Competitive Programming
Winter Term 23/24

Segment Trees (no Treaps yet)

Kirill Simonov
Algorithm Engineering Group
HPI

Christopher Weyand
Scalable Algorithms Group
KIT
No one reads the title anyway

- today
 - reminder & lazy propagation
 - iterative segtree
 - binary search
 - nested data structures
 - implicit segtree
 - persistent segtree
 - odds and ends (not covered here)
 - $O(n)$ construction
 - non-commutative combiner

https://cp-algorithms.com/data_structures/segment_tree.html
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
Recap

- Binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- Root corresponds to \([1, n + 1)\)
- Left child corresponds to left half of parent’s range, right child to right half
Recap

- Binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- Root corresponds to \([1, n + 1)\)
- Left child corresponds to left half of parent’s range, right child to right half
Recap

- Binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- Root corresponds to \([1, n + 1)\)
- Left child corresponds to left half of parent’s range, right child to right half
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries

- segtree splits range into at most 2 nodes per layer \(\Rightarrow O(\log n)\)
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
- segtree splits range into at most 2 nodes per layer \(\Rightarrow \mathcal{O}(\log n)\)

![Diagram of a segment tree](image)
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
- segtree splits range into at most 2 nodes per layer \(\Rightarrow \mathcal{O}(\log n)\)

Point Updates
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
- segtree splits range into at most 2 nodes per layer \(\Rightarrow \mathcal{O}(\log n)\)

Point Updates
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
- segtree splits range into at most 2 nodes per layer ⇒ \(O(\log n)\)

Point Updates
- updated
Recap

- binary tree where each node corresponds to a segment \([l, r)\) of some array \(A\)
- root corresponds to \([1, n + 1)\)
- left child corresponds to left half of parent’s range, right child to right half
- each node stores the aggregate over its range of values
- how does this structure help us?

Range Queries
- segtree splits range into at most 2 nodes per layer \(\Rightarrow O(\log n)\)

Point Updates
- 1 node per layer \(\Rightarrow O(\log n)\)
Recap

range query(node, l, r, q_l, q_r)
 if [l, r) ⊆ [q_l, q_r)
 return node value
 if [l, r) ∩ [q_l, q_r) = ∅
 return 0
 m = ⌊(l + r)/2⌋
 return range query(left child, l, m, q_l, q_r) +
 range query(right child, m, r, q_l, q_r)
Recap

point update (node, \(l, r, i, v \))

1. If \(i \notin [l, r) \)
 - Return
2. If \(l = r - 1 \)
 - Node value += \(v \)
 - Return
3. \(m = \lfloor (l + r)/2 \rfloor \)
4. **point update** (left child, \(l, m, i, v \))
5. **point update** (right child, \(m, r, i, v \))
6. Node value = left value + right value

![Binary tree diagram showing point update operations and node values]
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range \(\Rightarrow O(n) \)
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range ⇒ $O(n)$
- for queries we split the range into $\log n$ nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?

![Diagram of tree structure]
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range ⇒ $O(n)$
- for queries we split the range into $\log n$ nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?
- in each of these nodes we remember that the subtree should be updated

[Diagram of a binary tree with nodes and arrows showing the updates and their effect on the subtree.]
Lazy Propagation

- how would we do range updates?
 e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range \(\Rightarrow O(n) \)
- for queries we split the range into \(\log n \) nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?
- in each of these nodes we remember that the subtree should be updated
- what happens when a later query accesses nodes below?
Lazy Propagation

how would we do range updates? e.g. adding 1337 to all values in a range

we could update every node overlapping with the range ⇒ \(O(n) \)

for queries we split the range into \(\log n \) nodes and sum up aggregates

- can we do the same here (only update those and their parents)?

in each of these nodes we remember that the subtree should be updated

what happens when a later query accesses nodes below?

we push the update reminder down
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range \(\Rightarrow O(n) \)
- for queries we split the range into \(\log n \) nodes and sum up aggregates
 - can we do the same here (only update \(\text{those} \) and their \(\text{parents} \))?
- in each of these \(\text{nodes} \) we remember that the subtree should be updated
- what happens when a later query accesses \(\text{nodes below} \)?
- we push the update reminder down
Lazy Propagation

- how would we do range updates?
 e.g. adding 1337 to all values in a range

- we could update every node overlapping with the range ⇒ \(O(n) \)

- for queries we split the range into \(\log n \) nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?

