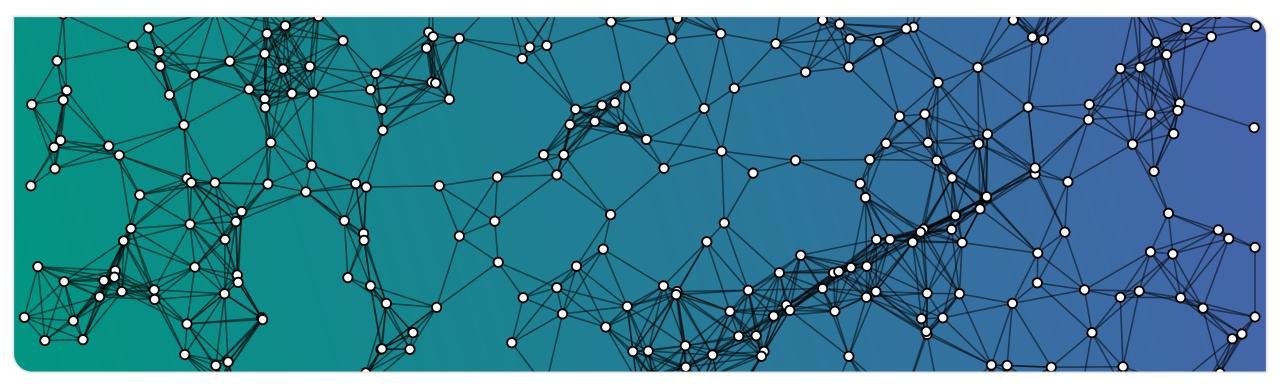


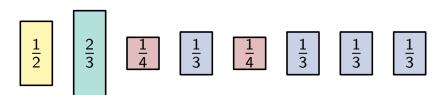
Algorithmen 1

Sortierte Folgen und Suchbäume

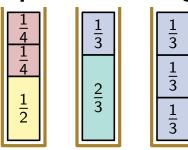


Bin-Packing: Umzugskisten packen

- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten



Optimale Lösung

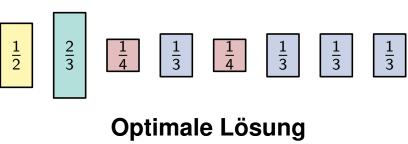


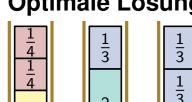
Bin-Packing: Umzugskisten packen

- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



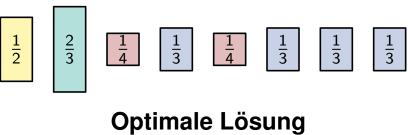


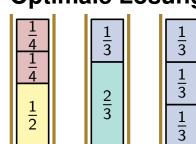
Bin-Packing: Umzugskisten packen

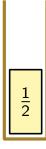
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt





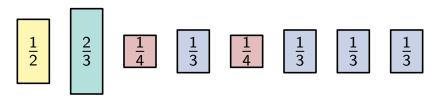


Bin-Packing: Umzugskisten packen

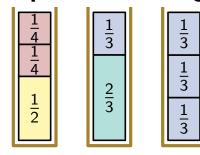
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

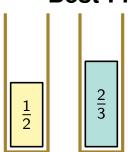
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



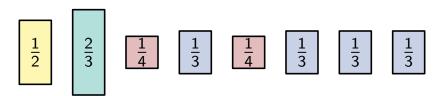


Bin-Packing: Umzugskisten packen

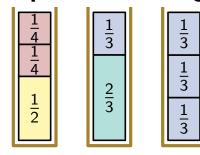
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

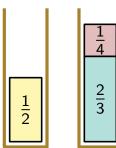
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



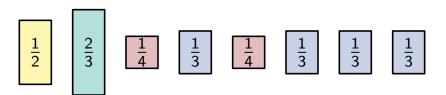


Bin-Packing: Umzugskisten packen

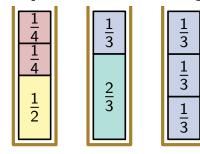
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

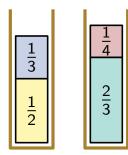
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



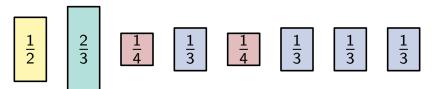


Bin-Packing: Umzugskisten packen

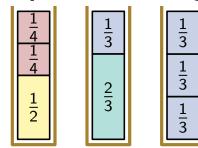
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

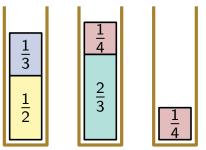
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



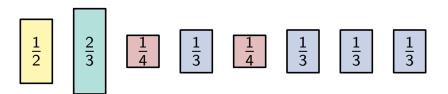


Bin-Packing: Umzugskisten packen

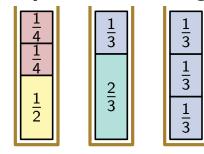
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



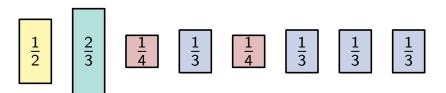
1	$\frac{1}{4}$	
$\frac{1}{3}$		
1	<u>2</u> 3	$\frac{1}{3}$
$\frac{1}{2}$	3	$\frac{1}{4}$

Bin-Packing: Umzugskisten packen

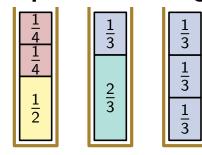
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



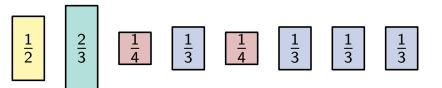
$\frac{1}{3}$	1/4	$\frac{1}{3}$	
1/2	<u>2</u> 3	$\frac{\frac{1}{3}}{\frac{1}{4}}$	

Bin-Packing: Umzugskisten packen

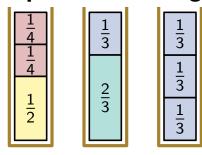
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

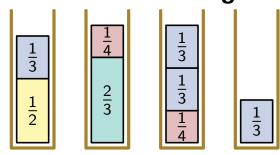
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt



Optimale Lösung



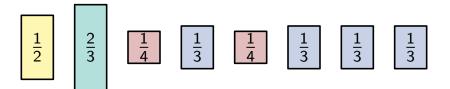


Bin-Packing: Umzugskisten packen

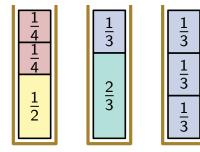
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

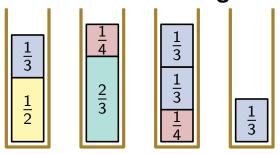
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt
- Anmerkung: nicht optimal, aber brauchbare Approximation



Optimale Lösung



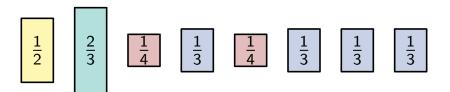


Bin-Packing: Umzugskisten packen

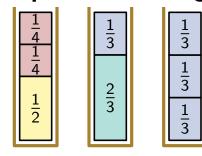
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

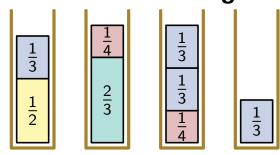
Best-Fit Strategie

- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt
- Anmerkung: nicht optimal, aber brauchbare Approximation
- Ziel heute: $O(\log n)$ pro Schritt



Optimale Lösung





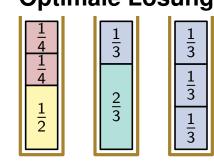
Bin-Packing: Umzugskisten packen

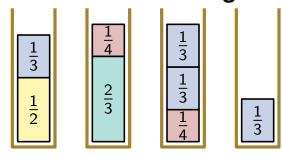
- gegeben: Gegenstände unterschiedlicher Größe
- hier: Größe ist eine Zahl aus [0, 1]
- in jede Kiste passen Gegenstände mit Gesamtgröße 1
- Ziel: packe alle Gegenstände in möglichst wenige Kisten

Best-Fit Strategie

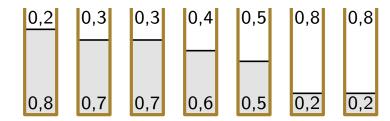
- pro Schritt: füge einen Gegenstand in eine Kiste ein
- Freiheitsgrad: Wahl der Kiste
- hier: möglichst volle Kiste, in die der Gegenstand passt
- Anmerkung: nicht optimal, aber brauchbare Approximation
- Ziel heute: $O(\log n)$ pro Schritt

Warum eignen sich unsere bisherigen Datenstrukturen nicht?



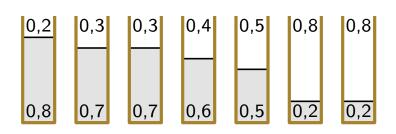


Füllgrad der Bins:



Array sortiert nach freier Kapazität:

Füllgrad der Bins:



0,6

Array sortiert nach freier Kapazität:

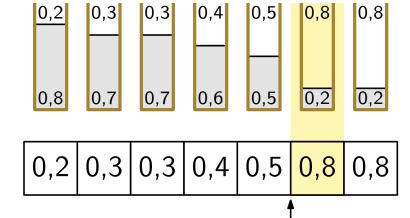
0,2 0,3	0,3	0,4	0,5	0,8	0,8
---------	-----	-----	-----	-----	-----

Super: richtigen Bin finden

- Ziel: Gegenstand der Größe x einfügen
- binäre Suche nach $x \to Bin$ mit kleinster freier Kapazität $\geq x$
- Kosten: $O(\log n)$

0,6

Füllgrad der Bins:



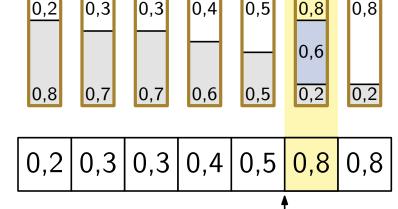
0,6

Array sortiert nach freier Kapazität:

Super: richtigen Bin finden

- Ziel: Gegenstand der Größe x einfügen
- lacktriangle binäre Suche nach $x \to Bin$ mit kleinster freier Kapazität $\geq x$
- Kosten: $O(\log n)$

Füllgrad der Bins:



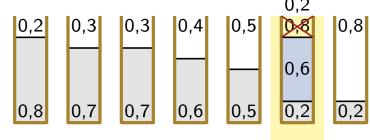
0,6

Array sortiert nach freier Kapazität:

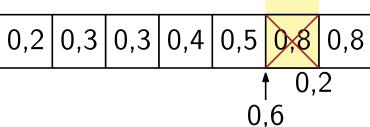
Super: richtigen Bin finden

- Ziel: Gegenstand der Größe x einfügen
- binäre Suche nach $x \to Bin$ mit kleinster freier Kapazität $\ge x$
- Kosten: $O(\log n)$

Füllgrad der Bins:



Array sortiert nach freier Kapazität:



Super: richtigen Bin finden

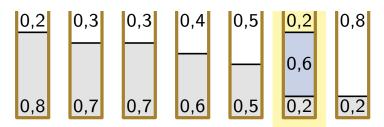
- Ziel: Gegenstand der Größe x einfügen
- binäre Suche nach $x \to Bin$ mit kleinster freier Kapazität $\geq x$
- Kosten: $O(\log n)$

Problem: Array sortiert halten

- Zielposition des Bins kann wieder leicht gefunden werden (binäre Suche)
- Element verschieben: ggf. müssen $\Theta(n)$ Elemente angefasst werden

Versuch 2: sortierte Liste

Füllgrad der Bins:



Liste sortiert nach freier Kapazität:

