AT

Computational Geometry
Introduction and Convex Hull

Thomas Blasius

What |s Computational Geometry?

Wikipedia
= Computational geometry is a branch of computer science devoted to the study of algorithms
which can be stated in terms of geometry.

= Some purely geometrical problems arise out of the study of computational geometric algo-
rithms, and such problems are also considered to be part of computational geometry.

The Things We Deal With
® points, lines, line segments, circles, polygons, ...
= put not: pixels

AKIT

What Does That Mean Specifically?

Basic Toolbox
m convex hull

® |ine intersection

= triangulation

Advanced Toolbox
= \oronoi diagrams

= Delaunay triangulations
= randomized algorithms

= complexity

X

= plane intersection

&

Geometric Data Structures
m orthogonal range searching

m space partitioning
= point location .

Related Topics
= What is geometry?

= hyperbolic geometry
= geometric graphs

W
AN

2

i

f

\
N
N

N
N/

SN

2,

N
N\
N

S

N

N
SN

N

Before We Start

. A
\ .‘II i . ﬁl' .
_-!|I. |

Thomas Jean-Pierre Mrcus Wendy You

(1
3

Materials & Infos
u SlideS, exercise sheets on our hOmepage: https://scale.iti.kit.edu/teaching/2025ss/comput_geom/

= Book: Computational Geometry

Otfried Cheong
Marc van Kreveld
Mark Overmars

m Discord: https://discord.gg/4jam9m7C (or if you are already on our server: send 'help join to the scale-bot)

Computational

Requirements Geometry

Algorithms and Applications

= good algorithmic understanding
= no (little) prior knowledge

AKIT

https://scale.iti.kit.edu/teaching/2025ss/comput_geom/start
https://discord.gg/4jam9m7C

Rough Schedule

week | week i + 1 week i + 2 week i + 3
Mo| Tu [We| Th| Fr |Sa|Su|Mo| Tu [We| Th| Fr |Sa|Su|Mo| Tu [We| Th| Fr |Sa|Su|Mo| Tu [We| Th| Fr [Sa|Su
(i even) exercise sheet exercise sheet £ + 1
Lecture Exercise Sheet

m |ecture with slides
= new topics

Active Session
= if it's not a Holiday

= training additional
skills
= curiosities

= hand in in groups of two or three
= graded by us

Exercise Session (Week /i + 1)
= with Marcus, Wendy, Jean-Pierre

Exam
" recap _ _ = oral exam (20 min)
m support solving exercise sheets = admission only with
m 77?7

exercise certificate

AKIT

Exercise Certificate

Goal: % of the points in total and % on every exercise sheet

What If | Don’t Find The Solution?
= you get points for explaining what you tried and why it did not work

= and: there are many ways to get support
- talk to your peers
- ask in the exercise session or on discord

What If | Can’t Manage To Hand In An Exercise Sheet?

= sometimes, life can get in the way (for all sorts of reasons, e.g., sickness)

’ . : we don’t want to make your life hard and we also don't bite
= talk tO US, we ” flnd d SO|Ut|0n we just want you to learn something and have fun doing so
Our Goal

= you spend some time with the content of the lecture and write down your solution
® then, the exercise certificate should not be a big obstacle

AKIT

Motivation

Different Mixtures Of Qil
= the exact ratio between different components depends on the oil spring

= goal: mix oil from different springs, such that the result is easy to process

Exgmple | Can we achieve 30% A and 12% B? 2:1
® 0il contains components A and B

= two springs: A B 0 0/ R 2.
spring 1 35% 10% What about 22% A and 13% B 1:3:1

spring2 20% 16%

m third spring: spring3 15% 7% B4 (20, 16)
What Is The Relation To Geometry? 104
= ratios can be interpreted as points :
= desired ratio is possible < corresponding E
points lies “between” the available points (NN EEEEESEEEENEEEEEEEEE EEEEsanEs EY

0 10 20 30 A
AT

Convex Hull

@ 9 O

convex Nnot convex

Equivalent Definitions
= intersection of all convex sets in RY that contain P

= union of all simplices with cornersin P simplices in different dimensions: A A
= set of all points that are convex combinations of points in P

n n
convex combination: » _a; - p; with p; € P,a; € R,a; >0, and » a; =1 you might know this from the
i—1 i1 barycentric coordinate system

8 Thomas Blasius — Computational Geometry ﬂ(IT

Convex Hull — Trivial Algorithm

CoNVEX HuLL Problem (2D): Given n points P C R?, compute the convex hull CH(P).

Notes And General Observations
® assumption: points are in general position

= boundary of CH(P) is a polygon — output is a sequence of points \
= pq edge of CH(P) < all points of P lie in the half space right of pq q

p

Trivial Algorithm When i dae of CH(P)?
= jterate over all pairs of points (p, q) € P x P (oriented) SIS e eege @ (P)

- check if all points of P lie to the right of pg
- If yes: save the edge pq
= construct the polygon (as sequence of points) from the saved edges Running Time: ©(n?)

