# Train Tracks with Gaps Applying the Probabilistic Method to Trains 

Seminar Algorithmentechnik • November 10, 2023 Robert Krause

INSTITUTE OF THEORETICAL INFORMATICS • ALGORITHMICS GROUP

https://www.railway-
technology.com/projects/amtraks-airo-
passenger-train-usa/

https://www.pics4learning.com/details.php?img=1

## Tains, Tracks and Gaps

train, length $4 f$


## Tains, Tracks and Gaps



## How much track do we really need?


front and back quarter have to always be supported

## How much track do we really need?



- front and back quarter have to always be supported


## How much track do we really need?


front and back quarter have to always be supported

## How much track do we really need?



- front and back quarter have to always be supported


## How much track do we really need?



- front and back quarter have to always be supported
- we will show:


## How much track do we really need?



- front and back quarter have to always be supported
- we will show:
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels
- $\mathcal{O}\left(\frac{\ell \ln n}{n}\right)$ track for arbitrary wheel arrangements


## Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist


## Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist

Lemma: It is possible to flip a coin three times so that the number of tails is at least 2

## Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist

Lemma: It is possible to flip a coin three times so that the number of tails is at least 2

## Proof:

- expected value is 1.5
- outcome is integer
- there exists an outcome $\geq 1.5 \Rightarrow$ there have to be at least 2


## Evenly spaced wheels: Lower Bound



Placing a track of length $\frac{1}{4 n}$ every quarter of a train length is optimal

## Evenly spaced wheels: Lower Bound



Placing a track of length $\frac{1}{4 n}$ every quarter of a train length is optimal

- assume a portion $<\frac{1}{n}$ of the track is built
- probability $w_{i}$ for wheel $i$ to be supported by track is $<\frac{1}{n}$


## Evenly spaced wheels: Lower Bound



Placing a track of length $\frac{1}{4 n}$ every quarter of a train length is optimal

- assume a portion $<\frac{1}{n}$ of the track is built
- probability $w_{i}$ for wheel $i$ to be supported by track is $<\frac{1}{n}$
- only looking at wheels in the back
- using union bound: $\mathbb{P}\left(\bigcup_{i=1}^{n} w_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(w_{i}\right)<\sum_{i=1}^{n} \frac{1}{n}=1$


## Evenly spaced wheels: Lower Bound



Placing a track of length $\frac{1}{4 n}$ every quarter of a train length is optimal

- assume a portion $<\frac{1}{n}$ of the track is built
- probability $w_{i}$ for wheel $i$ to be supported by track is $<\frac{1}{n}$
- only looking at wheels in the back
- using union bound: $\mathbb{P}\left(\bigcup_{i=1}^{n} w_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(w_{i}\right)<\sum_{i=1}^{n} \frac{1}{n}=1$
$\Rightarrow$ there exists a position where the train falls though


## The Setting formalised



## The Setting formalised


integer steps
track length

- $C=$ set of wheel positions, from the rear quarter, of size $n$
- $T \subseteq\{1,2, \ldots, \ell\}=$ set of pillars
- $C+r=\{c+r \mid c \in C\}$
- $T$ is valid $\Leftrightarrow(C+k) \cap T \neq \emptyset$, for $k=1, \ldots, \ell-f$


## Arbitrary Wheel Arrangements



## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic
- fix these instances by adding a pillar to support the train


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{n n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic
- fix these instances by adding a pillar to support the train


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic
- fix these instances by adding a pillar to support the train


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic
- fix these instances by adding a pillar to support the train


## Arbitrary Wheel Arrangements



- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probabilty $\left(1-\frac{\ln n}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$-th is problematic
- fix these instances by adding a pillar to support the train
- $\frac{\ln n}{n} \cdot \ell+\frac{1}{n} \cdot \ell=\left(\frac{1+\ln n}{n}\right) \cdot \ell$ exp. tracks
- $\mathcal{O}(\ell n)$ runtime