- in each of these nodes we remember that the subtree should be updated

- what happens when a later query accesses nodes below?

- we push the update reminder down
Lazy Propagation

- How would we do range updates? e.g. adding 1337 to all values in a range
- We could update every node overlapping with the range ⇒ $O(n)$
- For queries we split the range into $\log n$ nodes and sum up aggregates
 - Can we do the same here (only update those and their parents)?
- In each of these nodes we remember that the subtree should be updated
- What happens when a later query accesses nodes below?
- We push the update reminder down
Lazy Propagation

- how would we do range updates?
 e.g. adding 1337 to all values in a range

- we could update every node overlapping with the range ⇒ $O(n)$

- for queries we split the range into $\log n$ nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?

- in each of these nodes we remember that the subtree should be updated

- what happens when a later query accesses nodes below?

- we push the update reminder down
Lazy Propagation

- How would we do range updates? e.g. adding 1337 to all values in a range

- We could update every node overlapping with the range \(\mathcal{O}(n) \)

- For queries we split the range into \(\log n \) nodes and sum up aggregates
 - Can we do the same here (only update those and their parents)?

- In each of these nodes we remember that the subtree should be updated

- What happens when a later query accesses nodes below?

- We push the update reminder down
Lazy Propagation

- how would we do range updates? e.g. adding 1337 to all values in a range
- we could update every node overlapping with the range ⇒ \(O(n) \)
- for queries we split the range into \(\log n \) nodes and sum up aggregates
 - can we do the same here (only update those and their parents)?
- in each of these nodes we remember that the subtree should be updated
- what happens when a later query accesses nodes below?
- we push the update reminder down
Lazy Propagation

- How would we do range updates? E.g., adding 1337 to all values in a range.
- We could update every node overlapping with the range $\Rightarrow O(n)$.
- For queries we split the range into $\log n$ nodes and sum up aggregates.
 - Can we do the same here (only update those and their parents)?
- In each of these nodes, we remember that the subtree should be updated.
- What happens when a later query accesses nodes below?
- We push the update reminder down.
Lazy Propagation

- each node now contains two variables
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
 - lazy: delayed update to apply to all child nodes
Lazy Propagation

- each node now contains two variables
 - **value**: aggregate over the range
 - here: sum of all values in range
 - **lazy**: delayed update to apply to all child nodes
 - here: value to add to every element in range
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
 - lazy: delayed update to apply to all child nodes
 - here: value to add to every element in range
 - lazy update has already been applied to the node’s value
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
 - lazy: delayed update to apply to all child nodes
 - here: value to add to every element in range
 - lazy update has already been applied to the node’s value
- before we recurse below a node, we **push** lazy updates down to its children
Lazy Propagation

- each node now contains two variables
 - `value`: aggregate over the range
 - here: sum of all values in range
 - `lazy`: delayed update to apply to all child nodes
 - here: value to add to every element in range
 - lazy update has already been applied to the node’s `value`

- before we recurse below a node, we **push** lazy updates down to its children
 - thus, whenever we access a node, all lazy updates have been applied
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
 - lazy: delayed update to apply to all child nodes
 - here: value to add to every element in range
 - lazy update has already been applied to the node’s value

- before we recurse below a node, we **push** lazy updates down to its children
 - thus, whenever we access a node, all lazy updates have been applied

- requires to **apply** updates to aggregates
Lazy Propagation

- each node now contains two variables
 - value: aggregate over the range
 - here: sum of all values in range
 - lazy: delayed update to apply to all child nodes
 - here: value to add to every element in range
 - lazy update has already been applied to the node’s value
- before we recurse below a node, we **push** lazy updates down to its children
 - thus, whenever we access a node, all lazy updates have been applied
- requires to **apply** updates to aggregates
- also, we must merge pending updates if a node gets more than one
Lazy Propagation

