

Algorithmen für Routenplanung

10. Vorlesung, Sommersemester 2024

Moritz Laupichler | 29. Mai 2024

Optimierungskriterien

Bisher:

Kürzester Weg

■ Fine Metrik

Alternativrouten

■ Eine Metrik; nicht kürzeste, dennoch sinnvolle Wege

Optimierungskriterien

Bisher:

Kürzester Weg

■ Fine Metrik

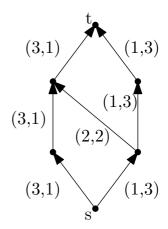
Alternativrouten

■ Eine Metrik; nicht kürzeste, dennoch sinnvolle Wege

Jetzt: Mehrere Metriken

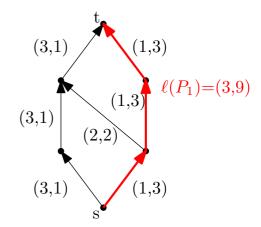
Szenario:

Mehrere Gewichte an Kanten (z.B. Reisezeit, Kosten, Energieverbrauch)



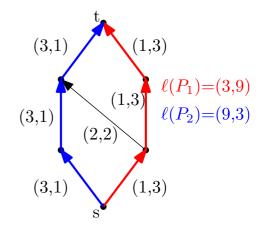
Szenario:

- Mehrere Gewichte an Kanten (z.B. Reisezeit, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Pfade
 - Pfad ist Pareto-optimal :⇔ Kein anderer Pfad dominiert ihn
 - Pfad dominiert anderen :⇔ Jedes Kriterium ist gleich oder besser
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



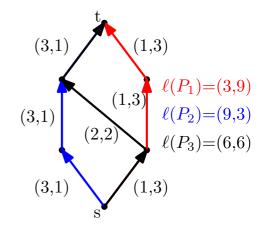
Szenario:

- Mehrere Gewichte an Kanten (z.B. Reisezeit, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Pfade
 - Pfad ist Pareto-optimal :⇔ Kein anderer Pfad dominiert ihn
 - Pfad dominiert anderen :⇔ Jedes Kriterium ist gleich oder besser
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



Szenario:

- Mehrere Gewichte an Kanten (z.B. Reisezeit, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Pfade
 - Pfad ist Pareto-optimal :⇔ Kein anderer Pfad dominiert ihn
 - Pfad dominiert anderen :⇔ Jedes Kriterium ist gleich oder besser
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)

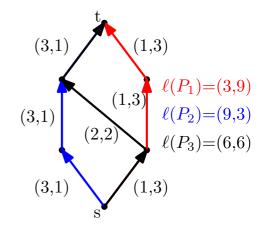


Szenario:

- Mehrere Gewichte an Kanten (z.B. Reisezeit, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Pfade
 - Pfad ist Pareto-optimal :⇔ Kein anderer Pfad dominiert ihn
 - Pfad dominiert anderen :⇔ Jedes Kriterium ist gleich oder besser
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)

Herausforderung:

Viele Pfade zum Ziel



Definition (Pareto-Dominanz)

Gegeben zwei *n*-Tupel $m_i = (x_1, \dots, x_n)$ und $m_i = (y_1, \dots, y_n)$:

 m_i dominiert $m_i \iff \forall k : x_k \leq y_k$ und $\exists \ell : x_\ell < y_\ell$

 $(m_i$ ist in keinem Wert schlechter als m_i und in mindestens einem besser)

Definition (Pareto-Dominanz)

Gegeben zwei n-Tupel $m_i = (x_1, \ldots, x_n)$ und $m_j = (y_1, \ldots, y_n)$: $m_i \text{ dominiert } m_j \iff \forall k : x_k \leq y_k \text{ und } \exists \ell : x_\ell < y_\ell$ $(m_i \text{ ist in keinem Wert schlechter als } m_i \text{ und in mindestens einem besser})$

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_j \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Definition (Pareto-Dominanz)

Gegeben zwei *n*-Tupel $m_i = (x_1, \dots, x_n)$ und $m_i = (y_1, \dots, y_n)$: m_i dominiert $m_i \iff \forall k : x_k \leq y_k$ und $\exists \ell : x_\ell < y_\ell$ (m_i) ist in keinem Wert schlechter als m_i und in mindestens einem besser)

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_i \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Beispiel: Offentlicher Verkehr (Ankunftszeit und # Umstiege)