Super: Einträge umhängen geht schnell

nur ein paar Zeiger umhängen

Versuch 2: sortierte Liste

Liste sortiert nach freier Kapazität: 0,2 0,2 0,3 0,3 0,4 0,5 0,8

Super: Einträge umhängen geht schnell

nur ein paar Zeiger umhängen

Versuch 2: sortierte Liste

Liste sortiert nach freier Kapazität: 0,2 0,2 0,3 0,3 0,4 0,5 0,8

Super: Einträge umhängen geht schnell

nur ein paar Zeiger umhängen

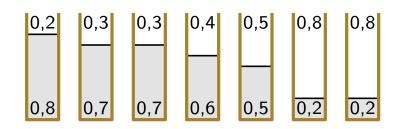
Problem: Richtiges Bin finden

- keine binäre Suche, da kein wahlfreier Zugriff
- kostet ggf. $\Theta(n)$

Versuch 3: Hashing oder Heaps

Hashing

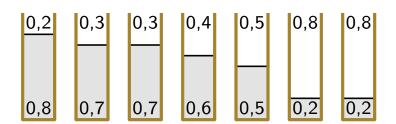
- kann nur exakte Anfragen
- wir können schnell rausfinden, ob es einen Bin gibt, in den der neue Gegenstand genau rein passt
- nächstkleinere freie Kapazität finden geht nicht



Versuch 3: Hashing oder Heaps

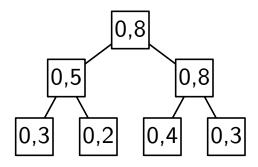
Hashing

- kann nur exakte Anfragen
- wir können schnell rausfinden, ob es einen Bin gibt, in den der neue Gegenstand genau rein passt
- nächstkleinere freie Kapazität finden geht nicht



Heaps

- Maximale freie Kapazität kann schnell gefunden werden
- darüber hinaus können wir nicht effizient suchen



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x=42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$

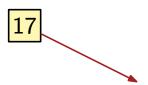
17

Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$



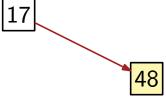
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$

Vergleich 2: *x* ≤



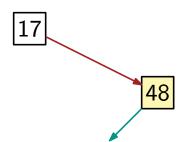
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$

Vergleich 2: $x \le$



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

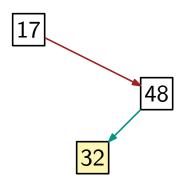
Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$

Vergleich 2: *x* ≤

Vergleich 3: $x \le$



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

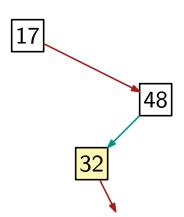
Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Vergleich 1: $x \le$

Vergleich 2: $x \le$

Vergleich 3: $x \le$



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

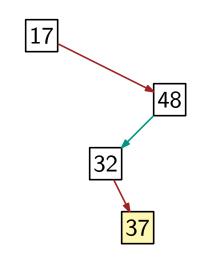
Problem der Liste: kein wahlfreier Zugriff auf mittleres Element

binäre Suche nach x = 42 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

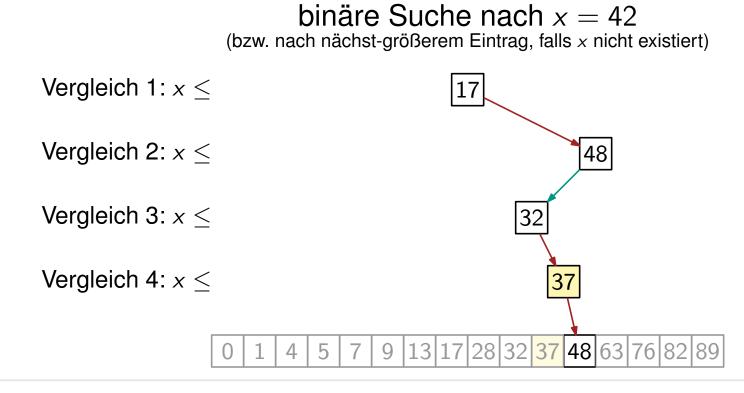
Vergleich 2: $x \le$

Vergleich 3: $x \le$

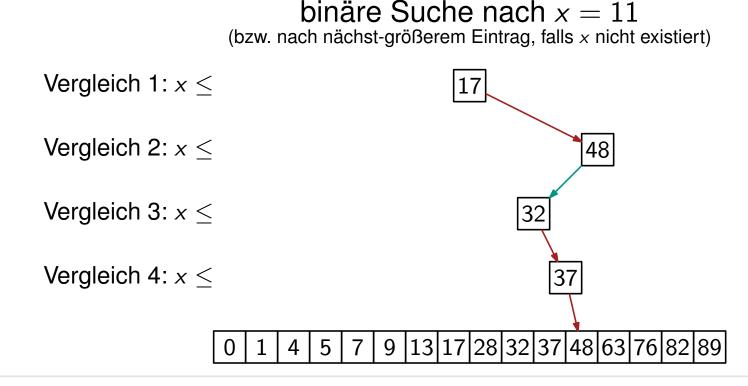
Vergleich 4: $x \le$



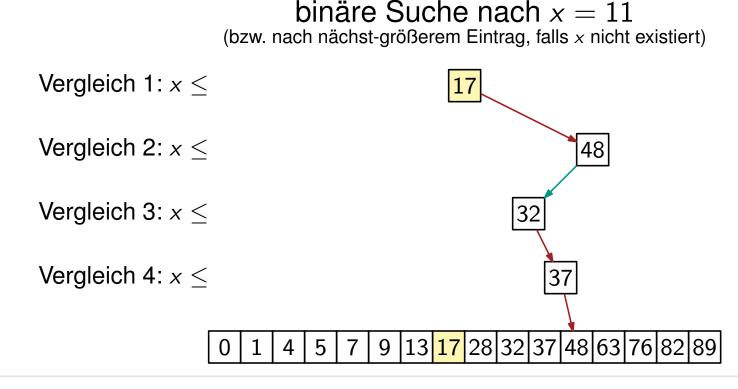
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



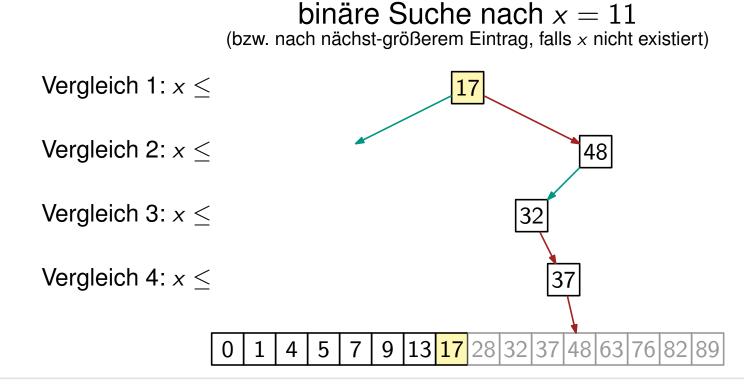
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



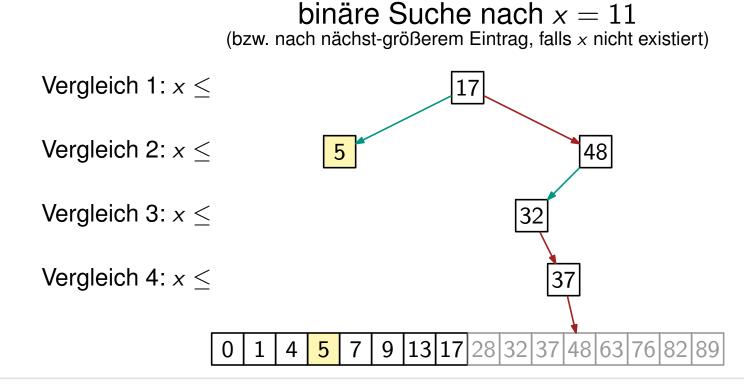
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



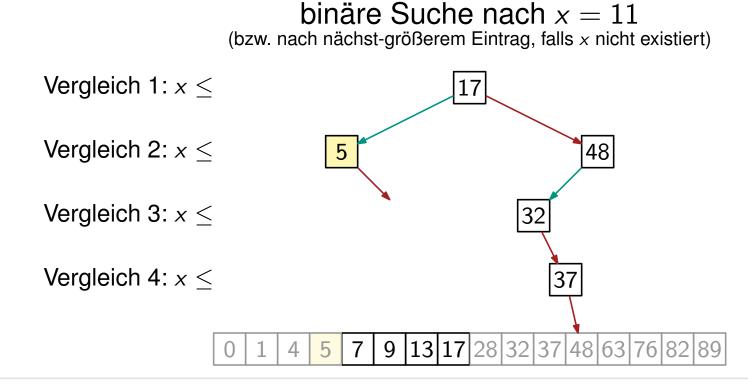
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



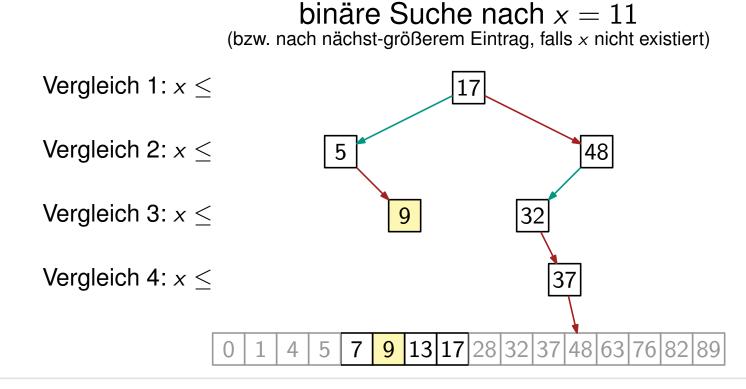
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



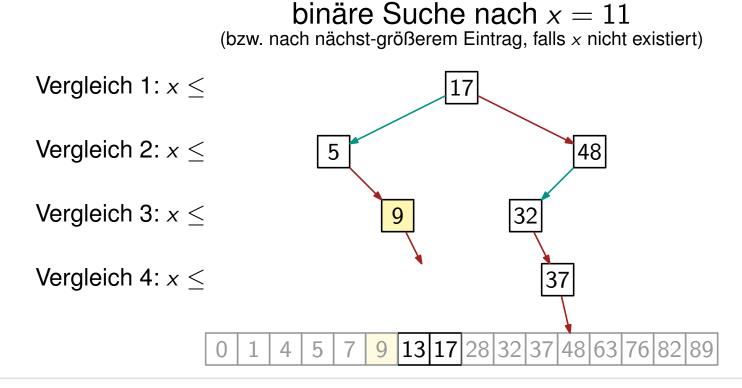
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



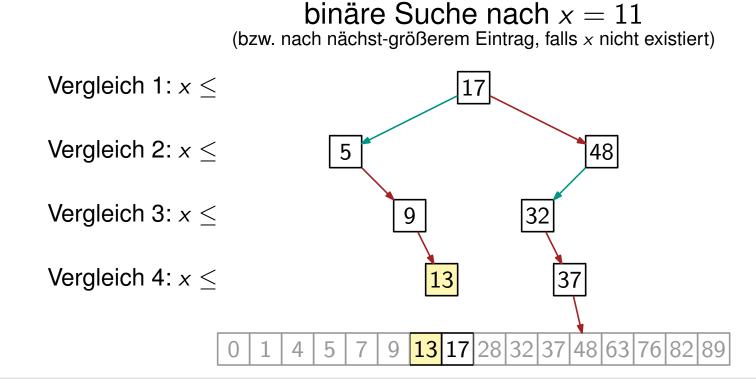
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



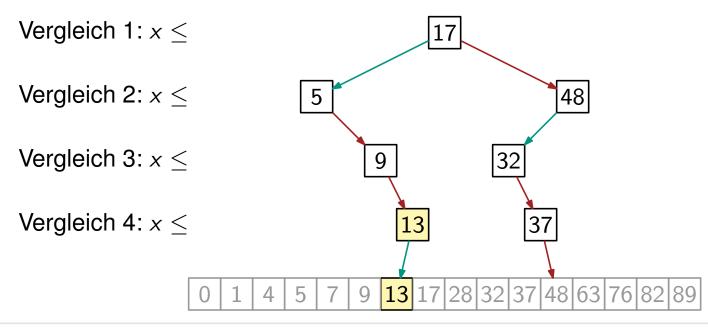
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

