

Computational Geometry Duality

Thomas Bläsius

point $p: (p_x, p_y)$ | line $l: y = l_x \cdot x - l_y$

point p: (p_x, p_y) How to choose p_y depending on p_x , such that $p \in \ell$?

line $\boldsymbol{\ell}$: $y = \boldsymbol{\ell}_x \cdot x - \boldsymbol{\ell}_y$

2

 $\begin{array}{l} \textbf{point } p \text{:} \ (p_{x}, p_{y}) \\ \text{How to choose } p_{y} \text{ depending on } p_{x} \text{, such that } p \in \ell \text{?} \\ p_{y} = \ell_{x} \cdot p_{x} - \ell_{y} \end{array}$

line $\boldsymbol{\ell}$: $y = \boldsymbol{\ell}_x \cdot x - \boldsymbol{\ell}_y$

point *p*: (p_x, p_y) How to choose p_y depending on p_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$

line l: $y = l_x \cdot x - l_y$ How to choose l_y depending on l_x , such that $p \in l$?

point *p*: (p_x, p_y) How to choose p_y depending on p_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$

line ℓ : $y = \ell_x \cdot x - \ell_y$ How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$? $\ell_y = p_x \cdot \ell_x - p_y$

point p: (p_x, p_y) line ℓ : $y = \ell_x \cdot x - \ell_y$ How to choose p_y depending on p_x , such that $p \in \ell$?How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$ $\ell_y = p_x \cdot \ell_x - p_y$ duality: lines and points are interchangeable

point p: (p_x, p_y) line ℓ : $y = \ell_x \cdot x - \ell_y$ How to choose p_y depending on p_x , such that $p \in \ell$?How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$ $\ell_y = p_x \cdot \ell_x - p_y$ duality: lines and points are interchangeable $p \in \ell \Leftrightarrow \ell^* \in p^*$

point p: (p_x, p_y) line ℓ : $y = \ell_x \cdot x - \ell_y$ How to choose p_y depending on p_x , such that $p \in \ell$?How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$ How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$?duality: lines and points are interchangeableline p^* : $y = p_x \cdot x - p_y$ $p \in \ell \Leftrightarrow \ell^* \in p^*$

point p: (p_x, p_y) line ℓ : $y = \ell_x \cdot x - \ell_y$ How to choose p_y depending on p_x , such that $p \in \ell$?How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$? $p_y = \ell_x \cdot p_x - \ell_y$ How to choose ℓ_y depending on ℓ_x , such that $p \in \ell$?duality: lines and points are interchangeableIne p^* : $y = p_x \cdot x - p_y$ $p \in \ell \Leftrightarrow \ell^* \in p^*$ point ℓ^* : (ℓ_x, ℓ_y)

If the point *p* lies above the line ℓ , where does ℓ^* lie with respect to p^* ?

line $\boldsymbol{\ell}$: $y = \boldsymbol{\ell}_x \cdot x - \boldsymbol{\ell}_y$ point $p: (p_x, p_y)$ How to choose ℓ_{γ} depending on ℓ_{x} , such that $p \in \ell$? How to choose p_y depending on p_x , such that $p \in \ell$? $\boldsymbol{\ell}_{v} = \boldsymbol{p}_{x} \cdot \boldsymbol{\ell}_{x} - \boldsymbol{p}_{v}$ $p_{v} = \boldsymbol{\ell}_{x} \cdot \boldsymbol{p}_{x} - \boldsymbol{\ell}_{v}$ duality: lines and points are interchangeable line p^* : $y = p_x \cdot x - p_y$ point ℓ^* : (ℓ_x, ℓ_y) $p \in \ell \Leftrightarrow \ell^{\star} \in p^{\star}$ primal dual y = 2x + 1y = 2x - 5**•** (2, 5) If the point *p* lies above the line ℓ , (−1,3)● (2, -1)where does ℓ^* lie with respect to p^* ? y = 0x - 1(0, 1)*p* above $\ell \Leftrightarrow \ell^*$ above p^* (-1, -1)y = -1x - 3