// add v to entire range of node
apply(node, l, r, v)
 value += (r − l) · v
 lazy += v

[l, r): range of current node
Lazy Propagation

// add v to entire range of node
apply(node, l, r, v)
 value += (r - l) \cdot v
 lazy += v

[l, r): range of current node

// push lazy updates down to children
push(node, l, r)
 m = \lfloor (l + r)/2 \rfloor
 apply(left child, l, m, lazy)
 apply(right child, m, r, lazy)
 lazy = 0
Lazy Propagation

// add v to entire range of node
apply(node, l, r, v)
 value += (r - l) · v
 lazy += v

// add v to every value in range [u_l, u_r]
update(node, l, r, u_l, u_r, v)
 if [l, r) ⊆ [u_l, u_r)
 apply(node, l, r, v)
 return
 if [l, r) ∩ [u_l, u_r) = ∅
 return
 m = ⌊(l + r)/2⌋
push(node, l, r)
 update(left child, l, m, u_l, u_r, v)
 update(right child, m, r, u_l, u_r, v)
 value = left value + right value

// push lazy updates down to children
push(node, l, r)
 m = ⌊(l + r)/2⌋
 apply(left child, l, m, lazy)
 apply(right child, m, r, lazy)
 lazy = 0

(l, r): range of current node
Lazy Propagation

// add v to entire range of node
apply(node, l, r, v)
 value += (r - l) * v
 lazy += v

// add v to every value in range [ul, ur]
update(node, l, r, ul, ur, v)
 if [l, r] ⊆ [ul, ur]
 apply(node, l, r, v)
 return
 if [l, r] ∩ [ul, ur] = ∅
 return
 m = ⌊(l + r)/2⌋
 push(node, l, r)
 update(left child, l, m, ul, ur, v)
 update(right child, m, r, ul, ur, v)
 value = left value + right value

// push lazy updates down to children
push(node, l, r)
 m = ⌊(l + r)/2⌋
 apply(left child, l, m, lazy)
 apply(right child, m, r, lazy)
 lazy = 0

// query sum of range [ql, qr]
query(node, l, r, ql, qr)
 if [l, r) ⊆ [ql, qr)
 return value
 if [l, r) ∩ [ql, qr) = ∅
 return 0
 m = ⌊(l + r)/2⌋
 push(node, l, r)
 update(left child, l, m, ul, ur, v)
 update(right child, m, r, ul, ur, v)
 return query(left child, l, m, ql, qr) + query(right child, m, r, ql, qr)
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:
- use one-based indexing with n rounded up to power of two
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- use one-based indexing with n rounded up to power of two

 \[
 n = 1 << (31 - \text{builtin}_\text{clz}(n) + (\text{builtin}_\text{popcount}(n)!=1));
 \]
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- use one-based indexing with n rounded up to power of two

 $$n = 1 << (31 - ____builtin_clz(n) + (____builtin_popcount(n) != 1));$$

- root is at index 1; leaves are at positions $[n, 2n)$
Iterative Segment Tree

- Are you sick of recursive functions with packs of parameters?
- Let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- Use one-based indexing with n rounded up to power of two

$$n = 1 << (31 - \text{__builtin_clz}(n) + (\text{__builtin_popcount}(n)!=1));$$

- Root is at index 1; leaves are at positions $[n, 2n)$
- Parent of node i is node $i/2$
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- use one-based indexing with \(n \) rounded up to power of two
 \[
 n = 1 \ll (31 - \text{builtin}_\text{clz}(n) + (\text{builtin}_\text{popcount}(n)!=1));
 \]
- root is at index 1; leaves are at positions \([n, 2n)\)
- parent of node \(i \) is node \(i/2 \)
- even index is a left child; odd is right child
Iterative Segment Tree