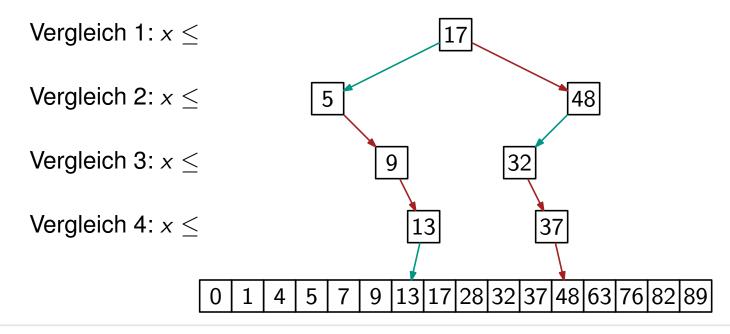


Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)



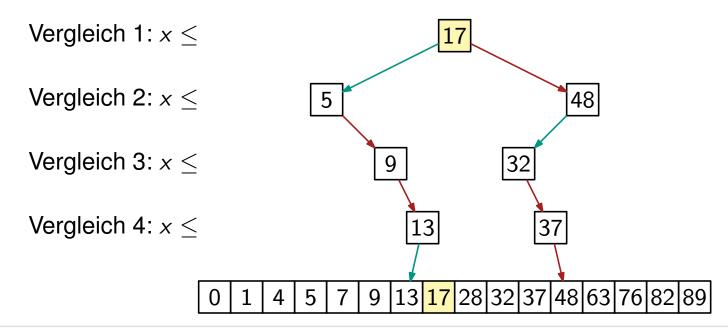
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



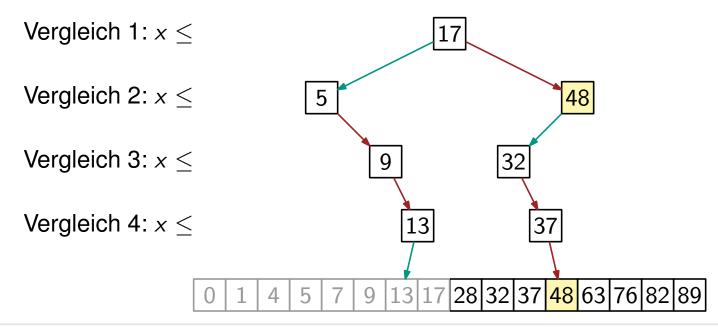
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



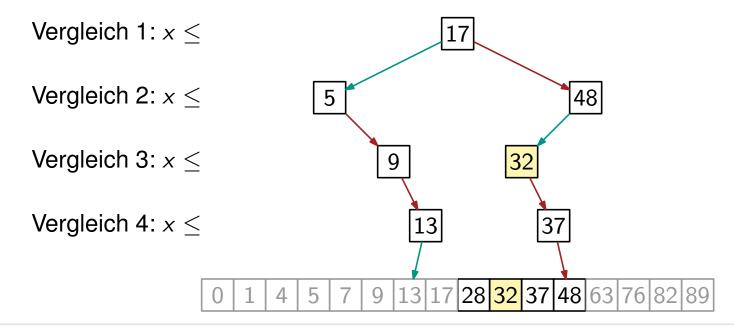
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



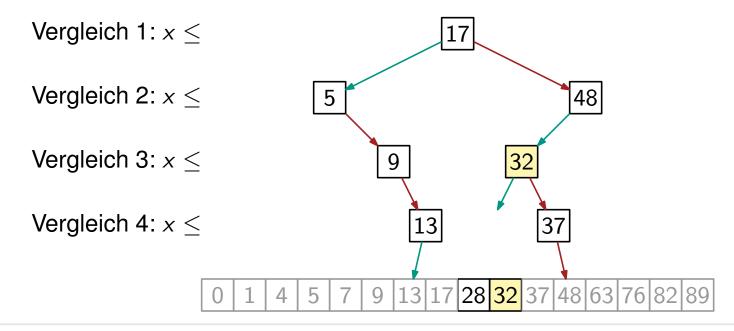
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



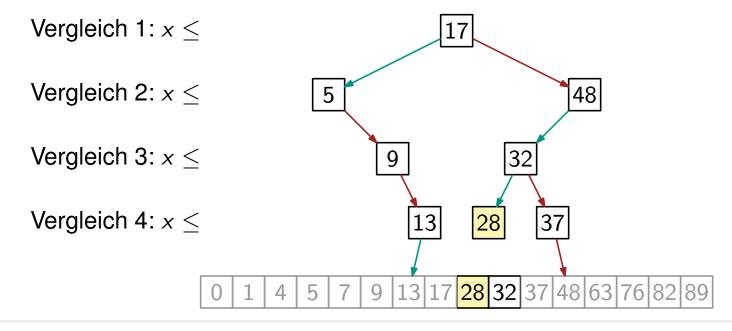
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



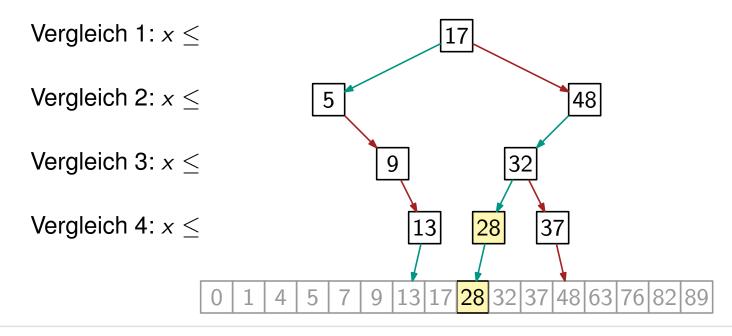
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



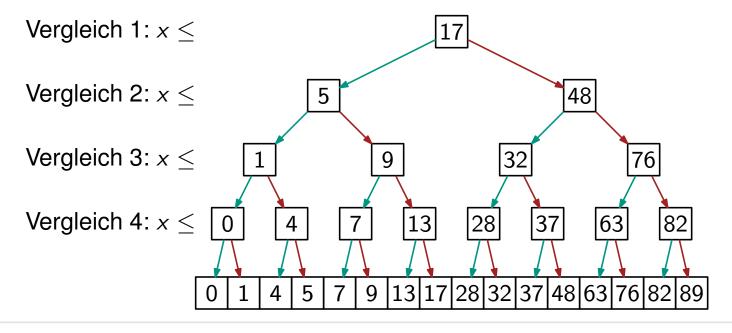
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



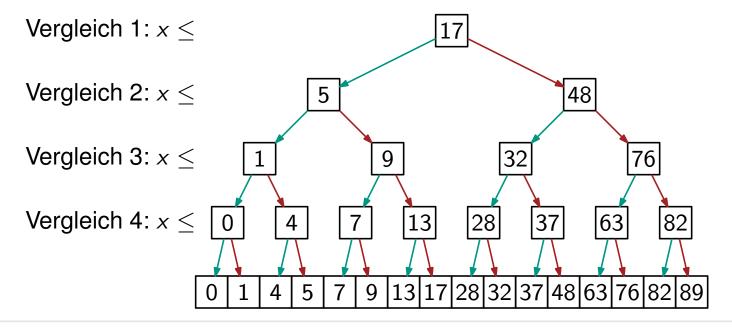
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

Problem der Liste: kein wahlfreier Zugriff auf mittleres Element



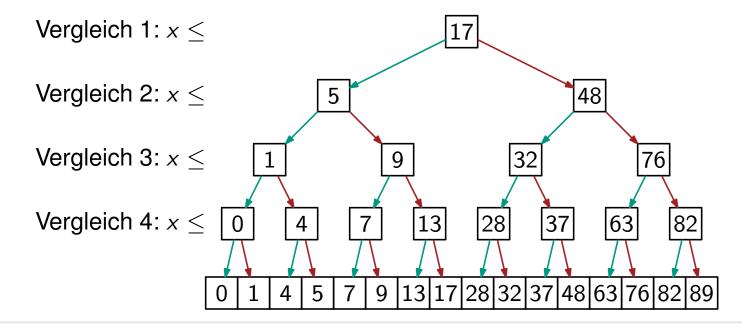
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

- Problem der Liste: kein wahlfreier Zugriff auf mittleres Element
- Beobachtung: wir fragen im Entscheidungsbaum immer die selben Elemente an



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

- Problem der Liste: kein wahlfreier Zugriff auf mittleres Element
- Beobachtung: wir fragen im Entscheidungsbaum immer die selben Elemente an
- wir brauchen nicht wirklich wahlfreien Zugriff
- wenn wir den Entscheidungsbaum speichern



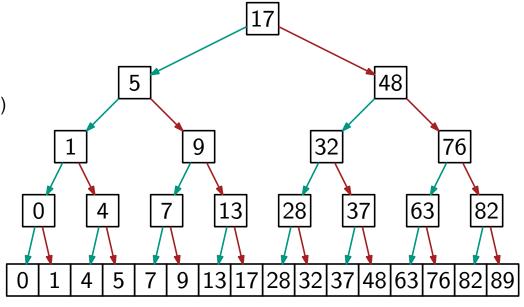
Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

- Problem der Liste: kein wahlfreier Zugriff auf mittleres Element
- Beobachtung: wir fragen im Entscheidungsbaum immer die selben Elemente an
- wir brauchen nicht wirklich wahlfreien Zugriff
- wenn wir den Entscheidungsbaum speichern

binäre Suche nach x=25 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

Plan: Suchbaum

- speichere sortierte Liste + Baum
- Suche: $O(\log n)$ dank Baum (simuliert eine binäre Suche)



Ziel: kombiniere Vorteile von Listen (Modifizierbarkeit) und Arrays (binäre Suche)

- Problem der Liste: kein wahlfreier Zugriff auf mittleres Element
- Beobachtung: wir fragen im Entscheidungsbaum immer die selben Elemente an
- wir brauchen nicht wirklich wahlfreien Zugriff
- wenn wir den Entscheidungsbaum speichern

binäre Suche nach x=25 (bzw. nach nächst-größerem Eintrag, falls x nicht existiert)

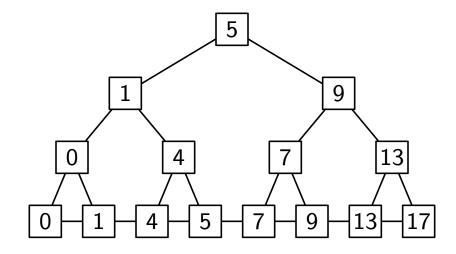
Plan: Suchbaum

- speichere sortierte Liste + Baum
- Suche: $O(\log n)$ dank Baum (simuliert eine binäre Suche)
- Einfügen und Löschen:
 - in der Liste selbst schnell (O(1) nach dem Suchen)
 - Hoffnung: Baum kann man schnell updaten



Binärer Suchbaum – Eigenschaften

- binär: jeder innere Knoten hat genau zwei Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)
- Suchbaum: für Knoten mit Schlüssel k gilt:
 - Knoten in linkem Teilbaum: ≤ k
 - Knoten in rechtem Teilbaum: > k



Suchbaum: Vorüberlegungen zum Update

Binärer Suchbaum – Eigenschaften

- binär: jeder innere Knoten hat genau zwei Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)
- Suchbaum: für Knoten mit Schlüssel k gilt:
 - Knoten in linkem Teilbaum: < k</p>
 - Knoten in rechtem Teilbaum: > k

1 9 0 4 7 13 0 1 4 5 7 9 13 17

Suchbaum-Eigenschaft

■ essentiell, da Suche sonst nicht funktioniert → müssen wir beim Update sicherstellen

Suchbaum: Vorüberlegungen zum Update

Binärer Suchbaum – Eigenschaften

- binär: jeder innere Knoten hat genau zwei Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)
- Suchbaum: für Knoten mit Schlüssel k gilt:
 - Knoten in linkem Teilbaum: ≤ k
 - Knoten in rechtem Teilbaum: > k

1 9 0 4 7 13 0 1 4 5 7 9 13 17

Suchbaum-Eigenschaft

■ essentiell, da Suche sonst nicht funktioniert → müssen wir beim Update sicherstellen