Definition (Pareto-Dominanz)

```
Gegeben zwei n-Tupel m_i = (x_1, \dots, x_n) und m_j = (y_1, \dots, y_n):
m_i \text{ dominiert } m_j \iff \forall k : x_k \leq y_k \text{ und } \exists \ell : x_\ell < y_\ell
(m_i \text{ ist in keinem Wert schlechter als } m_j \text{ und in mindestens einem besser})
```

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_j \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Beispiel: Öffentlicher Verkehr (Ankunftszeit und # Umstiege) $M = \{(14:00 \text{ Uhr}, 5), (15:13 \text{ Uhr}, 3), (13:45 \text{ Uhr}, 4), (15:15 \text{ Uhr}, 0)\}.$

Definition (Pareto-Dominanz)

```
Gegeben zwei n-Tupel m_i = (x_1, \dots, x_n) und m_j = (y_1, \dots, y_n):
m_i \text{ dominiert } m_j \iff \forall k : x_k \leq y_k \text{ und } \exists \ell : x_\ell < y_\ell
(m_i \text{ ist in keinem Wert schlechter als } m_j \text{ und in mindestens einem besser})
```

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_j \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Beispiel: Öffentlicher Verkehr (Ankunftszeit und # Umstiege)

 $M = \{(14.00 \text{ Uhr}, 5), (15.13 \text{ Uhr}, 3), (13.45 \text{ Uhr}, 4), (15.15 \text{ Uhr}, 0)\}.$

Definition (Pareto-Dominanz)

```
Gegeben zwei n-Tupel m_i = (x_1, \dots, x_n) und m_j = (y_1, \dots, y_n):
m_i \text{ dominiert } m_j \iff \forall k : x_k \leq y_k \text{ und } \exists \ell : x_\ell < y_\ell
(m_i \text{ ist in keinem Wert schlechter als } m_j \text{ und in mindestens einem besser})
```

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_j \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Beispiel: Öffentlicher Verkehr (Ankunftszeit und # Umstiege) $M = \{(14:00 \text{ Uhr}, 5), (15:13 \text{ Uhr}, 3), (13:45 \text{ Uhr}, 4), (15:15 \text{ Uhr}, 0)\}.$

Definition (Pareto-Dominanz)

```
Gegeben zwei n-Tupel m_i = (x_1, \dots, x_n) und m_i = (y_1, \dots, y_n):
                               m_i dominiert m_i \iff \forall k : x_k \leq y_k und \exists \ell : x_\ell < y_\ell
                       (m_i) ist in keinem Wert schlechter als m_i und in mindestens einem besser)
```

Definition (Pareto-Optimum)

Gegeben eine Menge M von n-Tupeln: Tupel $m_i \in M$ heißt Pareto-optimal, wenn es kein anderes $m_i \in M$ gibt, das m_i dominiert.

Menge $M' \subseteq M$ heißt Pareto-Menge, wenn alle $m \in M'$ Pareto-optimal.

Beispiel: Offentlicher Verkehr (Ankunftszeit und # Umstiege)

 $M = \{(14.00 \text{ Uhr}, 5), (15.13 \text{ Uhr}, 3), (13.45 \text{ Uhr}, 4), (15.15 \text{ Uhr}, 0)\}.$

Wie effizient berechnen?

Idee:

lacksquare Benutze Graph mit Kantengewicht len: $E o \mathbb{R}^n_{>0}$

Grundlage: Dijkstras Algorithmus

Idee:

- Benutze Graph mit Kantengewicht len: $E \to \mathbb{R}^n_{>0}$
- Grundlage: Dijkstras Algorithmus

Aber:

- Label ℓ sind n-Tupel (x_1, \ldots, x_n)
- An jedem Knoten $v \in V$: Pareto-Menge B_v von Labels
- Jedes Label entspricht einem (Pareto-optimalen) *s*−*u*-Pfad
- Priority Queue verwaltet Label statt Knoten
- Queue-Key ist Prioritätsfunktion $k(x_1, ..., x_n)$
 - Meist: Linearkombination oder lexikographische Sortierung
 - Priority Queue enthält ganze Label, nicht nur den Key
- Dominanz von Labels in B_v on-the-fly


```
MCD(G = (V, E), s)
1 B_v \leftarrow \infty for all v \in V
B_s \leftarrow 0
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
        (u, \ell = \mathsf{dist}) \leftarrow Q.\mathsf{deleteMin}()
        for all edges e = (u, v) \in E do
             \ell' \leftarrow \mathsf{dist} + \mathsf{len}(e)
             if not B_{\nu} \leq \ell' then
                  B_{\mathsf{v}} \leftarrow \ell'
10
                  Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, \dots, 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
        (u, \ell = \mathsf{dist}) \leftarrow Q.\mathsf{deleteMin}()
        for all edges e = (u, v) \in E do
             \ell' \leftarrow \mathsf{dist} + \mathsf{len}(e)
             if not B_{\nu} \leq \ell' then
                  B_{\mathsf{v}} \leftarrow \ell'
10
                  Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, \dots, 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
      (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
            \ell' \leftarrow \mathsf{dist} + \mathsf{len}(e)
             if not B_{\nu} \leq \ell' then
                 B_{\mathsf{v}} \leftarrow \ell'
10
                  Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, \dots, 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
       (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
             \ell' \leftarrow (x_1 + \operatorname{len}(e)_1, \dots, x_n + \operatorname{len}(e)_n)
             if not B_{\nu} < \ell' then
                 B_{\mathsf{v}} \leftarrow \ell'
                  Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, \dots, 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
       (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
             \ell' \leftarrow (x_1 + \operatorname{len}(e)_1, \dots, x_n + \operatorname{len}(e)_n)
             if not B_{\nu} dominates \ell' then
                 B_{\mathsf{v}} \leftarrow \ell'
10
                  Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v ← \emptyset for all v \in V
2 B_s \leftarrow \{(0, ..., 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
        (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
            \ell' \leftarrow (x_1 + \operatorname{len}(e)_1, \dots, x_n + \operatorname{len}(e)_n)
            if not any \ell'' \in B_v dominates \ell' then
                 B_{\mathsf{v}} \leftarrow \ell'
10
                 Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, ..., 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
       (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
       for all edges e = (u, v) \in E do
            \ell' \leftarrow (x_1 + \operatorname{len}(e)_1, \dots, x_n + \operatorname{len}(e)_n)
            if not any \ell'' \in B_v dominates \ell' then
                 B_{v}.insert(\ell')
10
                 Q.insert(v, \ell')
11
```



```
MCD(G = (V, E), s)
1 B_v \leftarrow \emptyset for all v \in V
2 B_s \leftarrow \{(0, ..., 0)\}
3 Q.clear()
4 Q.insert(s, B_s)
5 while !Q.empty() do
       (u, \ell = (x_1, \dots, x_n)) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
            \ell' \leftarrow (x_1 + \operatorname{len}(e)_1, \dots, x_n + \operatorname{len}(e)_n)
            if not any \ell'' \in B_{\nu} dominates \ell' then
                 B_{\nu}.insert(\ell')
10
                 Remove non-Pareto-optimal labels from B<sub>v</sub> and Q
11
                 Q.insert(v, \ell')
12
```

Diskussion: MCD

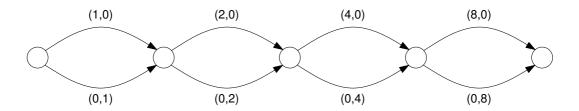
- Falls extrahiertes Label immer Pareto-optimal (bzgl. aller $\ell \in Q$):
 - MCD label-setting (einmal extrahierte Labels werden nie dominiert) dafür muss die Längenfunktion natürlich auch positiv sein
 - Gilt für Linearkombination und lexikographische Sortierung
- Pareto-Mengen B_{μ} sind dynamische Datenstrukturen \rightsquigarrow teuer!
- Sehr viele Queue-Operationen
- Testen der Dominanz in $\mathcal{O}(|B_u|)$ möglich
- Stoppkriterium?

Diskussion: MCD

- Falls extrahiertes Label immer Pareto-optimal (bzgl. aller $\ell \in Q$):
 - MCD label-setting (einmal extrahierte Labels werden nie dominiert) dafür muss die Längenfunktion natürlich auch positiv sein
 - Gilt für Linearkombination und lexikographische Sortierung
- Pareto-Mengen B_{μ} sind dynamische Datenstrukturen \rightsquigarrow teuer!
- Sehr viele Queue-Operationen
- Testen der Dominanz in $\mathcal{O}(|B_u|)$ möglich
- Stoppkriterium?
 - Pareto-Menge nicht vollständig, wenn t erreicht
 - Queue leer laufen lassen