- are you sick of recursive functions with packs of parameters?
- let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- use one-based indexing with n rounded up to power of two
 \[
 n = 1 \ll (31 - \text{builtin}_\text{clz}(n) + (\text{builtin}_\text{popcount}(n) != 1));
 \]
- root is at index 1; leaves are at positions $[n, 2n)$
- parent of node i is node $i/2$
- even index is a left child; odd is right child

Update

- start at leaf and recompute all parents
Iterative Segment Tree

- Are you sick of recursive functions with packs of parameters?
- Let’s try a bottom up perspective on segment trees

Some Insights into Heap Indexing:

- Use one-based indexing with \(n \) rounded up to power of two
 \[
 n = 1 << (31 - __builtin_clz(n) + (__builtin_popcount(n)!=1));
 \]
- Root is at index 1; leaves are at positions \([n, 2n)\)
- Parent of node \(i \) is node \(i/2 \)
- Even index is a left child; odd is right child

Update

- Start at leaf and recompute all parents

Query

- Break down a consecutive range into \(\log n \) nodes
Iterative Segment Tree

Update

- start at leaf and recompute all parents
Iterative Segment Tree

Update

- start at leaf and recompute all parents

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update

■ start at leaf and recompute all parents

Query

■ break down a consecutive range into $\log n$ nodes

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into $\log n$ nodes
- nodes l, r mark the remaining range in the current level

```cpp
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into \(\log n \) nodes
- nodes \(l, r \) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r-1)\) if its parent cannot be picked

```cpp
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into \(\log n \) nodes
- nodes \(l, r \) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r - 1)\) if its parent cannot be picked

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into $\log n$ nodes
- nodes l, r mark the remaining range in the current level
- we go up level by level and choose a border node (l or $r - 1$) if its parent cannot be picked
- when r is a right child, then left sibling must be picked and parent will be new exclusive end

```cpp
class SegmentTree {
public:
    void update(int i, int value) {
        d[i + n] = value;
        for (int v=n+i; v>1; v/=2)
            d[v/2] = d[v] + d[v^1];
    }
};
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into $\log n$ nodes
- nodes l, r mark the remaining range in the current level
- we go up level by level and choose a border node $(l \text{ or } r - 1)$ if its parent cannot be picked
- when r is a right child, then left sibling must be picked and parent will be new exclusive end

```c
void update(int i, int value) {
  d[i + n] = value;
  for (int v=n+i; v>1; v/=2)
    d[v/2] = d[v] + d[v^1];
}
```

![Segment Tree Diagram]
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into \(\log n\) nodes
- nodes \(l, r\) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \lor r - 1)\) if its parent cannot be picked
- when \(r\) is a right child, then left sibling must be picked and parent will be new exclusive end

```
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update

- start at leaf and recompute all parents

Query

- break down a consecutive range into \(\log n\) nodes
- nodes \(l, r\) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r − 1)\) if its parent cannot be picked
- when \(r\) is a right child, then left sibling must be picked and parent will be new exclusive end
- when \(l\) is a right child, then parent is not fully included in range; we must pick \(l\) and move the start of the range to the right

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v = n + i; v > 1; v /= 2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update
- start at leaf and recompute all parents

Query
- break down a consecutive range into log \(n \) nodes
- nodes \(l, r \) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r-1)\) if its parent cannot be picked
- when \(r \) is a right child, then left sibling must be picked and parent will be new exclusive end
- when \(l \) is a right child, then parent is not fully included in range; we must pick \(l \) and move the start of the range to the right

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td>l</td>
<td>r</td>
</tr>
</tbody>
</table>

break down a consecutive range into log \(n \) nodes
Iterative Segment Tree

Update

- start at leaf and recompute all parents

Query

- break down a consecutive range into \(\log n \) nodes
- nodes \(l, r \) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r - 1)\) if its parent cannot be picked
- when \(r \) is a right child, then left sibling must be picked and parent will be new exclusive end
- when \(l \) is a right child, then parent is not fully included in range; we must pick \(l \) and move the start of the range to the right