Binär und balanciert

■ sorgt für logarithmische Höhe → schnelle Suche

Suchbaum: Vorüberlegungen zum Update

Binärer Suchbaum – Eigenschaften

- binär: jeder innere Knoten hat genau zwei Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)
- Suchbaum: für Knoten mit Schlüssel k gilt:
 - Knoten in linkem Teilbaum: < k
 - Knoten in rechtem Teilbaum: > k

1 9 0 4 7 13 0 1 4 5 7 9 13 17

Suchbaum-Eigenschaft

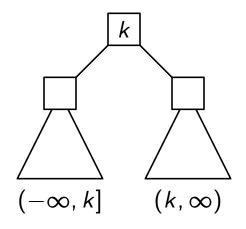
■ essentiell, da Suche sonst nicht funktioniert → müssen wir beim Update sicherstellen

Binär und balanciert

- sorgt für logarithmische Höhe → schnelle Suche
- etwas Unordnung ist ok: wir brauchen nicht beides exakt
- binär und halbwegs balanciert: rot-schwarz Baum
- halbwegs binär und perfekt balanciert: (a, b)-Baum \rightarrow heute

Suche nach x in binärem Suchbaum

- pro Knoten: in linken oder rechten Teilbaum absteigen
- Knoten speichert einen Schlüssel *k*
- Fall 1: $x \le k \to \text{linker Teilbaum}$
- Fall 2: $k < x \rightarrow$ rechter Teilbaum



Nicht-Binär: Suchbaum mit höherem Verzweigungsgrad

Suche nach x in binärem Suchbaum

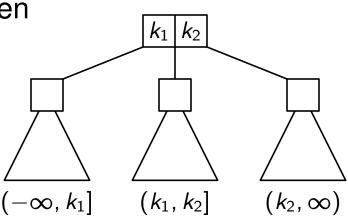
- pro Knoten: in linken oder rechten Teilbaum absteigen
- Knoten speichert einen Schlüssel *k*
- Fall 1: $x < k \rightarrow$ linker Teilbaum
- Fall 2: $k < x \rightarrow$ rechter Teilbaum

$(-\infty, k] \qquad (k, \infty)$

Suche nach x in Suchbaum mit 3 Kindern pro Knoten

pro Knoten: in linken, mittleren oder rechten Teilbaum absteigen

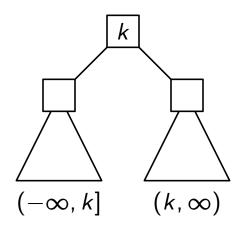
- Knoten speichert zwei Schlüssel k₁ und k₂
- Fall 1: $x < k_1 \rightarrow$ linker Teilbaum
- Fall 2: $k_1 < x \le k_2 \rightarrow$ mittlerer Teilbaum
- Fall 3: $k_2 < x \rightarrow$ rechter Teilbaum



Nicht-Binär: Suchbaum mit höherem Verzweigungsgrad

Suche nach x in binärem Suchbaum

- pro Knoten: in linken oder rechten Teilbaum absteigen
- Knoten speichert einen Schlüssel *k*
- Fall 1: $x < k \rightarrow$ linker Teilbaum
- Fall 2: $k < x \rightarrow$ rechter Teilbaum

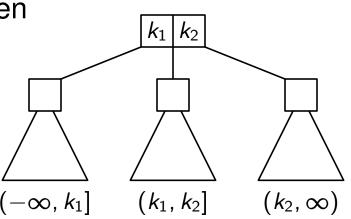


Suche nach x in Suchbaum mit 3 Kindern pro Knoten

pro Knoten: in linken, mittleren oder rechten Teilbaum absteigen

- Knoten speichert zwei Schlüssel k₁ und k₂
- Fall 1: $x < k_1 \rightarrow \text{linker Teilbaum}$
- Fall 2: $k_1 < x \le k_2 \rightarrow$ mittlerer Teilbaum
- Fall 3: $k_2 < x \rightarrow$ rechter Teilbaum

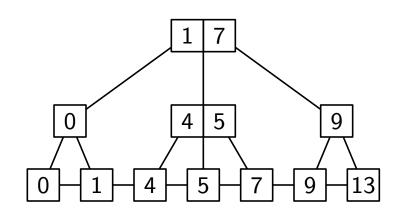
noch mehr Kinder: analog



(2,3)-Baum

Gewünschte Eigenschaften

- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)



(2,3)-Baum

Gewünschte Eigenschaften

- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)

1 7 0 4 5 9 0 1 4 5 7 9 13

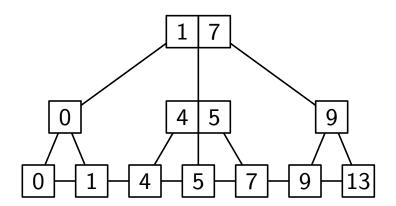
Beobachtungen & Anmerkungen

- Höhe ist logarithmisch:
 - die Anzahl Knoten pro Lage wachsen exponentiell (mindestens Faktor 2)
 - daher: nur logarithmisch viele Lagen

(2,3)-Baum

Gewünschte Eigenschaften

- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)



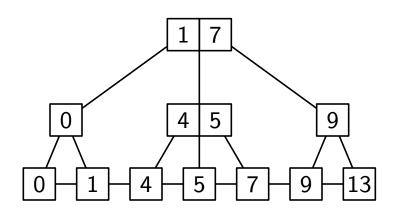
Beobachtungen & Anmerkungen

- Höhe ist logarithmisch:
 - die Anzahl Knoten pro Lage wachsen exponentiell (mindestens Faktor 2)
 - daher: nur logarithmisch viele Lagen
- Möglichkeit für 2 oder 3 Kinder gibt Flexibilität beim Einfügen und Löschen

(2, 3)-Baum

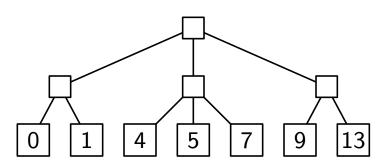
Gewünschte Eigenschaften

- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe (Distanz zur Wurzel)



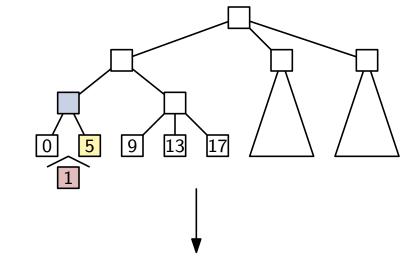
Beobachtungen & Anmerkungen

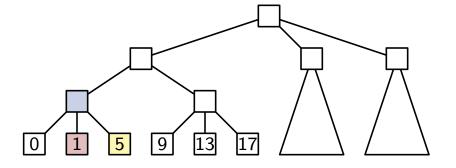
- Höhe ist logarithmisch:
 - die Anzahl Knoten pro Lage wachsen exponentiell (mindestens Faktor 2)
 - daher: nur logarithmisch viele Lagen
- Möglichkeit für 2 oder 3 Kinder gibt Flexibilität beim Einfügen und Löschen
- im Folgenden: vereinfachte Darstellung
 - Fokus auf die Baumstruktur
 - Schlüssel in den Knoten erstmal ignorieren
 (wenn die Baumstruktur passt, dann bekommt man die Schlüssel sicher auch noch hin)



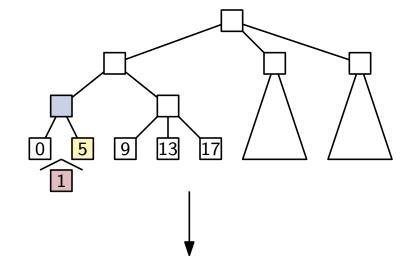
Karlsruher Institut für Technologie

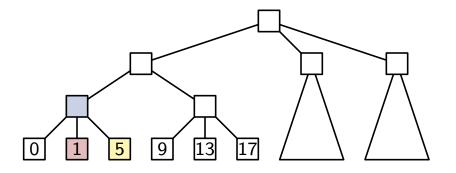
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein



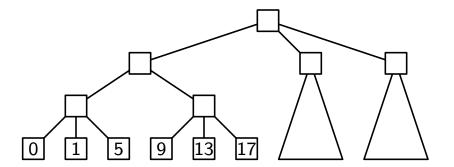


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder → alles gut

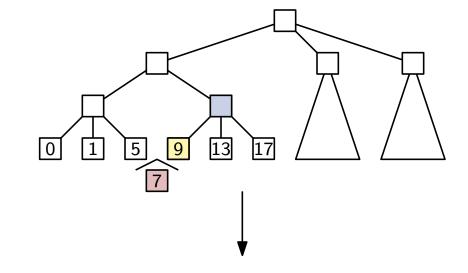


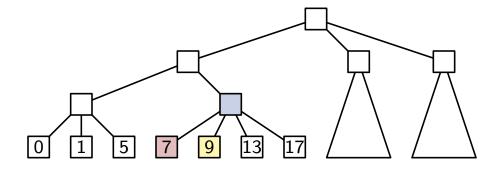


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder → alles gut

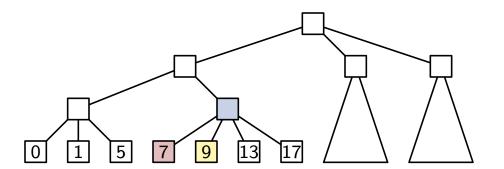


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder → alles gut

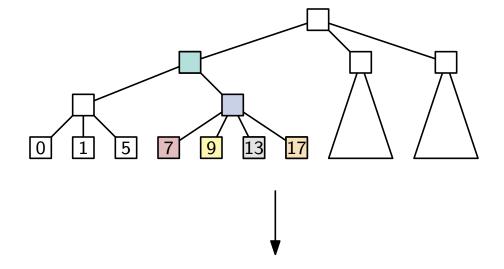


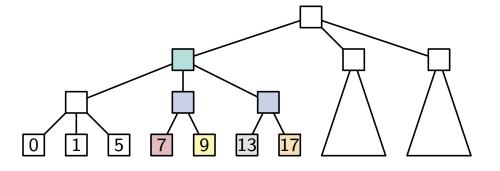


- richtige Stelle zum Einfügen finden
 → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder → alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten

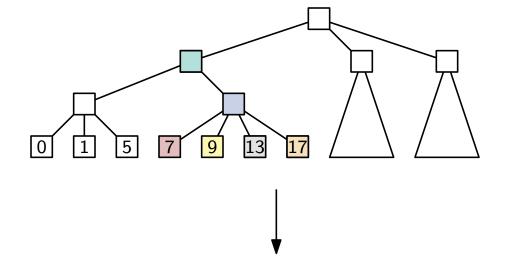


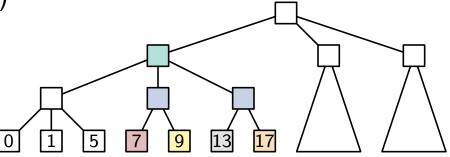
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher



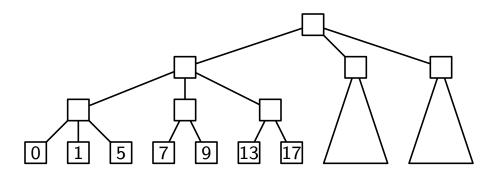


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur $O(\log n)$ oft passieren (Höhe des Baumes)





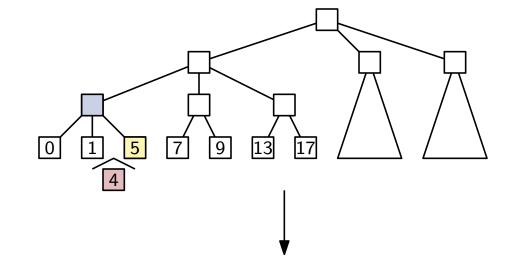
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur O(log n) oft passieren (Höhe des Baumes)

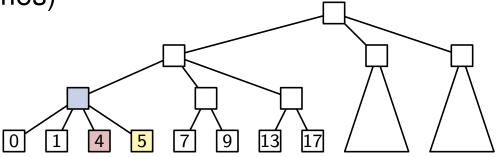


Plan

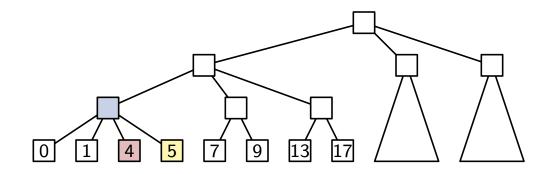
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder → alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben

■ kann nur $O(\log n)$ oft passieren (Höhe des Baumes)





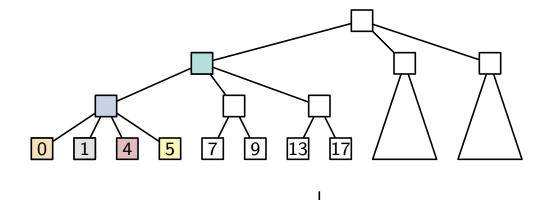
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur O(log n) oft passieren (Höhe des Baumes)

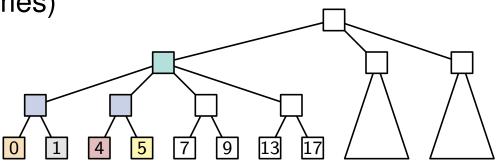


Plan

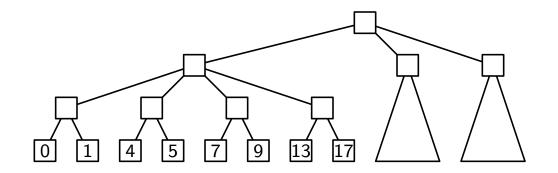
- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben

■ kann nur $O(\log n)$ oft passieren (Höhe des Baumes)

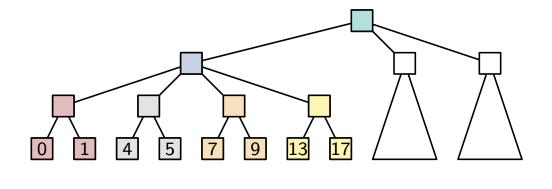


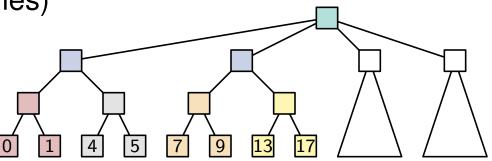


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur $O(\log n)$ oft passieren (Höhe des Baumes)

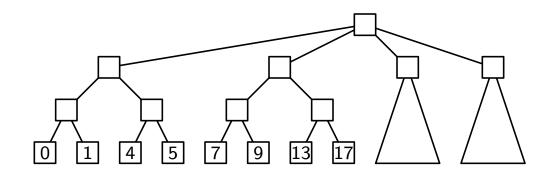


- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur O(log n) oft passieren (Höhe des Baumes)





- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur O(log n) oft passieren (Höhe des Baumes)

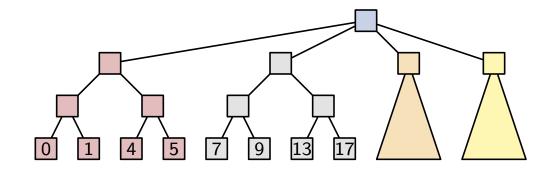


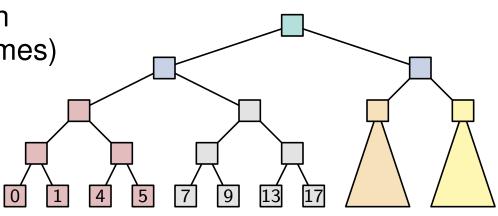
Plan

- richtige Stelle zum Einfügen finden
 - → Elter b des Nachfolgers
- füge neues Blatt einfach als Kind von b ein
- Fall 1: b hat danach 3 Kinder \rightarrow alles gut
- Fall 2: b hat danach 4 Kinder → aufspalten
 - erzeugt 2 Knoten mit je 2 Kindern
 - Elter a von b hat dann ein Kind mehr als vorher
 - verschiebt Problem Schritt für Schritt nach oben
 - kann nur O(log n) oft passieren (Höhe des Baumes)

Anmerkung

■ Aufspaltung der Wurzel → neue Wurzel





Neues Blatt einfügen

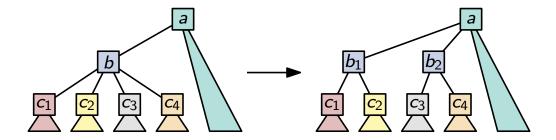
- Schritt 1: erstmal einfach neues Blatt an der richtigen Stelle einfügen
- Schritt 2: Knoten mit 4 Kindern aufspalten

Neues Blatt einfügen

- Schritt 1: erstmal einfach neues Blatt an der richtigen Stelle einfügen
- Schritt 2: Knoten mit 4 Kindern aufspalten

Aufspalten

- ersetze b durch b_1 mit Kindern c_1 und c_2 , sowie b_2 mit Kindern c_3 und c_4
- lacktriangle a hat ein Kind mehr \rightarrow ggf. rekursiv aufspalten



Neues Blatt einfügen

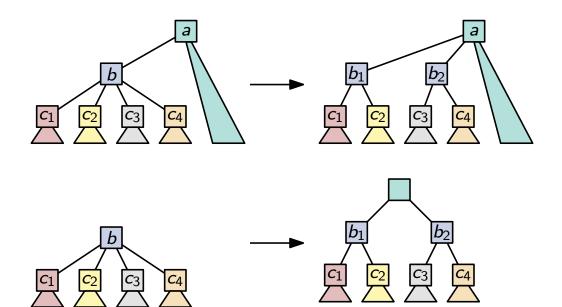
- Schritt 1: erstmal einfach neues Blatt an der richtigen Stelle einfügen
- Schritt 2: Knoten mit 4 Kindern aufspalten

Aufspalten

- ersetze b durch b_1 mit Kindern c_1 und c_2 , sowie b_2 mit Kindern c_3 und c_4
- lacktriangle a hat ein Kind mehr \rightarrow ggf. rekursiv aufspalten

Aufspalten (Wurzel)

- wie sonst: aufspalten von b in b_1 und b_2
- neue Wurzel mit Kindern *b*₁ und *b*₂



Neues Blatt einfügen

- Schritt 1: erstmal einfach neues Blatt an der richtigen Stelle einfügen
- Schritt 2: Knoten mit 4 Kindern aufspalten

Aufspalten

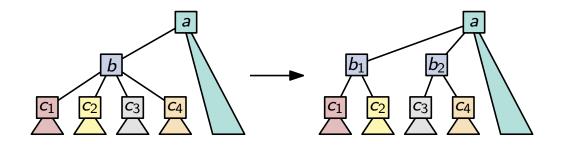
- ersetze b durch b_1 mit Kindern c_1 und c_2 , sowie b_2 mit Kindern c_3 und c_4
- lacktriangle a hat ein Kind mehr \rightarrow ggf. rekursiv aufspalten

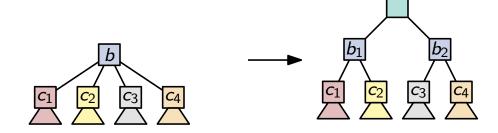
Aufspalten (Wurzel)

- wie sonst: aufspalten von b in b_1 und b_2
- neue Wurzel mit Kindern b₁ und b₂

Invarianten

- jedes Blatt hat die gleiche Tiefe
- höchstens ein Knoten hat nicht 2 oder 3 Kinder





(und dieser wandert mit jeder Aufspaltung nach oben)

Existierendes Blatt entfernen

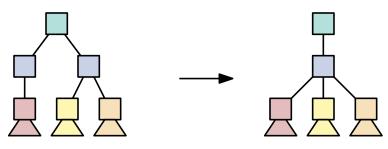
- Schritt 1: erstmal entsprechendes Blatt einfach löschen
- Schritt 2: Knoten mit nur einem Kind aufräumen

Existierendes Blatt entfernen

- Schritt 1: erstmal entsprechendes Blatt einfach löschen
- Schritt 2: Knoten mit nur einem Kind aufräumen

Geschwister mit 2 Kindern: Verschmelzen

- verschmelze mit Geschwisterknoten
- Elter hat ein Kind weniger → ggf. rekursiv aufräumen



Existierendes Blatt entfernen

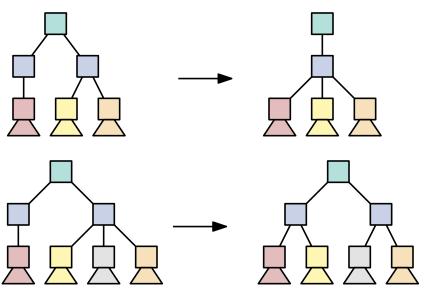
- Schritt 1: erstmal entsprechendes Blatt einfach löschen
- Schritt 2: Knoten mit nur einem Kind aufräumen

Geschwister mit 2 Kindern: Verschmelzen

- verschmelze mit Geschwisterknoten
- Elter hat ein Kind weniger → ggf. rekursiv aufräumen

Geschwister mit 3 Kindern: Ausbalancieren

verschiebe eins der Kinder (inklusive Teilbaum)



Existierendes Blatt entfernen

- Schritt 1: erstmal entsprechendes Blatt einfach löschen
- Schritt 2: Knoten mit nur einem Kind aufräumen

Geschwister mit 2 Kindern: Verschmelzen

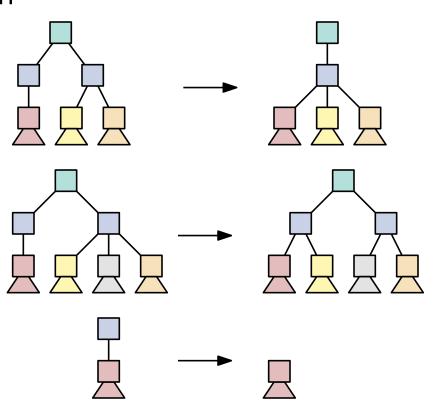
- verschmelze mit Geschwisterknoten
- Elter hat ein Kind weniger → ggf. rekursiv aufräumen

Geschwister mit 3 Kindern: Ausbalancieren

verschiebe eins der Kinder (inklusive Teilbaum)

Wurzel hat nur 1 Kind

lösche die Wurzel (Höhe des Baums sinkt um 1)



Existierendes Blatt entfernen

- Schritt 1: erstmal entsprechendes Blatt einfach löschen
- Schritt 2: Knoten mit nur einem Kind aufräumen

Geschwister mit 2 Kindern: Verschmelzen

- verschmelze mit Geschwisterknoten
- Elter hat ein Kind weniger → ggf. rekursiv aufräumen

Geschwister mit 3 Kindern: Ausbalancieren

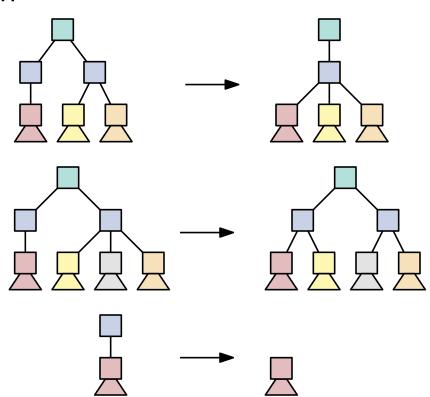
verschiebe eins der Kinder (inklusive Teilbaum)

Wurzel hat nur 1 Kind

lösche die Wurzel (Höhe des Baums sinkt um 1)

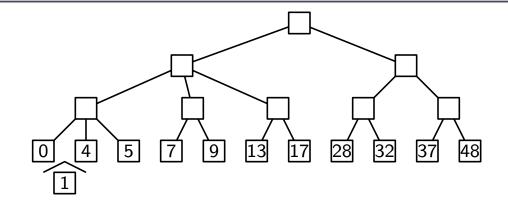
Invarianten

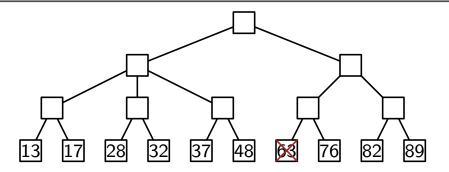
- jedes Blatt hat die gleiche Tiefe
- höchstens ein Knoten hat nicht 2 oder 3 Kinder