## Why is it enough to look at the rear quarter?

Karlsruhe Institute of Technology


- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$


## Why is it enough to look at the rear quarter?



- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$


## Why is it enough to look at the rear quarter?



- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$


## Why is it enough to look at the rear quarter?



- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$


## Why is it enough to look at the rear quarter?



- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$
- train falls with probabilty $\left(1-\frac{1+\ln n}{n}\right)^{n} \leq \frac{1}{e^{1+n n} n}=\frac{1}{n e}$
- build additional exp. $\frac{\ell}{n e}$ tracks


## Further Algorithms

- what we have seen so far:

|  | lower-bound | upper-bound |
| :---: | :---: | :---: |
| even | $\frac{\ell}{n}$ | $\frac{\ell}{n}$ |
| arbitrary | $\left(\frac{\ell \mathrm{ln} n}{n}\right)$ | $\frac{\ell \mathrm{ln} n}{n}$ |

## Further Algorithms

- what we have seen so far:

|  | lower-bound | upper-bound |
| :---: | :---: | :---: |
| even | $\frac{\ell}{n}$ | $\frac{\ell}{n}$ |
| arbitrary | $\left(\frac{\ell n}{n} n\right.$ | $\frac{\ell \ln n}{n}$ |

- Goals for algorithms:

1. correctness: Find set $T$ such that for each $k \in\{0,1, \ldots, \ell-f\}$, the set $(C+k) \cap T \neq \emptyset$
2. runtime: exp. $\mathcal{O}(n \ell)$
3. track length: $|T| \in \exp . \mathcal{O}\left(\frac{\ell \ln n}{n}\right)$

## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm


## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk



## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1



## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1



## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1



## Method of Conditional Probabilities

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1



## Deterministic Algorithm: Overview

Algorithm 1: deterministic algorithm
1 initially no pillars are built;
2 initialize objective function value;
3 for offset $k=1, \ldots, \ell$ do
4 calculate $\Delta_{0}$ for not building pillar at $k$; 5 calculate $\Delta_{1}$ for not building pillar at $k$; 6 choose option minimizing obj. function;

## Deterministic Algorithm

- let $X_{1}, \ldots, X_{\ell}$ be zero-one random variables with $\mathbb{P}\left[X_{i}=1\right]=\frac{\ln n}{n}$
- let $x_{1}, \ldots, x_{\ell}$ be given values for the random variables


## Deterministic Algorithm

- let $X_{1}, \ldots, X_{\ell}$ be zero-one random variables with $\mathbb{P}\left[X_{i}=1\right]=\frac{\ln n}{n}$
- let $x_{1}, \ldots, x_{\ell}$ be given values for the random variables
- $T_{k}=\left\{i \mid x_{i}=1\right\} \cup\left\{j \mid X_{j}=1\right\}$
- $p_{i}=$ probability that train falls through track at position $i$


## Deterministic Algorithm

- let $X_{1}, \ldots, X_{\ell}$ be zero-one random variables with $\mathbb{P}\left[X_{i}=1\right]=\frac{\ln n}{n}$
- let $x_{1}, \ldots, x_{\ell}$ be given values for the random variables
- $T_{k}=\left\{i \mid x_{i}=1\right\} \cup\left\{j \mid X_{j}=1\right\}$
- $p_{i}=$ probability that train falls through track at position $i$
- $T$ adds a pillar for each position $j$ where the train falls through the track


## Deterministic Algorithm

- let $X_{1}, \ldots, X_{\ell}$ be zero-one random variables with $\mathbb{P}\left[X_{i}=1\right]=\frac{\ln n}{n}$
- let $x_{1}, \ldots, x_{\ell}$ be given values for the random variables
- $T_{k}=\left\{i \mid x_{i}=1\right\} \cup\left\{j \mid X_{j}=1\right\}$
- $p_{i}=$ probability that train falls through track at position $i$
- $T$ adds a pillar for each position $j$ where the train falls through the track
- let $F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)=|T|$ be the objective function