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```
Iterative Segment Tree

Update

- start at leaf and recompute all parents

Query

- break down a consecutive range into log n nodes
- nodes l, r mark the remaining range in the current level
- we go up level by level and choose a border node (l or r − 1) if its parent cannot be picked
- when r is a right child, then left sibling must be picked and parent will be new exclusive end
- when l is a right child, then parent is not fully included in range; we must pick l and move the start of the range to the right

```cpp
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td></td>
<td>r</td>
</tr>
</tbody>
</table>
Iterative Segment Tree

Update

- start at leaf and recompute all parents

Query

- break down a consecutive range into \(\log n \) nodes
- nodes \(l, r \) mark the remaining range in the current level
- we go up level by level and choose a border node \((l \text{ or } r - 1)\) if its parent cannot be picked
- when \(r \) is a right child, then left sibling must be picked and parent will be new exclusive end
- when \(l \) is a right child, then parent is not fully included in range; we must pick \(l \) and move the start of the range to the right

```c
void update(int i, int value) {
    d[i + n] = value;
    for (int v=n+i; v>1; v/=2)
        d[v/2] = d[v] + d[v^1];
}

int query(int l, int r) {
    int res = 0;
    for (l += n, r += n; l < r; l /= 2, r /= 2) {
        if (l&1) res += d[l++];
        if (r&1) res += d[--r];
    }
    return res;
}
```
Iterative Segment Tree

Can we use same indexing but don’t round up to next power of 2?

YES

https://codeforces.com/blog/entry/18051

Example \(n = 5 \)

- iterative code works as is
- here we get away with \(2n \) memory
- **WARNING**: breaks some recursive top-down code
- usually you want padding to next power to use iterative and recursive code together
Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query} \]
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
 - $O(\log^2 n)$ per query
- can we do better? Example $k = 20$.
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: “Given \(k \), what is the shortest prefix, if any, with \(\text{sum}(a_0, \ldots, a_i) > k \)?”.

- binary search the answer with a segment tree that answers range-sum queries
 \[\Rightarrow O(\log^2 n) \] per query
- can we do better? Example \(k = 20 \).
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given \(k \), what is the shortest prefix, if any, with \(\text{sum}(a_0, \ldots, a_i) > k \)?".

- Binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query} \]
- Can we do better? Example \(k = 20 \).
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query} \]
- can we do better? Example $k = 20$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- Binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query} \]
- Can we do better? Example $k = 20$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

27 42
Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- Binary search the answer with a segment tree that answers range-sum queries
 \[O(\log^2 n) \text{ per query} \]
- Can we do better? Example $k = 20$.

![Segment Tree Diagram](image)
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: ”Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?”.

- binary search the answer with a segment tree that answers range-sum queries

 $\rightarrow O(\log^2 n)$ per query

- can we do better? Example $k = 20$.

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
```


Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?"

- Binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query}\]
- Can we do better? Example $k = 20$.

\[
\begin{array}{|c|c|c|c|}
\hline
 & 11 & 16 & 8 \\hline
& 8 & 5 & 3 \\hline
\hline
\end{array}
\]
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: ”Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$.”

- binary search the answer with a segment tree that answers range-sum queries

 $\rightarrow O(\log^2 n)$ per query

- can we do better? Example $k = 20$.

```
11  16  8  8  5  3  15
  27
  42
```
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: ”Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?”.

- binary search the answer with a segment tree that answers range-sum queries
 $\rightarrow O(\log^2 n)$ per query
- can we do better? Example $k = 20$.

Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: ”Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries

 $\rightarrow O(\log^2 n)$ per query

- can we do better? Example $k = 20$.

  ```cpp
  int bin_search(int v, int k, int pref_sum) {
      if(v>=n) return v-n; // answer is here
      int with_left = pref_sum + d[2*v];
      if(with_left>k) // answer is left
          return bin_search(2*v, k, pref_sum);
      else // answer is right
          return bin_search(2*v+1, k, with_left);
  }
  ```

 ![Segment Tree Diagram]

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\text{sum}(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
 \[\text{→ } O(\log^2 n) \text{ per query} \]
- can we do better? Example $k = 20$.

```
int bin_search(int v, int k, int pref_sum) {
  if(v>=n) return v-n; // answer is here
  int with_left = pref_sum + d[2*v];
  if(with_left>k) // answer is left
    return bin_search(2*v, k, pref_sum);
  else // answer is right
    return bin_search(2*v+1, k, with_left);
}
```

- answer is `bin_search(1,k,0)`
Binary Search over Prefix

Problem: Array of positive integers with point updates and queries of the form: "Given k, what is the shortest prefix, if any, with $\sum(a_0, \ldots, a_i) > k$?".

- binary search the answer with a segment tree that answers range-sum queries
 \[\rightarrow O(\log^2 n) \text{ per query} \]
- can we do better? Example $k = 20$

\[
\begin{array}{cccccc}
3 & 6 & 0 & 2 & 1 & 7 \\
11 & 16 & 8 & 8 & 5 & 3 \\
3 & 6 & 0 & 2 & 1 & 7 & 5 & 3 & 1 & 5 & 4 & 0 & 2 & 0 & 3 & 0
\end{array}
\]

- answer is $\text{bin search}(1,k,0)$
 \[\rightarrow O(\log n) \text{ per query} \]

```cpp
int bin_search(int v, int k, int pref_sum) {
  if(v>=n) return v-n; // answer is here
  int with_left = pref_sum + d[2*v];
  if(with_left>k) // answer is left
    return bin_search(2*v, k, pref_sum);
  else // answer is right
    return bin_search(2*v+1, k, with_left);
}
```
Binary Search over Prefix

Problem: Array of integers with point updates and queries of the form: "What is the shortest prefix of $A[l, r)$, if any, with $\text{sum} > k$?"
Binary Search over Prefix

Problem: Array of integers with point updates and queries of the form: "What is the shortest prefix of $A[l, r)$, if any, with $\text{sum} > k$?"

- same problem, but the query now has a range instead of being on prefix
Binary Search over Prefix

Problem: Array of integers with point updates and queries of the form: "What is the shortest prefix of $A[l, r)$, if any, with sum > k?"

- same problem, but the query now has a range instead of being on prefix

Strategy:

1. break range down into $\log n$ segtree nodes
2. find segtree node that contains answer in its subarray
3. do prefix bin-search inside this node
Binary Search over Prefix

Problem: Array of integers with point updates and queries of the form: "What is the shortest prefix of $A[l, r)$, if any, with sum $> k$?"

- same problem, but the query now has a range instead of being on prefix

Strategy:

1. break range down into $\log n$ segtree nodes
2. find segtree node that contains answer in its subarray
3. do prefix bin-search inside this node

- can be done all at once: https://codeforces.com/blog/entry/83883?#comment-712628
Binary Search over Prefix

Problem: Array of integers with point updates and queries of the form: "What is the shortest prefix of $A[l, r)$, if any, with $\text{sum} > k$?"

- same problem, but the query now has a range instead of being on prefix

Strategy:

1. break range down into $\log n$ segtree nodes
2. find segtree node that contains answer in its subarray
3. do prefix bin-search inside this node

- can be done all at once: [link](https://codeforces.com/blog/entry/83883?#comment-712628)
- or by explicitly creating a vector of the segtree nodes that represent the range
Binary Search over Prefix

- why do I call it a binary search?
- the iterative code looks like this
- now lets track the l, r range of the current node (although we don’t need it)
- this looks more like a bin-search!

```c
int bin_search_gcd(int v, int l, int r, int g) {
    while(r-l>1) {
        int mid = (r+l)/2;
        if(gcd(d[2*v],g) == 1)
            r = mid, v = 2*v;
        else
            l = mid, g = gcd(d[2*v],g), v = 2*v+1;
    }
    return l;
}
```

```c
int bin_search_gcd(int v, int g) {
    while(v<n) {
        if(gcd(d[2*v],g) == 1)
            v = 2*v;
        else
            g = gcd(d[2*v],g), v = 2*v+1;
    }
    return v-n;
}
```
"Saving the entire subarrays in each vertex"