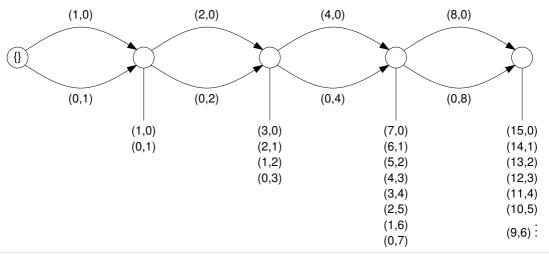
Exponentielle Laufzeit

Exponentiell wachsende Lösungsmenge bei zwei Kriterien:



Exponentielle Laufzeit

Exponentiell wachsende Lösungsmenge bei zwei Kriterien:



Verbesserungen

- Jedes B_u verwaltet seine eigene lokale Priority Queue
 ⇒ globale Priority Queue auf Knoten statt Labels
- Hopping Reduction: Relaxieren der Kante zum Parent-Knoten p ist unnötig (kann keine Verbesserung bringen, kostet aber $\mathcal{O}(|B_p|)$ für Test) ⇒ Überspringe Kante zum Parent-Knoten des aktuellen Labels
- Target-Pruning: (statt Abbruchkriterium)

 Verwerfe Label, wenn es von der tentativen Pareto-Menge B_t am Ziel t dominiert wird

Verbesserungen

- Jedes B_u verwaltet seine eigene lokale Priority Queue \Rightarrow globale Priority Queue auf Knoten statt Labels
- Hopping Reduction: Relaxieren der Kante zum Parent-Knoten p ist unnötig (kann keine Verbesserung bringen, kostet aber $\mathcal{O}(|B_p|)$ für Test) ⇒ Überspringe Kante zum Parent-Knoten des aktuellen Labels
- Target-Pruning: (statt Abbruchkriterium)

 Verwerfe Label, wenn es von der tentativen Pareto-Menge B_t am Ziel t dominiert wird

Worst-Case-Laufzeit immer noch exponentiell (aber je nach Instanz schon signifikante Beschleunigung)

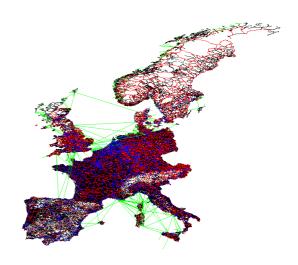
Eingabe

Straßengraphen von:

- Luxemburg
- Karlsruhe
- Europa

Metriken:

- Fahrzeit schnelles Auto
- Fahrzeit langsames Auto
- Kosten
- Distanz
- Unit-Metrik (alle Kantengewichte 1)



Ähnliche Metriken: Europa

Beobachtungen:

- Nicht viele zusätzliche Lösungen
- Anzahl Lösungen und Queue Extracts korrelieren
- Queryzeit steigt viel stärker
- Anzahl Dominanztests ist superlinear

metrics	target labels	#del. mins	time [ms]
fast car (fc)	1.0	442 124	156.44
slow car (sc)	1.0	452 635	151.68
fast truck (ft)	1.0	433 834	139.51
slow truck (st)	1.0	440 273	136.85
fc + st	2.2	1 039 110	843.48
fc + ft	2.0	947 042	698.21
fc + sc	1.2	604 750	369.31
sc + It	1.9	876 998	577.05
sc + ft	1.7	784 459	474.77
ft + st	1.3	632 052	348.43
fc + sc + st	2.3	1 078 190	956.14
fc + sc + ft	2.0	940 815	751.16
sc + ft +st	1.9	880 236	640.47
fc + sc + ft + st	2.5	1 084 780	1016.39

Verschiedene Metriken

		Luxemburg			Karlsruhe		
metrics	target labels	#del. mins	time [ms]	target labels	#del. mins	time [ms]	
fast car (fc)	1.0	15 469	2.89	1.0	39 001	8.2	
slow truck (st)	1.0	15 384	2.80	1.0	38 117	7.1	
costs	1.0	15 303	2.65	1.0	38 117	6.8	
distances	1.0	15 299	2.49	1.0	39 356	7.3	
unit	1.0	15 777	2.54	1.0	39 001	8.2	
fc + st	2.0	30 026	8.70	1.9	77 778	28.7	
fc + costs	29.6	402 232	1704.28	52.7	1882930	14909.5	
fc + dist.	49.9	429 250	1585.23	99.4	2 475 650	30893.2	
fc + unit	25.7	281 894	573.51	27.0	1 030 490	3209.9	
costs + dist.	29.6	305 891	581.71	67.2	1661600	10815.1	

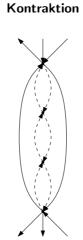
[■] Je nach Kriterien kann Lösungsmenge stark ansteigen