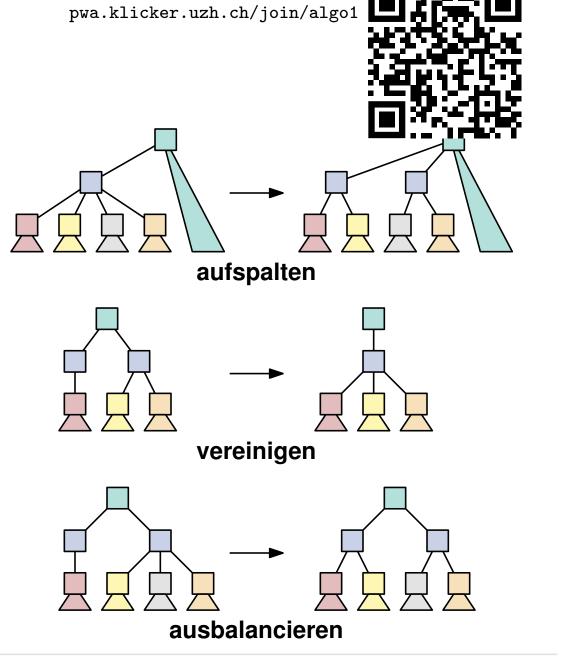


(und dieser wandert mit jeder Aufspaltung nach oben)

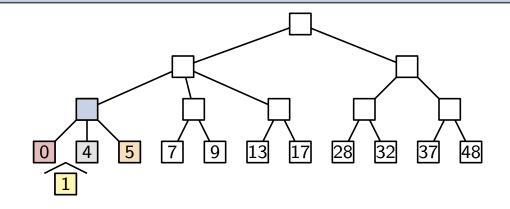
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

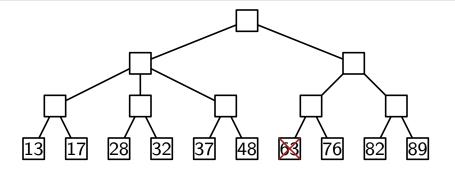


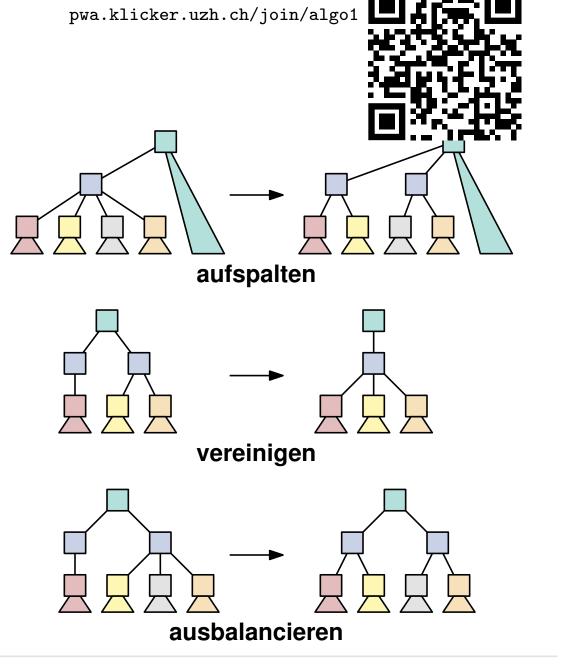




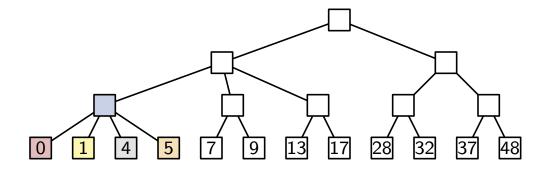
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

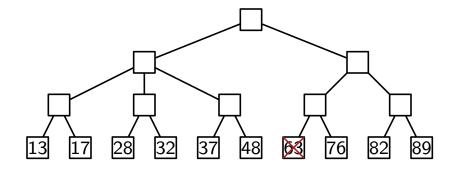


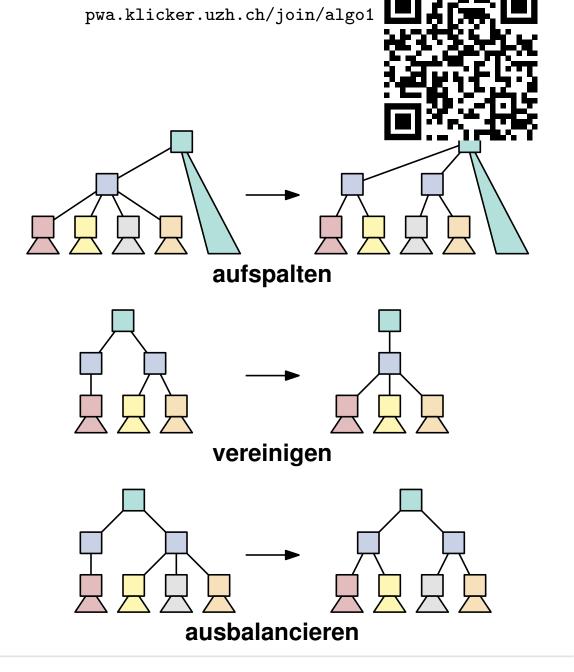




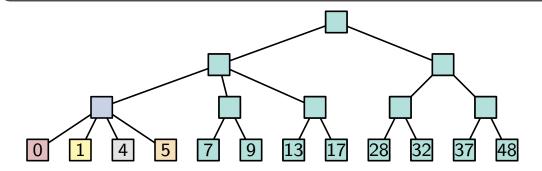
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

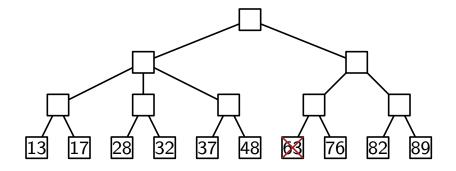


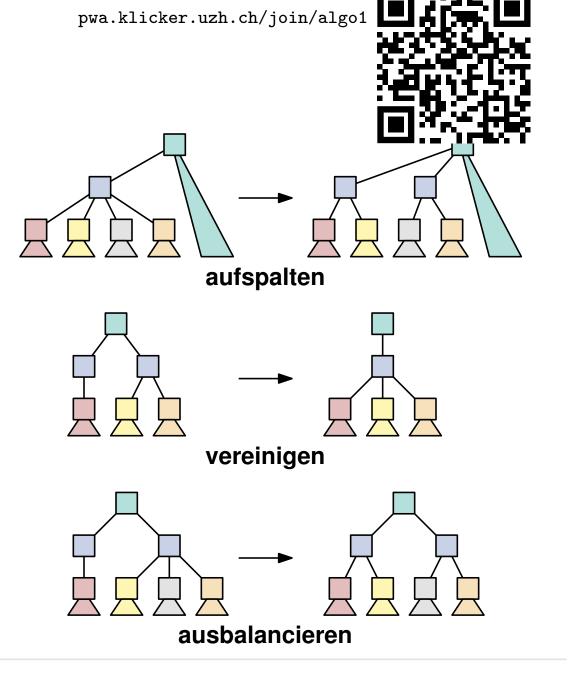




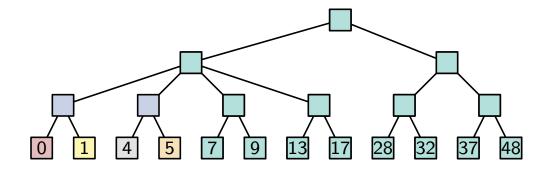
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

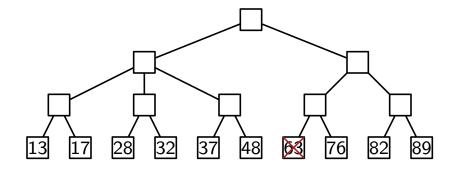


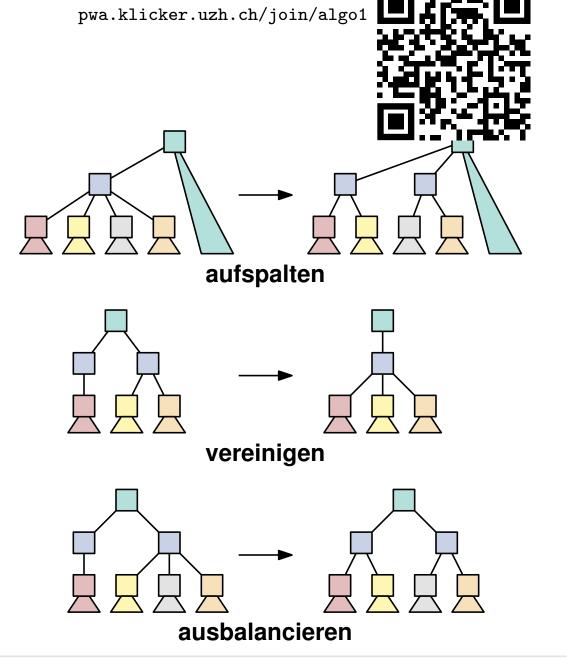




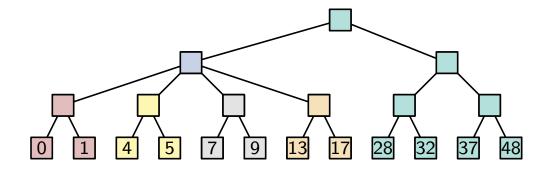
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

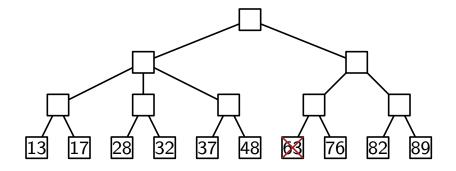


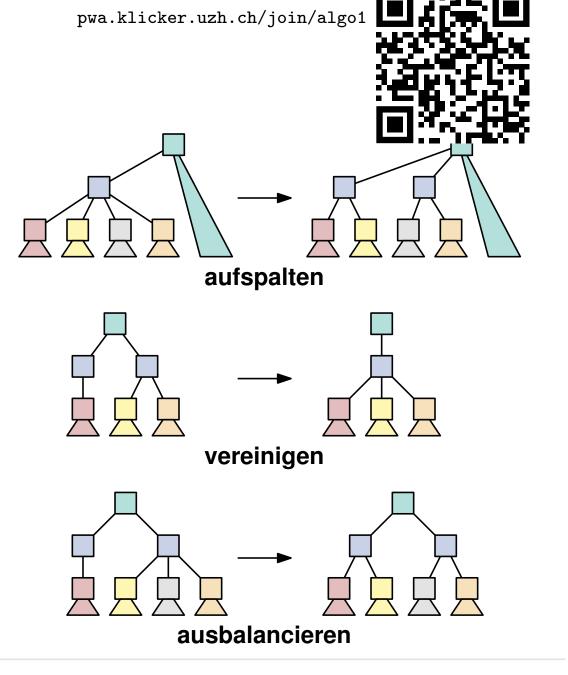




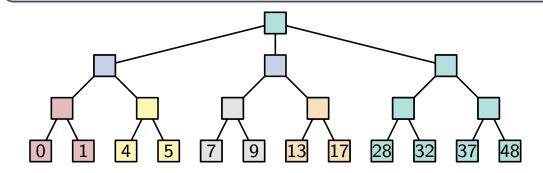
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