## Deterministic Algorithm

- $\mathbb{E}\left[F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)\right]=\left\{i \mid x_{i}=1\right\}+\frac{\ln n}{n}(\ell-k)+\sum_{i} p_{i}$ Already built pillars
exp. additional pillars in $T_{k}$
$\mathbb{E}\left[T_{k} \mid\right]$
exp. \#positions where train falls through
$\mathbb{E}\left[T \backslash T_{k}\right]$


## Deterministic Algorithm

- $\mathbb{E}\left[F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)\right]=\left\{i \mid x_{i}=1\right\}+\frac{\ln n}{n}(\ell-k)+\sum_{i} p_{i}$ Already built pillars
exp. additional pillars in $T_{k}$
$\mathbb{E}\left[\left|T_{k}\right|\right]$
exp. \#positions where train falls

choosing 1: $\mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]+1-\frac{\ln n}{n}, p_{i}=0$ where $k+1 \in(C+i)$


## Deterministic Algorithm

- $\mathbb{E}\left[F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)\right]=\left\{i \mid x_{i}=1\right\}+\frac{\ln n}{n}(\ell-k)+\sum_{i} p_{i}$ Already built pillars
exp. additional pillars in $T_{k}$
$\mathbb{E}\left[T_{k} \mid\right]$
exp. \#positions where train falls through
$\mathbb{E}\left[T \backslash T_{k}\right]$
- choosing 1: $\mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]+1-\frac{\ln n}{n}, p_{i}=0$ where $k+1 \in(C+i)$
- choosing $0: \mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]-\frac{\ln n}{n}$, update affected $p_{i}$ with $\frac{p_{i}}{1-(\ln n) / n}$


## Deterministic Algorithm

- $\mathbb{E}\left[F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)\right]=\left\{i \mid x_{i}=1\right\}+\frac{\ln n}{n}(\ell-k)+\sum_{i} p_{i}$ Already built pillars $\qquad$ exp. additional pillars in $T_{k}$
$\mathbb{E}\left[T_{k} \mid\right]$

- choosing 1: $\mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]+1-\frac{\ln n}{n}, p_{i}=0$ where $k+1 \in(C+i)$
- choosing $0: \mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]-\frac{\ln n}{n}$, update affected $p_{i}$ with $\frac{p_{i}}{1-(\ln n) / n}$
- correctness:
- runtime: $\ell$ iterations with $\mathcal{O}(n)$
- track length: arbitrary wheel arrangement proof showed $\mathbb{E}\left[F\left(x_{1}, \ldots, x_{k}, X_{k+1}, \ldots, X_{\ell}\right)\right] \leq \frac{1+\ln n}{n}$


## Lovász Local Lemma (LLL)



- connected $X_{i}$ determine event outcome
- $d=$ \#events connected via path of length 2
- each event depends on at most $d$ other events


## Lovász Local Lemma (LLL)



- connected $X_{i}$ determine event outcome
- $d=$ \#events connected via path of length 2
- each event depends on at most $d$ other events

Lemma: Given $p$ with $\mathbb{P}\left[E_{i}\right] \leq p$ and $p d e \leq 1$, then $\mathbb{P}\left[\right.$ none of the events $E_{i}$ occur $]>0$

## Algorithmic Lovász Local Lemma

- given the LLL holds
- the fix-it algorithm resamples an event $E_{i}$ at most exp. $\frac{1}{d}$ times

Algorithm 2: fix-it algorithm
Data: independent random variables $X_{1}, \ldots, X_{s}$, events

$$
E_{1}, \ldots, E_{m}
$$

1 Independently sample each $X_{1}, \ldots, X_{s}$;
2 while $\exists E_{i}$ that holds do
3 select $E_{i}$;
4 resample all $X_{j}, E_{i}$ depends on;
$\Rightarrow \exp . \frac{m}{d}$ iterations

## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- what is d?


## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- what is d ?



## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- what is d ?



## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- $d=n^{2}$
- $\mathbb{P}\left[E_{i}\right]=\left(1-\frac{1+2 \ln n}{n}\right)^{n}<\frac{1}{e^{1+2 \ln n}} \leq \frac{1}{e n^{2}}=p$
- pde $=\frac{1}{e n^{2}} n^{2} e=1$


## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- $d=n^{2}$
- $\mathbb{P}\left[E_{i}\right]=\left(1-\frac{1+2 \ln n}{n}\right)^{n}<\frac{1}{e^{1+2 \ln n}} \leq \frac{1}{e n^{2}}=p$
- pde $=\frac{1}{e n^{2}} n^{2} e=1$
- correctness:


## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- $d=n^{2}$
- $\mathbb{P}\left[E_{i}\right]=\left(1-\frac{1+2 \ln n}{n}\right)^{n}<\frac{1}{e^{1+2 \ln n}} \leq \frac{1}{e n^{2}}=p$
- pde $=\frac{1}{e n^{2}} n^{2} e=1$
- correctness:
- runtime: Algorithmic $\operatorname{LLL} \Rightarrow \frac{\ell}{n^{2}}$ iterations each naively $\mathcal{O}\left(n^{3}\right)$


## Fix-it Algorithm for Train Tracks

- $\mathbb{P}\left[X_{i}=1\right]=\frac{1+2 \ln n}{n}$ decides wether to build pillar $i$
- $E_{i}=$ event that train falls through tracks at offset $i$
- $d=n^{2}$
- $\mathbb{P}\left[E_{i}\right]=\left(1-\frac{1+2 \ln n}{n}\right)^{n}<\frac{1}{e^{1+2 \ln n}} \leq \frac{1}{e n^{2}}=p$
- pde $=\frac{1}{e n^{2}} n^{2} e=1$
- correctness:
- runtime: Algorithmic $\operatorname{LLL} \Rightarrow \frac{\ell}{n^{2}}$ iterations each naively $\mathcal{O}\left(n^{3}\right)$
- track length:
- worst case each resample gives n ones $\Rightarrow \mathcal{O}\left(\frac{\ell}{n}\right)$
- initial: $\mathcal{O}\left(\frac{\ell+2 \ell \ln n}{n}\right)$


## Min-Hash

- given collection of sets $\mathcal{S}$
- technique for sampling one element for each set $S \in \mathcal{S}$
- hash elements $h(s) \in(0,1)$
- select element with minimum hash


## Min-Hash

- given collection of sets $\mathcal{S}$
- technique for sampling one element for each set $S \in \mathcal{S}$
- hash elements $h(s) \in(0,1)$
- select element with minimum hash
- Two important Properties
- if sets $S_{1}$ and $S_{2}$ are similar, then their min-hash is likely to be the same
- if $s \in S$ is the minimum-hashed element in one set it is likely to be the minimum-hashed element in other sets


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm


a assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar

- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm



- assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position


## The Algorithm


assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar

- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position
- correctness:
- runtime $\mathcal{O}(\ell n)$ :


## The Algorithm


assign random real numbers $r_{1}, \ldots, r_{\ell} \in(0,1)$ to each possible track pillar

- iterate over all possible positions
choose the pillar with the smallest hash that is at a wheel position
- correctness:
- runtime $\mathcal{O}(\ell n)$ :
- track length:



## Proof: Min-Hashing Algorithm

- $S_{k}=(C+k)$ the wheel positions of the rear quarter at offset $k$


## Proof: Min-Hashing Algorithm

- $S_{k}=(C+k)$ the wheel positions of the rear quarter at offset $k$
- selected pillar: $\arg \min _{s \in S_{k}} r_{s}$
- key observation: almost all sampled pillars have small $r_{s}$