— cp-algorithms
"Saving the entire subarrays in each vertex"

— cp-algorithms
"Saving the entire subarrays in each vertex"
— cp-algorithms

How much memory used per level?
"Saving the entire subarrays in each vertex"

How much memory used per level? → n
"Saving the entire subarrays in each vertex"

How much memory used per level? \(\rightarrow n \)

How much memory used?
"Saving the entire subarrays in each vertex"

How much memory used per level? → n

How much memory used? → $n \log n$
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l \ldots r]\) which is greater than or equal to \(x\).
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l\ldots r]\) which is greater than or equal to \(x\).
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l . . . r]\) which is greater than or equal to \(x\).

- sorted subarray in each node
- binary search solution in each node (std::lower_bound)
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l . . . r]\) which is greater than or equal to \(x\).

- sorted subarray in each node
- binary search solution in each node (std::lower_bound)

\[O(\log^2 n)\] per query
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l \ldots r]\) which is greater than or equal to \(x\).

- Sorted subarray in each node
- Binary search solution in each node (\texttt{std::lower_bound})
- \(O(\log^2 n)\) per query

Problem: Same but with point updates.
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l \ldots r]\) which is greater than or equal to \(x\).

- sorted subarray in each node
- binary search solution in each node (**std::lower_bound**)

\[O(\log^2 n) \] per query

Problem: Same but with point updates.

- use **multiset** instead of **sorted vector**
Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l \ldots r]\) which is greater than or equal to \(x\).

- sorted subarray in each node
- binary search solution in each node (\texttt{std::lower_bound})
- \(O(\log^2 n)\) per query

Problem: Same but with point updates.

- use \texttt{multiset} instead of sorted \texttt{vector}
- binary search solution in each node (\texttt{std::multiset::lower_bound})
Nested Data Structures - Examples

Problem: We want to answer queries of the following form: for three given numbers \((l, r, x)\) we have to find the minimal number in the segment \(a[l\ldots r]\) which is greater than or equal to \(x\).

- sorted subarray in each node
- binary search solution in each node (\texttt{std::lower_bound})
 \[O(\log^2 n)\] per query

Problem: Same but with point updates.

- use \texttt{multiset} instead of \texttt{sorted vector}
- binary search solution in each node (\texttt{std::multiset::lower_bound})
 \[O(\log^2 n)\] per query or update
Problem: I have a very large \((10^5)\) list of all first names of my students sorted by Matrikelnummer. Now Philipp asks me questions like: ”How many 3rd Semester (Mat.Nr. from 795000 to 799000) have names starting with ’Ch’?”. Also, people have a name change from time to time.

This should be done with a segment tree that has a trie in each node.

needs trie deletion https://www.geeksforgeeks.org/trie-delete/

alternative w/o updates: persistent trie where I insert names in asc. matNR

persistency allows me to answer for prefix of matNR

answer queries as right border - left border

can be done offline to avoid persistency
Implicit Segment Tree

- what if $O(n)$ memory is too much?
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

```plaintext
+5
```
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- **what if** $O(n)$ memory is too much?
- **e.g.** range queries and point updates on an array of length 10^{12} that is initially empty
- **observation:** input is limited, so at most q positions in this array can be non-zero
- **idea:** implement segtree with pointers and create new nodes on demand
- **each query needs** $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

![Diagram of implicit segment tree](image)
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

![Diagram of Implicit Segment Tree]

+5
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- observation: input is limited, so at most q positions in this array can be non-zero
- idea: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

![Diagram of Implicit Segment Tree]
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

![Diagram of Implicit Segment Tree](image-url)
Implicit Segment Tree

- **What if** $O(n)$ memory is too much?
- E.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **Observation**: input is limited, so at most q positions in this array can be non-zero
- **Idea**: implement segtree with pointers and create new nodes on demand
- Each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total