Region Below Lines

- given: set of lines *L*
- find: region below all lines

Region Below Lines

- set of lines *L*
- find: region below all lines

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Region Below Lines

- set of lines *L*
- find: region below all lines

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - p lies below all other lines in L

half-plane intersection

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - p lies below all other lines in L

half-plane intersection

- given: set of points L*
- find: set of lines P^* such that $p^* \in P^*$ iff:

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - p lies below all other lines in L

half-plane intersection

- given: set of points *L**
- find: set of lines P^* such that $p^* \in P^*$ iff:
 - p^* is line through two points in L^*

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - p lies below all other lines in L

half-plane intersection

- given: set of points L*
- find: set of lines P^* such that $p^* \in P^*$ iff:
 - p^* is line through two points in L^*
 - all other points in L^* lie above p^*

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - p lies below all other lines in L

half-plane intersection

- given: set of points L*
- find: set of lines P^* such that $p^* \in P^*$ iff:
 - p^* is line through two points in L^*
 - all other points in L^* lie above p^*

Region Below Lines

- given: set of lines L
- find: region below all lines

Primal (Reformulation)

- given: set of lines L
- find: set of points P such that $p \in P$ iff:
 - *p* is intersection between lines in *L*
 - *p* lies below all other lines in *L*

half-plane intersection

Dualization

- given: set of points L*
- find: set of lines P^* such that $p^* \in P^*$ iff:
 - p^* is line through two points in L^*
 - all other points in L^* lie above p^*

lower envelope \rightarrow convex hull

Minimum Triangle

- given: set of points *P*
- find: three points forming min-area triangle

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Primal Plan

• for every $a \in P$ and $b \in P$, let ℓ_{ab} be the line through a and b

Minimum Triangle

- given: set of points *P*
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Primal Plan

- for every $a \in P$ and $b \in P$, let ℓ_{ab} be the line through a and b
- find $c \in P$ such that no other point in P lies between ℓ_{ab} and ℓ_c $(\ell_c:$ line through c, parallel to $\ell_{ab})$

lat

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Primal Plan

- a b l_{ab} c c
- for every $a \in P$ and $b \in P$, let ℓ_{ab} be the line through a and b
- find $c \in P$ such that no other point in P lies between ℓ_{ab} and ℓ_c (ℓ_c : line through c, parallel to ℓ_{ab})

Dualization

• for every line $a^* \in P^*$ and $b^* \in P^*$, let ℓ_{ab}^* be the intersection of a^* and $b^* a^* - \ell_{ab}^*$

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Primal Plan

- a b c a b c a b c a b c a b
- for every $a \in P$ and $b \in P$, let ℓ_{ab} be the line through a and b
- find $c \in P$ such that no other point in P lies between ℓ_{ab} and ℓ_c (ℓ_c : line through c, parallel to ℓ_{ab})

- for every line $a^* \in P^*$ and $b^* \in P^*$, let ℓ_{ab}^* be the intersection of a^* and b^*
- find $c^* \in P^*$ such that no other line in P^* lies between ℓ_{ab}^* and ℓ_c^* $(\ell_c^*: \text{ point on } c^*, \text{ same } x\text{-coordinate as } \ell_{ab}^*)$

Minimum Triangle

- given: set of points P
- find: three points forming min-area triangle

Area Of A Triangle

• area = $\frac{1}{2}$ · altitude · base

Primal Plan

- for every $a \in P$ and $b \in P$, let ℓ_{ab} be the line through a and b
- find $c \in P$ such that no other point in P lies between ℓ_{ab} and ℓ_c (ℓ_c : line through c, parallel to ℓ_{ab})

- for every line $a^* \in P^*$ and $b^* \in P^*$, let ℓ_{ab}^* be the intersection of a^* and b^*
- find $c^* \in P^*$ such that no other line in P^* lies between ℓ_{ab}^* and ℓ_c^* (ℓ_c^* : point on c^* , same *x*-coordinate as ℓ_{ab}^*)
- can be solved with the sweep-line algo for line intersection