AKIT

Convex Hull — Trivial Algorithm

Trivial Algorithm Problems
= iterate over all pairs of points (p, q) € P x P (oriented) = the algorithm is slow
- check if all points of P lie to the right of pg = the algorithm is not robust

- if yes: save the edge pg
m construct polygon (sequence of points) from the saved edges

Example For Lacking Robustness

o m three decisions “lies to the right of” are close
= wrong decision — output maybe not a polygon
[

b . a a a
C..
b b be °
[)
C C C

d

AKIT

Andrews Monotone Chain Algorithm

(variant of the Graham Scan)

] upper envelope
Idea: Iterative Approach

= add points one after another
= update convex hull in each step
= observe: convex hull makes only right bends ° o

| |
= order: from left to right ower envelope

= for now: only the upper envelope Andrews Algorithm
Example m sort P (left to right): pq, ..., Pn
p3 Po m insert p; and py intoa L
. o Ps [- pLps po po = for each remaining point p;:
* ® - append p; to the back of L
p1 *ps P10 - while last three points form a left bend:
4 remove the second-to-last point

analogously: lower envelope = L is the upper envelop

AKIT

Andrews Algorithm — Analysis

Andrews Algorithm Running Time: O(nlog n)
= sort P (left to right): pq, ..., Pn O(nlog n)
= insert p; and py intoa L O(1)
= for each remaining point p;: O(n)

- append p; to the back of L O(1)

- while last three points form a left bend: O(1) (amortized)

remove the second-to-last point <«———happens at most once to each point

= [is the upper envelop O(n)

AKIT

Andrews Algorithm — Analysis

Andrews Algorithm
m sort P (left to right): py, ..., Pn
® insert p; and py intoa L
= for each remaining point p;:
- append p; to the back of L

- while last three points form a left bend:
remove the second-to-last point

= [is the upper envelop

Robustness

= resulting polygon maybe has a slight left bend

Running Time: O(nlog n)

Special Case: Same x-Coordinate pe '
m |exicographic order (first x, then y) . ® P4
= make consistent with lower envelope ”* ®F3

P3

Special Case: Collinear Points
= p2 should not be part of the output p2

= check for right instead of left bend p;

What if a check for left bend goes wrong?

= a point may lie slightly outside the resulting polygon
= but: the result is always a polygon that is similar to CH(P)

AKIT

Andrews Algorithm — Correctness

Andrews Algorithm
= sort P (left to right): pq, ..., Pn
® insert p; and py intoa L
= for each remaining point p;:
- append p; to the back of L

- while last three points form a left bend:
remove the second-to-last point

= [is the upper envelop

After Step i: L Goes From p; To p;
® obvious, as the last point is never deleted

Lemma
In the end, L is the upper envelope of P.

®= show: L connects p; with p,, such that
- L makes only right bends
- every pointin P\ L lies below L

= induction over i for P, = {py, ..., pi}

= correct after the initialization (i = 2) P2
P1

AKIT

Andrews Algorithm — Correctness

Andrews Algorithm
Lemma

= sort P (left to right): pa, ..., Pn In the end, L is the upper envelope of P.
® insert p; and py intoa L
= for each remaining point p;: ®= show: L connects p; with p,, such that
_ append p; to the back of L - L makes only right bends
- while last three points form a left bend: - every pointin P\ L lies below L
remove the second-to-last point = induction over i for P; = {p1, ..., pi }
m [is the upper envelop m correct after the initialization (i = 2) I:/'P2
1
After Step i: L Has Only Right Bends rig‘?t bend —op
= after step 7, L consists of two parts '
- prefix of the polygon L from the previous step /1 —1 \\ T // Pi1
- edgeto p; = only right bends . O(ri]nlc?ﬁcfiic%mpgfeggs

AKIT

Andrews Algorithm — Correctness

Andrews Algorithm
= sort P (left to right): p1, ..., Pn

® insert p; and py intoa L

Lemma
In the end, L is the upper envelope of P.

= for each remaining point p;: ®= show: L connects p; with p,, such that

~ append p; to the back of L - L makes only right bends

- while last three points form a left bend: - every pointin P\ L lies below L

remove the second-to-last point = induction over i for P, = {p1, ..., pi}
= [is the upper envelop = correct after the initialization (i = 2) P2
p1

After Step i: Every Point In P; \ L Lies Below L o point from P L \/p;
= still true after inserting p; iehieslem yfpe s 5
= removing a point p from L moves L further up v P | |
= and afterwards, p itself lies below L o —---’{. &

Compute The Convex Hull

AKIT

Can We Be Faster?

Proof
m given: n numbers ay, ..., a,

= construct n points P = {py, ..., p} With p; = (aj, a7
= CH(P) contains the points sorted by a;

= order can be obtained in O(n) from CH(P)

Lower Bound
= comparison based sorting: 2(nlog n)

= Andrews algorithm is optimal

(unless you want to do crazy stuff with numbers)

15 Thomas Blasius — Computational Geometry

)

Example
ag=2,ax=1,a3 =3,a4 =0

0 - p3

AKIT

Gift Wrapping (Jarvis March)

Alternative Approach

= assumption: we already know parts of the upper envelope
m goal: find the next point on the upper envelope

= choose point with the smallest angle

Running Time
= each step: find minimum — O(n)
= hsteps, for h = |CH(P)|

Theorem Comment
The Gift Wrapping algorithm computes the = such an algorithm is called output sensitive

convex hull of n points £ in O(hn) time, '« beats the lower bound on certain instances
where h is the number of points of CH(P). (small h)

AKIT

Wrap-Up

What Have We Learned Today?

= algorithm for computing the convex hull in time O(n log n)

= Q(nlog n) lower bound

= output sensitive algorithm with running time O(hn)

® robustness is an important aspect in computational geometry
= |nitially assuming general position helps with algorithm design

What Else Is There?
= one can achieve running time O(nlog h)

= higher dimensions
= convex hull of a simple polygon can be computed in O(n) time

AKIT