![Diagram of implicit segment tree](image)
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **Observation**: input is limited, so at most q positions in this array can be non-zero
- **Idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **observation**: input is limited, so at most q positions in this array can be non-zero
- **idea**: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- observation: input is limited, so at most q positions in this array can be non-zero
- idea: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- What if $O(n)$ memory is too much?
- E.g. range queries and point updates on an array of length 10^{12} that is initially empty
- **Observation:** Input is limited, so at most q positions in this array can be non-zero
- **Idea:** Implement segtree with pointers and create new nodes on demand
- Each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Implicit Segment Tree

- what if $O(n)$ memory is too much?
- e.g. range queries and point updates on an array of length 10^{12} that is initially empty
- observation: input is limited, so at most q positions in this array can be non-zero
- idea: implement segtree with pointers and create new nodes on demand
- each query needs $O(\log n)$ nodes $\rightarrow O(q \log n)$ in total
Persistent Segment Tree

v0
Persistent Segment Tree

update $v_0 \rightarrow v_1$

- 1955
- 1970
- 1985
- 2015
Persistent Segment Tree

update $v_0 \rightarrow v_1$
update $v_1 \rightarrow v_2$
Persistent Segment Tree

update $v_0 \rightarrow v_1$
update $v_1 \rightarrow v_2$
query v_2
Persistent Segment Tree

update $v_0 \rightarrow v_1$
update $v_1 \rightarrow v_2$
query v_2
update $v_2 \rightarrow v_3$
Persistent Segment Tree

update $v_0 \rightarrow v_1$
query v_2
update $v_2 \rightarrow v_3$
time travel
update $v_1 \rightarrow v_{1.1}$
Persistent Segment Tree

update v0 → v1
update v1 → v2
query v2
update v2 → v3

update v1 → v1.1
time travel
query v0
Persistent Segment Tree

- update $v_0 \rightarrow v_1$
- query v_2
- update $v_2 \rightarrow v_3$
- time travel
- update $v_1 \rightarrow v_{1.1}$
- time travel
- query v_0
- time travel
- query $v_{1.1}$
a persistent data structure remembers its previous state for each modification

- update v0 → v1
- update v1 → v2
- query v2
- update v2 → v3
time travel
- update v1 → v1.1
time travel
- query v0
time travel
- query v1.1
Persistent Segment Tree

- a persistent data structure remembers its previous state for each modification
- allows access to any version of this data structure and execute a query on it or create a new revision from there

update $v_0 \rightarrow v_1$
query v_2
update $v_2 \rightarrow v_3$
time travel
update $v_1 \rightarrow v_1.1$
time travel
query v_0
time travel
query $v_1.1$
Persistent Segment Tree

- we use pointer like implicit segtree
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
- the new revision points to the copy
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
- the new revision points to the copy
- update returns the root of the new revision
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
- the new revision points to the copy
- update returns the root of the new revision
Persistent Segment Tree

- We use pointer-like implicit segment tree.
- Every time we modify a vertex, we make a copy.
- The old revision still points to the original.
- The new revision points to the copy.
- Update returns the root of the new revision.

Example after updating position 5.
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
- the new revision points to the copy
- update returns the root of the new revision

```c
struct Vertex {
    Vertex *l, *r;
    int sum;
    // c-tors
};
```

Example after updating position 5
Persistent Segment Tree

- we use pointer like implicit segtree
- every time we modify a vertex, we make a copy
- the old revision still points to the original
- the new revision points to the copy
- update returns the root of the new revision

```cpp
struct Vertex {
    Vertex *l, *r;
    int sum;
    // c-tors
};
```

```cpp
Vertex* update(Vertex* v, int l, int r,
int pos, int new_val) {
    if (r-l == 1)
        return new Vertex(new_val);
    int m = (l + r) / 2;
    if (pos < m)
        return new Vertex(
            update(v->l, l, m, pos, new_val),
            v->r);
    else
        return new Vertex(
            v->l,
            update(v->r, m, r, pos, new_val));
}
```

Example after updating position 5