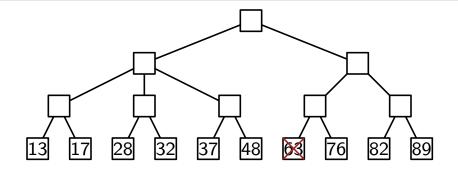


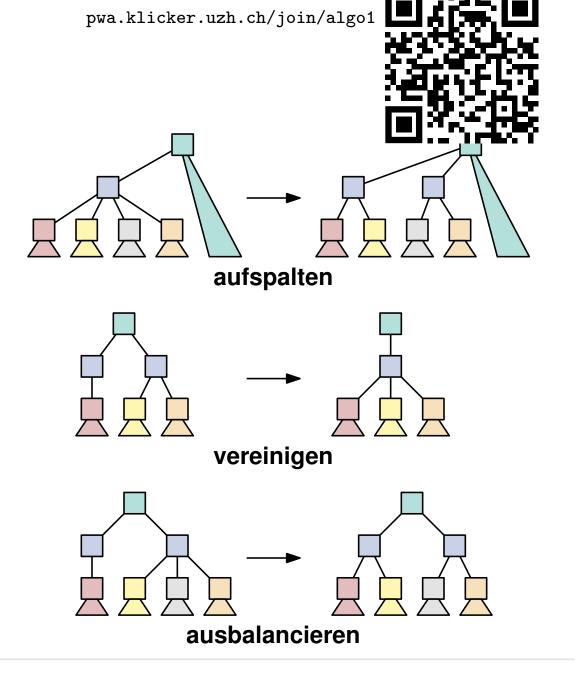




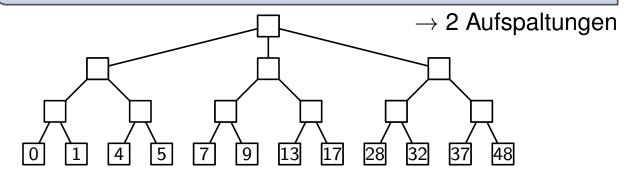
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

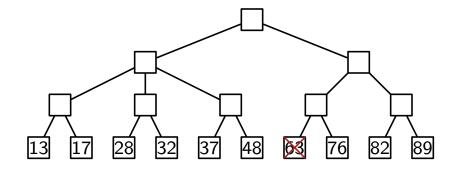


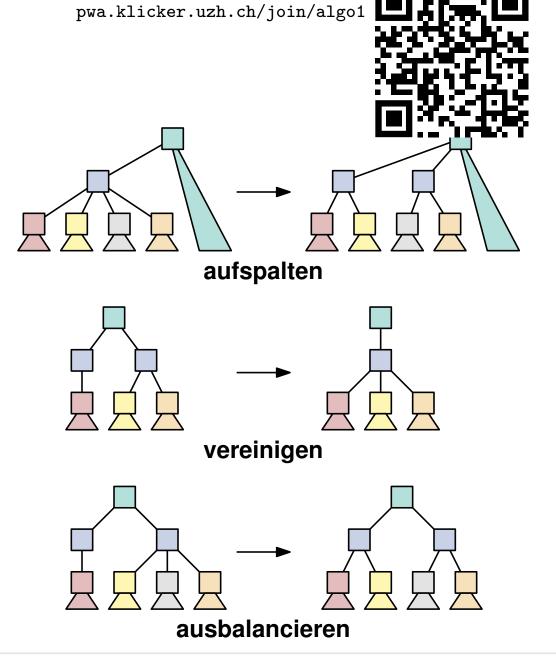




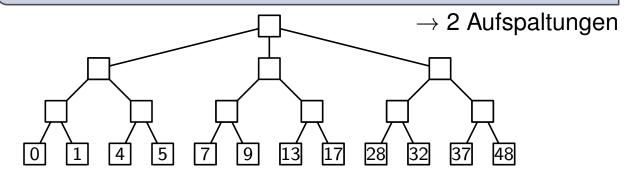
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

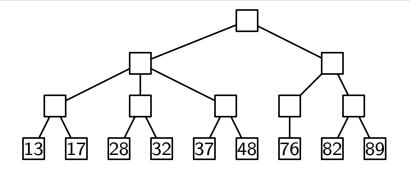


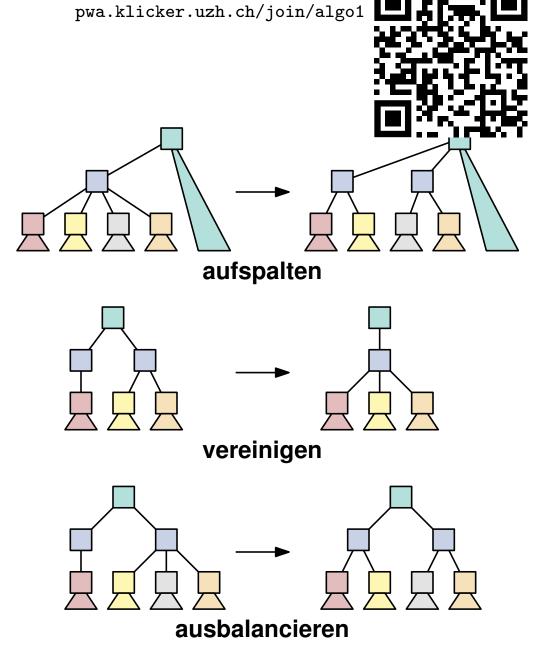




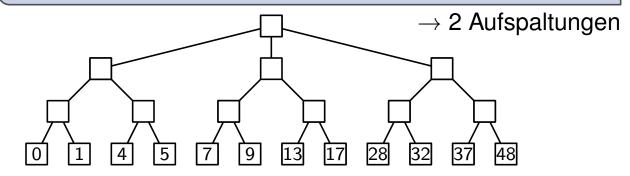
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

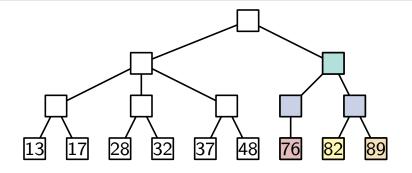


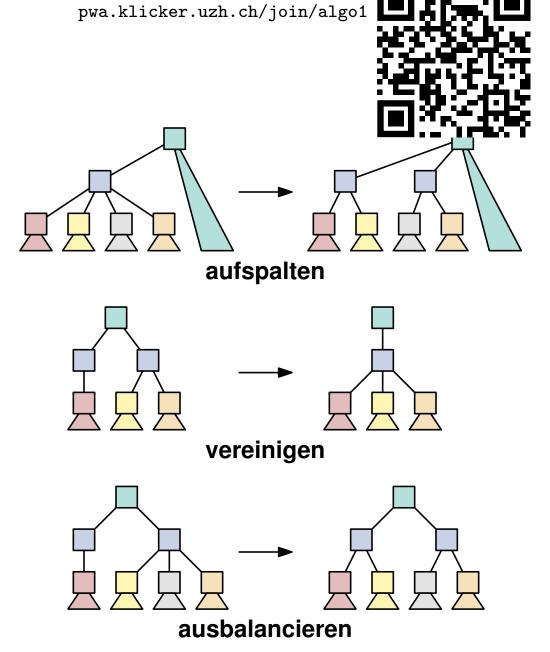




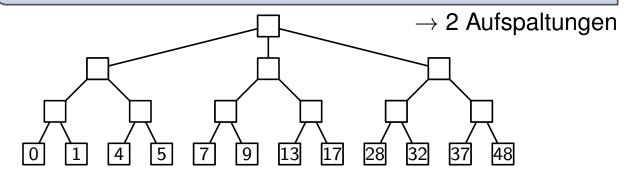
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

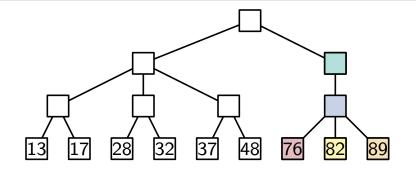






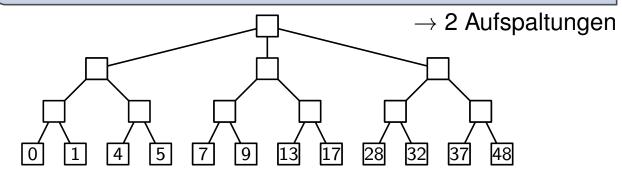
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

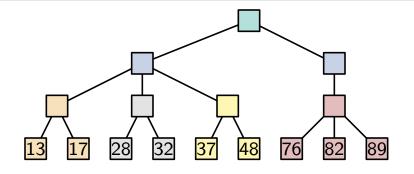


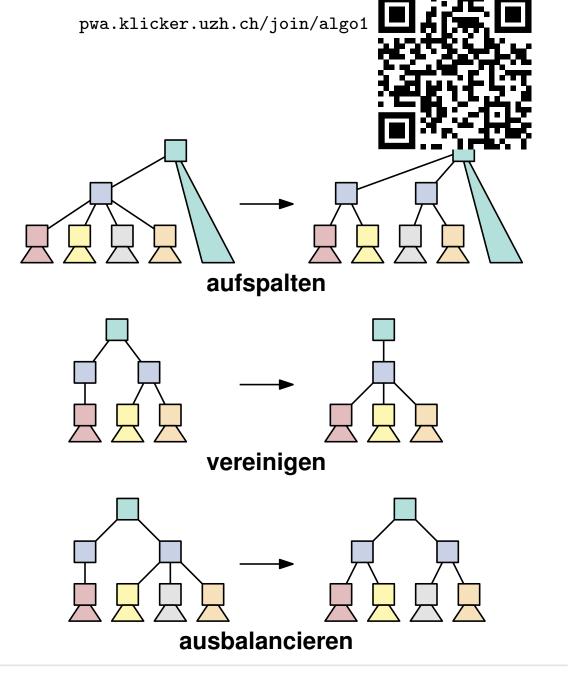




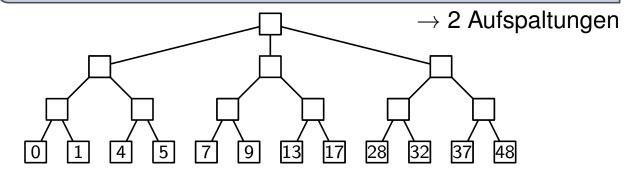
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

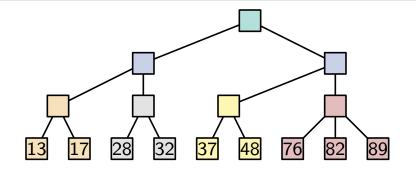


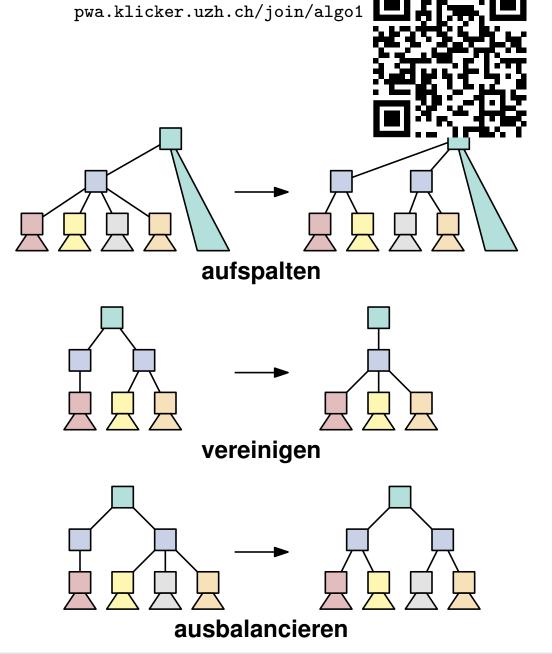




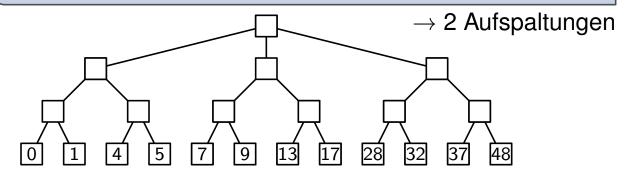
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

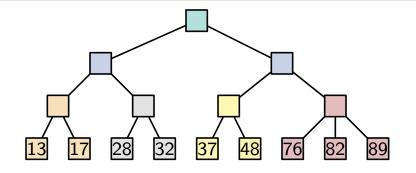


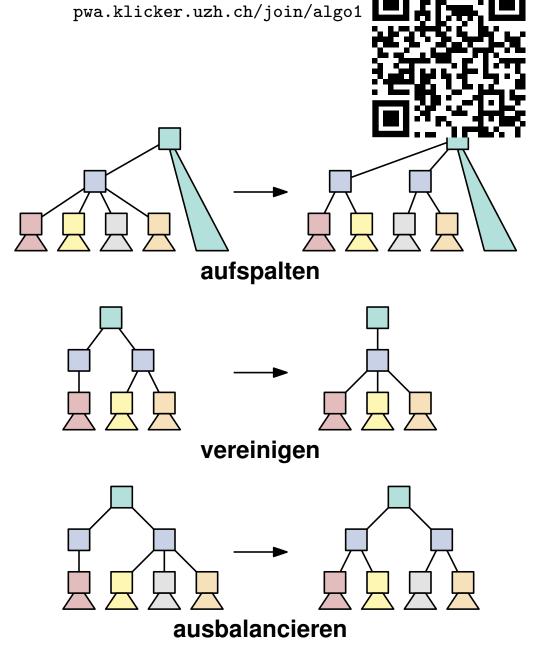




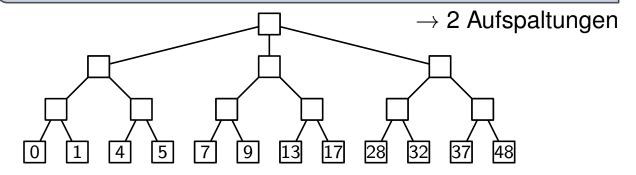
Wie oft müssen wir aufspalten, wenn wir 1 einfügen?

