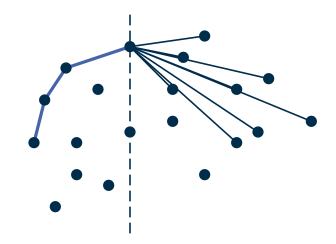
Gift Wrapping (Jarvis March)

Alternative Approach

- assumption: we already know parts of the upper envelope
- goal: find the next point on the upper envelope
- choose point with the smallest angle

Running Time

- each step: find minimum $\rightarrow O(n)$
- h steps, for $h = |\mathcal{CH}(P)|$



Theorem

The Gift Wrapping algorithm computes the convex hull of n points P in O(hn) time, where h is the number of points of $\mathcal{CH}(P)$.

Comment

- such an algorithm is called output sensitive
- beats the lower bound on certain instances (small h)

Wrap-Up

What Have We Learned Today?

- algorithm for computing the convex hull in time $O(n \log n)$
- $\square \Omega(n \log n)$ lower bound
- output sensitive algorithm with running time O(hn)
- robustness is an important aspect in computational geometry
- initially assuming general position helps with algorithm design

What Else Is There?

- one can achieve running time $O(n \log h)$
- higher dimensions
- convex hull of a simple polygon can be computed in O(n) time