## Proof: Min-Hashing Algorithm

- $S_{k}=(C+k)$ the wheel positions of the rear quarter at offset $k$
- selected pillar: $\arg \min _{s \in S_{k}} r_{s}$
- key observation: almost all sampled pillars have small $r_{s}$
- let $r_{s}>\frac{\ln n}{n}$
$\Rightarrow$ all other $s^{\prime} \in S$ have larger values
- prob. of selecting such a pillar: $\left(1-\frac{\ln \eta}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$


## Proof: Min-Hashing Algorithm

- $S_{k}=(C+k)$ the wheel positions of the rear quarter at offset $k$
- selected pillar: arg $\min _{s \in S_{k}} r_{s}$
- key observation: almost all sampled pillars have small $r_{s}$
- let $r_{s}>\frac{\ln n}{n}$
$\Rightarrow$ all other $s^{\prime} \in S$ have larger values
- prob. of selecting such a pillar: $\left(1-\frac{\ln \eta}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$
- exp number of pillars with $r_{s} \leq \frac{\ln n}{n}$ is at most $\frac{\ell \ln n}{n}$


## Proof: Min-Hashing Algorithm

- $S_{k}=(C+k)$ the wheel positions of the rear quarter at offset $k$
- selected pillar: $\arg \min _{s \in S_{k}} r_{s}$
- key observation: almost all sampled pillars have small $r_{s}$
- let $r_{s}>\frac{\ln n}{n}$
$\Rightarrow$ all other $s^{\prime} \in S$ have larger values
- prob. of selecting such a pillar: $\left(1-\frac{\ln \eta}{n}\right)^{n} \leq \frac{1}{e^{\ln n}}=\frac{1}{n}$
- the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$
- exp number of pillars with $r_{s} \leq \frac{\ln n}{n}$ is at most $\frac{\ell \ln n}{n}$
$\Rightarrow$ overall $\leq \frac{\ell(1+\ln n)}{n}$


## What have we learned?

- Probabilistic Method and its applications for train tracks


## What have we learned?

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels


## What have we learned?

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels
- $\mathcal{O}\left(\frac{\ell \ln n}{n}\right)$ track for arbitrary wheel arrangements


## What have we learned?

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels
- $\mathcal{O}\left(\frac{\ell \ln n}{n}\right)$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities


## What have we learned?

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels
- $\mathcal{O}\left(\frac{\ell \ln \eta}{n}\right)$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities
- Fix-it algorithm based on algorithmic Lovász Local Lemma


## What have we learned?

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell / n)$ track for equally spaced wheels
- $\mathcal{O}\left(\frac{\ell \ln \eta}{n}\right)$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities
- Fix-it algorithm based on algorithmic Lovász Local Lemma
- Min-Hash based algorithm


## Appendix

Institute of Theoretical Informatics
Algorithmics Group

## Deterministic Algorithm: Correctness

- why is the result not $F(0, \ldots, 0) \leq \frac{1+\ln n}{n}$ ?
- let $X$ be the set of pillars the event $E_{i}$ depends on
- let $0=x_{i} \in X, i \neq k$
- $\Delta_{0}=-\frac{\ln n}{n}+\Delta_{\sum p_{i}} \geq-\frac{\ln n}{n}+\left(1-\frac{\ln n}{n}\right)>0$
- $\Delta_{1}=1-\frac{\ln n}{n}-\left(1-\frac{\ln n}{n}\right)=0$
- choosing $1: \mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]+1-\frac{\ln n}{n}$ and zeroing out all $p_{i}$ where $x_{k} \in(C+i)$
- choosing $0: \mathbb{E}\left[\left|T_{k+1}\right|\right]=\mathbb{E}\left[\left|T_{k}\right|\right]-\frac{\ln n}{n}$ and updating affected $p_{i}$ with $\frac{p_{i}}{1-(\ln n) / n}$