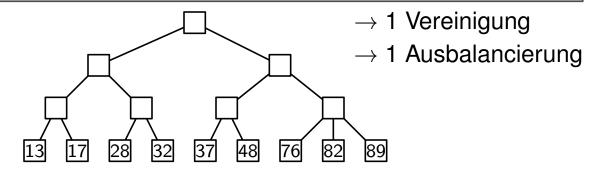


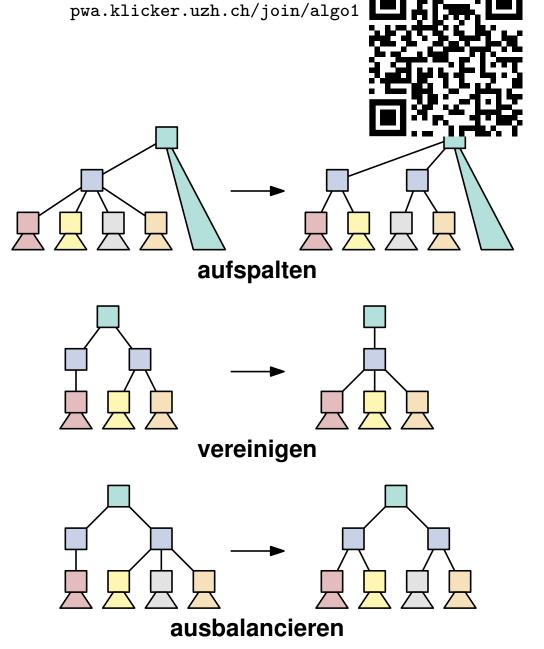




Wie oft müssen wir aufspalten, wenn wir 1 einfügen?







Lemma

Ein (2, 3)-Baum hat logarithmische Tiefe.

Erinnerung: (2, 3)-Baum

■ fast binär: jeder innere Knoten hat 2 oder 3 Kinder

balanciert: jedes Blatt hat gleiche Tiefe

Lemma

Ein (2, 3)-Baum hat logarithmische Tiefe.

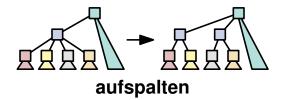
Erinnerung: (2, 3)-Baum

■ fast binär: jeder innere Knoten hat 2 oder 3 Kinder

balanciert: jedes Blatt hat gleiche Tiefe

Lemma

Sei T ein Baum der die (2,3)-Baum Eigenschaften erfüllt, abgesehen für einen Knoten mit 4 Kindern. T kann mit $O(\log n)$ Aufspaltungen in einen (2,3)-Baum überführt werden.



Lemma

Ein (2, 3)-Baum hat logarithmische Tiefe.

Erinnerung: (2, 3)-Baum

■ fast binär: jeder innere Knoten hat 2 oder 3 Kinder

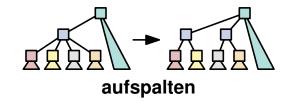
balanciert: jedes Blatt hat gleiche Tiefe

Lemma

Sei T ein Baum der die (2,3)-Baum Eigenschaften erfüllt, abgesehen für einen Knoten mit 4 Kindern. T kann mit $O(\log n)$ Aufspaltungen in einen (2,3)-Baum überführt werden.

Folgerung

Wir können in $O(\log n)$ in einen (2,3)-Baum einfügen.



Lemma

Ein (2, 3)-Baum hat logarithmische Tiefe.

Erinnerung: (2, 3)-Baum

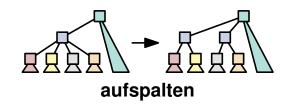
- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe

Lemma

Sei T ein Baum der die (2,3)-Baum Eigenschaften erfüllt, abgesehen für einen Knoten mit 4 Kindern. T kann mit $O(\log n)$ Aufspaltungen in einen (2,3)-Baum überführt werden.

Folgerung

Wir können in $O(\log n)$ in einen (2,3)-Baum einfügen.



Analoge Folgerung

Wir können in $O(\log n)$ in einem (2,3)-Baum löschen.

vereinigen

ausbalancieren

Lemma

Ein (2, 3)-Baum hat logarithmische Tiefe.

Erinnerung: (2, 3)-Baum

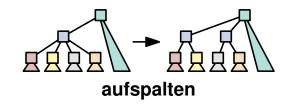
- fast binär: jeder innere Knoten hat 2 oder 3 Kinder
- **balanciert:** jedes Blatt hat gleiche Tiefe

Lemma

Sei T ein Baum der die (2,3)-Baum Eigenschaften erfüllt, abgesehen für einen Knoten mit 4 Kindern. T kann mit $O(\log n)$ Aufspaltungen in einen (2,3)-Baum überführt werden.

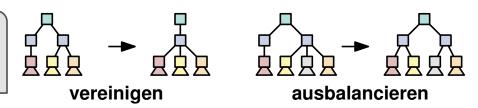
Folgerung

Wir können in $O(\log n)$ in einen (2,3)-Baum einfügen.



Analoge Folgerung

Wir können in $O(\log n)$ in einem (2,3)-Baum löschen.



Achtung: Wir müssen uns eigentlich noch um die Schlüssel in den Knoten kümmern!

Suchbäume in der Wildnis

C++

https://en.cppreference.com/w/cpp/container/map

std::map

std::map is a sorted associative container that contains key-value pairs with unique keys. Keys are sorted by using the comparison function Compare. Search, removal, and insertion operations have logarithmic complexity. Maps are usually implemented as red-black trees .

operator[]	access or insert specified element (public member function)
insert_or_assign(C++17)	inserts an element or assigns to the current element if the key already exists (public member function)
erase	erases elements (public member function)
find	finds element with specific key (public member function)
lower_bound	returns an iterator to the first element <i>not less</i> than the given key (public member function)
upper_bound	returns an iterator to the first element <i>greater</i> than the given key (public member function)

Suchbäume in der Wildnis

Java

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/TreeMap.html

Class TreeMap<K,V>

A Red-Black tree based NavigableMap implementation. The map is sorted according to the natural ordering of its keys, or by a Comparator provided at map creation time, depending on which constructor is used.

This implementation provides guaranteed log(n) time cost for the containsKey, get, put and remove operations.

Method Summary

Modifier and Type	Method	Description
К	ceilingKey(K key)	Returns the least key greater than or equal to the given key, or null if there is no such key.
К	floorKey(K key)	Returns the greatest key less than or equal to the given key, or null if there is no such key.
V	<pre>get(Object key)</pre>	Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.
V	<pre>put(K key, V value)</pre>	Associates the specified value with the specified key in this map.
V	remove(Object key)	Removes the mapping for this key from this TreeMap if present.

Überblick Datenstrukturen

Unbeschränkte Arrays	
pushBack(x)	Element x hinten einfügen
popBack()	letztes Element löschen
at(i)	Zugriff auf Element mit Indes i
find(x)	binäre Suche nach x , wenn sortiert
C++: vector	Java: ArrayList

Prioritätswarteschlange (Heap)	
push(x, p)	Element x mit Priorität p einfügen
popMin()	Element mit minimaler Priorität extrahieren
decPrio(a, p)	Priorität von Knoten a auf p verkleinern
C++: priority_queue Java: PriorityQueue (Prioritätsänderungen muss man sich ggf. selbst bauen: Lazy Evaluation)	

Listen	
insertAfter(a, x)	Element x nach Knoten a einfügen
remove(a)	Knoten a löschen
splice(a, b, c)	Teillisten $\langle a, \ldots, b \rangle$ hinter c einfügen
C++: list	Java: LinkedList

Sortierte Folge (Suchbaum)	
set(k, v)	setze Wert für Schlüssel k auf v
find(k)	Suche nach Schlüssel k
remove(k)	Eintrag mit Schlüssel k löschen
C++: map	Java: TreeMap

Hashtabelle	
set(k, v)	setze Wert für Schlüssel k auf v
get(k)	Zugriff auf Wert von Schlüssel k
remove(k)	Eintrag für Schlüssel k löschen
C++: unordered_map	Java: HashMap

Anmerkung

- hier sind jeweils nur die wichtigsten Operationen aufgeführt (die Datenstrukturen können meist noch mehr)
- Faustregel: wähle einfachste DS, die benötigte Operationen effizient kann

Sortierte Folgen mittels Suchbäumen

Die eierlegende Wollmilchsau

- Suchbäume können im Prinzip alles, was das Herz begehrt
- einfügen, suchen, löschen, Min/Max extrahieren, Bereichsanfragen, jeweils in O(log n)

Bild: Wollmilchsau / Georg Mittenecker / Creative Commons

Sortierte Folgen mittels Suchbäumen

Die eierlegende Wollmilchsau

- Suchbäume können im Prinzip alles, was das Herz begehrt
- einfügen, suchen, löschen, Min/Max extrahieren, Bereichsanfragen, jeweils in O(log n)

Allgemeiner: (a, b)-Bäume

- Knoten haben mindestens a und höchstens b Kinder
- funktioniert analog, wenn $2 \le a \le (b+1)/2$

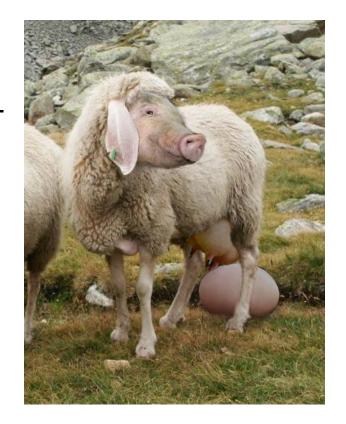


Bild: Wollmilchsau / Georg Mittenecker / Creative Commons

Sortierte Folgen mittels Suchbäumen

Die eierlegende Wollmilchsau

- Suchbäume können im Prinzip alles, was das Herz begehrt
- einfügen, suchen, löschen, Min/Max extrahieren, Bereichsanfragen, jeweils in O(log n)

Allgemeiner: (a, b)-Bäume

- Knoten haben mindestens a und höchstens b Kinder
- funktioniert analog, wenn $2 \le a \le (b+1)/2$

Lernziel

- wissen, wie Suchbäume funktionieren
- können für eine Anwendung die passende Datenstruktur wählen
- Fähigkeit zur Ausarbeitung der Details: Wissen über die Funktionsweise (Kenntnisstand heute; hohe Abstraktionsebene) → Implementierung (Pseudocode)
 (Pseudocode auswendig können ist nicht hilfreich)

ählen
Funktionsweise (Kenntnisstand udocode)
Bild: Wollmilchsau / Georg Mittenecker / Creative Commons

Ankündigung

Digitale Sprechstunde

- Donnerstag 27.6. (nächste Woche), gegen Abend
- online Fragerunde auf Twitch
- stellt eure Fragen (gerne vorab via Discord oder auch live im Twitch Chat)
- genauere Infos demnächst auf der Homepage und via Discord