Beschleunigungstechniken

Landmarken

Suche

Bidirektionale



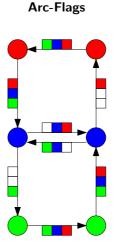


Table-Lookups

Wdh.: ALT

Vorberechnung:

- Wähle einige Knoten (\approx 16) als Landmarken
- Berechne Abstände von und zu allen Landmarken

Anfrage:

Benutze Landmarken und Dreiecksungleichung, um eine untere Schranke für den Abstand zum Ziel zu bestimmen:

$$d(u,t) \geq d(\ell_1,t) - d(\ell_1,u)$$

$$d(u,t) \geq d(u,\ell_2) - d(t,\ell_2)$$

- Benutze untere Schranken als A*-Potential
- Verändert Reihenfolge der besuchten Knoten

Idee:

- Berechne Distanzen pro Metrik unabhängig voneinander
- Pro Knoten u und Landmarke ℓ_i : Distanzvektor $(d_1(u, \ell_i), \dots, d_n(u, \ell_i))$
- Liefert Potentiale π_1, \ldots, π_n
- Zielrichtung: Queue-Key eines Labels ist $k(x_1 + \pi_1, ..., x_n + \pi_n)$.
- Potential π_i liefert untere Schranke für $d_i(u,t)$
 - \Rightarrow Nutze $(x_1 + \pi_1, \dots, x_n + \pi_n)$ auch für Target-Pruning

Idee:

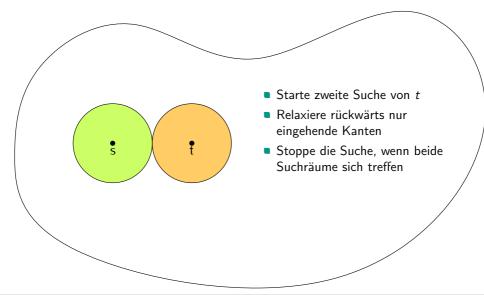
- Berechne Distanzen pro Metrik unabhängig voneinander
- Pro Knoten u und Landmarke ℓ_i : Distanzvektor $(d_1(u, \ell_i), \dots, d_n(u, \ell_i))$
- Liefert Potentiale π_1, \ldots, π_n
- Zielrichtung: Queue-Key eines Labels ist $k(x_1 + \pi_1, ..., x_n + \pi_n)$.
- Potential π_i liefert untere Schranke für $d_i(u, t)$ \Rightarrow Nutze $(x_1 + \pi_1, \dots, x_n + \pi_n)$ auch für Target-Pruning

Modifikation:

Berechne zur Queryzeit $(d_1(u, t), \ldots, d_n(u, t))$

- Nutze t als einzige "perfekte" Landmarke
- Kosten von *n* Dijkstras (meist) unerheblich für Gesamtlaufzeit
- Keine Vorberechnung

Bidirektionale Suche



Idee:

■ Rückwärtssuche kein Problem (analog)

Idee:

Rückwärtssuche kein Problem (analog)

Offenes Problem:

- Abbruchkriterium?
- Analog zu Target-Pruning:
 - Verwalte Pareto-Menge mit tentativen Lösungen
 - Kombination der Lösungen aus Vorwärts- und Rückwärtssuche an Mittelknoten
 - Dominanztest mit tentativer Pareto-Menge
- Lohnt nicht recht

Kontraktion

Knoten-Kontraktion:

- Entferne Knoten iterativ
- Füge neue Kanten (Shortcuts) hinzu, um die Abstände zwischen verbleibenden Knoten zu erhalten

Zeugensuche:

- Behalte nur relevante Shortcuts
- Suche kürzere Pfade (Zeugen) während oder nach Kontraktion



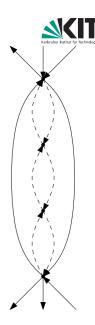
Kontraktion

Knoten-Kontraktion:

- Entferne Knoten iterativ
- Füge neue Kanten (Shortcuts) hinzu, um die Abstände zwischen verbleibenden Knoten zu erhalten

Zeugensuche:

- Behalte nur relevante Shortcuts
- Suche kürzere Pfade (Zeugen) während oder nach Kontraktion



Anpassung Zeugensuche

Unikriteriell:

- Lösche Kante (u, v), wenn (u, v) nicht der kürzeste u-v-Pfad ist, also len(u, v) > d(u, v)
- Lokale Dijkstra-Suche von u

Multikriteriell:

Anpassung Zeugensuche

Unikriteriell:

- Lösche Kante (u, v), wenn (u, v) nicht der kürzeste u-v-Pfad ist, also len(u, v) > d(u, v)
- Lokale Dijkstra-Suche von u

Multikriteriell:

- **L**ösche Kante (u, v), wenn (u, v) kein Pareto-optimaler u-v-Pfad ist
- Lokale multikriterielle Suche
- Kann zu (Pareto-optimalen) Multikanten führen
- Problem: "Explosion" der Anzahl der Pfade

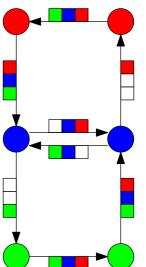
Arc-Flags

Idee:

- Partitioniere den Graph in k Zellen
- Hänge ein Label mit k Bits an jede Kante
- Gibt an, ob Kante für Zielzelle benötigt wird
- Modifizierter Dijkstra überspringt Kanten ohne Flagge

Beobachtung:

- \blacksquare Partition wird auf ungewichtetem Graphen durchgeführt \to keine Änderung nötig
- Aber Flaggen müssen anders gesetzt werden



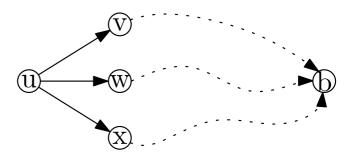
Setze Flagge, wenn...

- Unikriteriell: Kante auf kürzestem Pfad in Zielzelle liegt
- Multikriteriell: Kante auf Pareto-optimalem Pfad in Zielzelle liegt

Setze Flagge, wenn...

- Unikriteriell: Kante auf kürzestem Pfad in Zielzelle liegt
- Multikriteriell: Kante auf Pareto-optimalem Pfad in Zielzelle liegt

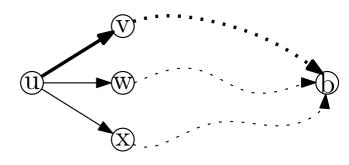
- Für jeden Randknoten b und jeden Knoten u:
- Berechne alle
 Pareto-optimalen u-b-Pfade
- Flagge alle Kanten auf diesen Pfaden



Setze Flagge, wenn...

- Unikriteriell: Kante auf kürzestem Pfad in Zielzelle liegt
- Multikriteriell: Kante auf Pareto-optimalem Pfad in Zielzelle liegt

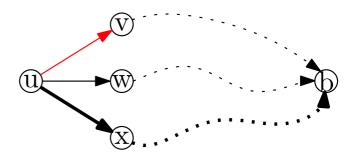
- Für jeden Randknoten b und jeden Knoten u:
- Berechne alle
 Pareto-optimalen u-b-Pfade
- Flagge alle Kanten auf diesen Pfaden



Setze Flagge, wenn...

- Unikriteriell: Kante auf kürzestem Pfad in Zielzelle liegt
- Multikriteriell: Kante auf Pareto-optimalem Pfad in Zielzelle liegt

- Für jeden Randknoten b und jeden Knoten u:
- Berechne alle
 Pareto-optimalen u-b-Pfade
- Flagge alle Kanten auf diesen Pfaden



Setze Flagge, wenn...

- Unikriteriell: Kante auf kürzestem Pfad in Zielzelle liegt
- Multikriteriell: Kante auf Pareto-optimalem Pfad in Zielzelle liegt

- Für jeden Randknoten b und jeden Knoten u:
- Berechne alle
 Pareto-optimalen u-b-Pfade
- Flagge alle Kanten auf diesen Pfaden

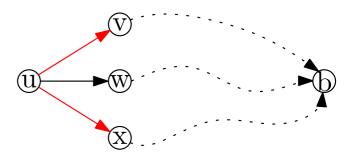
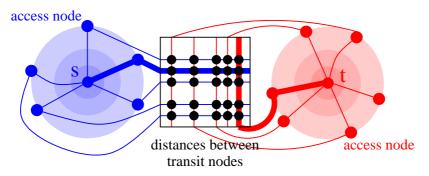


Table-Lookups

Idee:

- Speichere Distanztabellen
- Nur für "wichtige" Teile des Graphen
- Suchen laufen nur bis zur Tabelle
- Harmoniert gut mit hierarchischen Techniken



Beobachtung:

- Distanz-Tabelle muss Pareto-Mengen speichern
- Massiver Anstieg der Größe der Tabellen
- Pfadstruktur nicht mehr so gutmütig
- Deutlich mehr Access-Nodes?

Also:

Speicherverbrauch deutlich zu groß!

Diskussion Basismodule

Basismodule:

- Bidirektionale Suche
- + Landmarken/A*
- + Kontraktion
- + Arc-Flags
- Table-Lookups

Experimente

Pareto-SHARC [DW09] (nur als Beispiel)

	Luxemburg					Karlsruhe				
	Prepro	Query		Prepro	Query					
metrics	time [h:m]	target labels	#del. mins	time [ms]	spd up	time [h:m]	target labels	#del. mins	time [ms]	spd up
fast car (fc)	< 0:01	1.0	138	0.03	114	< 0:01	1.0	206	0.04	188
slow truck (st)	< 0:01	1.0	142	0.03	111	< 0:01	1.0	212	0.04	178
costs	< 0:01	1.0	151	0.03	96	< 0:01	1.0	244	0.05	129
distances	< 0:01	1.0	158	0.03	87	< 0:01	1.0	261	0.06	119
unit	< 0:01	1.0	149	0.03	96	< 0:01	1.0	238	0.05	147
fc + st	0:01	2.0	285	0.09	100	0:01	1.9	797	0.26	108
fc + costs	0:04	29.6	4 149	6.49	263	1:30	52.7	15 912	80.88	184
fc + dist.	0:14	49.9	8 348	20.21	78	3:58	99.4	31 279	202.15	153
fc + unit	0:06	25.7	4 923	5.13	112	0:17	27.0	11 319	16.04	200
costs + dist.	0:02	29.6	3 947	4.87	119	1:11	67.2	19775	67.75	160

Zusammenfassung

- Berechnung der Pareto-Menge nicht effizient möglich
- Auch mit Beschleunigungstechniken exponentielle Laufzeit
- Laufzeit in der Praxis stark abhängig von
 - Anzahl der Kriterien
 - Korrelation der Metriken
- Praktikable Laufzeit somit oft nur mit Heuristiken möglich
 - Relaxierung der Dominanz
 - Ausdünnen von Pareto-Mengen während der Query
 - Mehr dazu später. . .

Constrained Shortest Paths

Ziel:

- Finde kürzeste Route, die bestimmtes Gewicht nicht überschreitet
- Zwei Metriken auf den Kanten: Länge und Gewicht
- Optimiere die Länge und beschränke das Gewicht

Ziel:

- Finde kürzeste Route, die bestimmtes Gewicht nicht überschreitet
- Zwei Metriken auf den Kanten: Länge und Gewicht
- Optimiere die Länge und beschränke das Gewicht

Definition: Constrained Shortest Path Problem

Gegeben: G = (V, E), Länge $\ell \colon E \to \mathbb{N}_0$, Gewicht $\omega \colon E \to \mathbb{N}_0$,

Start und Ziel $s, t \in V$ sowie Schranken $L, W \in \mathbb{N}_0$

Problem: Existiert ein einfacher Pfad P von s nach t in G,

für den $\ell(P) \leq L$ und $\omega(P) \leq W$ gelten?

Das entsprechende Optimierungsproblem lautet:

■ Finde einen s-t-Pfad P mit minimalem $\ell(P)$ und $\omega(P) \leq W$

Theorem

Constrained Shortest Path Problem ist (schwach) \mathcal{NP} -vollständig

Theorem

Constrained Shortest Path Problem ist (schwach) \mathcal{NP} -vollständig

Beweis:

1: CSP $\in \mathcal{NP}$

- Für einen Pfad *P* kann in polynomieller Zeit geprüft werden:
 - P benutzt nur Kanten aus G
 - P hat passende Länge: $\ell(P) \leq L$
 - P hat passendes Gewicht: $\omega(P) \leq W$
- **2:** CSP ist \mathcal{NP} -schwer
 - Beweis durch Reduktion von Partition

Partition

Definition: Partition

Gegeben: Endliche Menge A sowie Größe $f: A \to \mathbb{N}_0$ **Problem:** Existiert ein Teilmenge $A' \subseteq A$, für die gilt:

$$\sum_{a \in A'} f(a) = \sum_{a \in A \setminus A'} f(a)$$

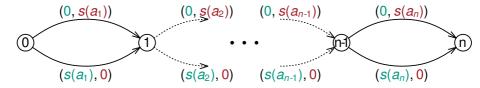
Anmerkung:

- In Karps 21 NP-vollständigen Problemen enthalten [Kar72]
- Partition ist (schwach) \mathcal{NP} -vollständig
 - lacktriangledown $\mathcal{NP} ext{-Schwere-Beweis benötigt exponentiell große Zahlen}$
 - In pseudopolynomieller Zeit lösbar (Dynamische Programmierung)
 - Pseudopolynomielle Laufzeit: Abhängig von Eingabegröße + Werten

Beweis: CSP ist \mathcal{NP} -vollständig

Reduktion von Partition:

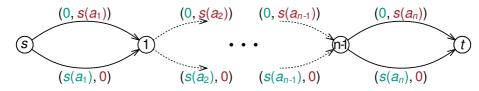
- Sei $\Pi = (A = \{a_1, \dots, a_n\}, f)$ eine Partition-Instanz
- Konstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, ..., n\})$
- Knoten i-1 und i sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht f(a_i)
 - Die andere Kante hat Länge $f(a_i)$ und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum_{a \in A} f(a)$



Beweis: CSP ist \mathcal{NP} -vollständig

Reduktion von Partition:

- Sei $\Pi = (A = \{a_1, \dots, a_n\}, f)$ eine Partition-Instanz
- Konstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, ..., n\})$
- Knoten i-1 und i sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht $f(a_i)$
 - Die andere Kante hat Länge $f(a_i)$ und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum_{a \in A} f(a)$



Es gilt:

■ Π ist Partition-Ja-Instanz \Leftrightarrow $(G, \ell, \omega, L, W, s, t)$ ist CSP-Ja-Instanz

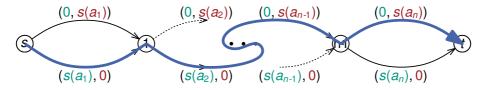
Lehrstuhl Algorithmik

П

Beweis: CSP ist \mathcal{NP} -vollständig

Reduktion von Partition:

- Sei $\Pi = (A = \{a_1, \dots, a_n\}, f)$ eine Partition-Instanz
- Konstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, ..., n\})$
- Knoten i-1 und i sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht f(a_i)
 - Die andere Kante hat Länge $f(a_i)$ und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum_{a \in A} f(a)$



Beispiel:

• s-t-Pfad P entspricht: $a_1 \notin A', a_2 \notin A', \dots, a_{n-1} \in A', a_n \in A'$

П

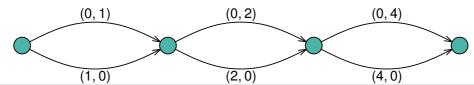
CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

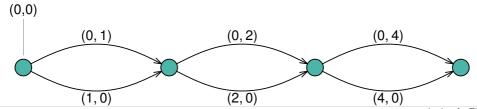
- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

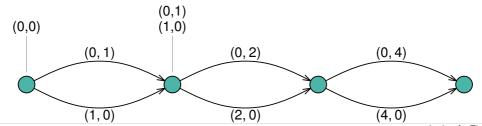
- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden (0,3) (1,2) (1,2) (0,1) (2,1) (2,1) (3,0) (0,1) (0,2) (0,4)

Verwerfe Label mit Gewicht > W

(0.7)

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen

Erinnerung:MCD hält pro KnotenPareto-Mengen könner exponentiell groß werd	1	r Pfade (0,3) (1,2)	(1,6) (2,5) (3,4) (4,3) (5,2)
(0,0)	(0,1) (1,0)	(2,1) (3,0)	(6,1) (7,0)
(0,	1)	(0, 2)	, 4)

(2,0)

(4, 0)

(1,0)

Schnellste zulässige Route

Verbesserungen: Standard-Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target-Pruning

Schnellste zulässige Route

Verbesserungen: Standard-Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target-Pruning

Beobachtung: Wir brauchen nicht alle Pareto-Optima an *t*:

- Sind nur an kürzester zulässiger Route interessiert
- Stoppe, sobald erstes Label an t aus Queue genommen (Annahme: Queue ist nach L\u00e4nge sortiert)

Zusammenfassung

- Multikriterielle Optimierung
 - Verallgemeinerung zu Multi-Criteria Dijkstra
 - Anpassung von Beschleunigungstechniken
- Constrained Shortest Paths
 - $ightharpoonup \mathcal{NP}$ -schwer
 - Anpassung MC-Dijkstra

Literatur L

Daniel Delling and Dorothea Wagner.

Pareto paths with SHARC.

In Proceedings of the 8th International Symposium on Experimental Algorithms (SEA'09), volume 5526 of Lecture Notes in Computer Science, pages 125-136. Springer, June 2009.

Richard M. Karp.

Reducibility among combinatorial problems.

In Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.