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Tains, Tracks and Gaps

trains drive on uninterrupted tracks

very wasteful

train, length 4f

back front

track

⇒ build as little track as neccessary

n wheels n wheels

. . .

track length ℓ
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How much track do we really need?

front and back quarter have to always be supported

we will show:

O(ℓ/n) track for equally spaced wheels
O( ℓ ln n

n ) track for arbitrary wheel arrangements
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Probabilistic Method

method for proving the existence of a mathematical object

choose objects randomly, if the probability for prescribed object is
greater 0 then it must exist

Lemma: It is possible to flip a coin three times so that the number of tails is
at least 2

Proof:
expected value is 1.5

outcome is integer

there exists an outcome ≥ 1.5 ⇒ there have to be at least 2
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Placing a track of length 1
4n every quarter of a train length is optimal
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assume a portion < 1
n of the track is built

probability wi for wheel i to be supported by track is < 1
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only looking at wheels in the back

using union bound: P(
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i=1 wi ) ≤
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1
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length f
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. . .

ℓ

integer steps track length
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The Setting formalised

C = set of wheel positions, from the rear quarter, of size n

T ⊆ {1, 2, . . . , ℓ} = set of pillars

C + r = {c + r |c ∈ C}
T is valid ⇔ (C + k ) ∩ T ̸= ∅, for k = 1, . . . , ℓ− f

n wheels

length f

1 2 . . . . . .
. . .

ℓ

integer steps track length
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Arbitrary Wheel Arrangements

every pillar is built with probability ln n
n

train falls with probabilty (1 − ln n
n )n ≤ 1

eln n = 1
n

out of all the possible train placements only 1
n -th is problematic

fix these instances by adding a pillar to support the train
ln n
n · ℓ + 1

n · ℓ = ( 1+ln n
n ) · ℓ exp. tracks

O(ℓn) runtime
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Why is it enough to look at the rear quarter?

keep the calculated tracks

check front quarter for every position

running time still O(ℓn)

train falls with probabilty (1 − 1+ln n
n )n ≤ 1

e1+ln n = 1
ne

build additional exp. ℓ
ne tracks
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Further Algorithms

lower-bound upper-bound
even ℓ

n
ℓ
n

arbitrary ( ℓ ln n
n ) ℓ ln n

n

what we have seen so far:
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Further Algorithms

Goals for algorithms:

1. correctness: Find set T such that for each k ∈ {0, 1, . . . , ℓ − f}, the
set (C + k ) ∩ T ̸= ∅

2. runtime: exp. O(nℓ)
3. track length: |T | ∈ exp. O( ℓ ln n

n )

lower-bound upper-bound
even ℓ

n
ℓ
n

arbitrary ( ℓ ln n
n ) ℓ ln n

n

what we have seen so far:
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Method of Conditional Probabilities

H T

Convert proof via the probabilistic method to efficient, deterministic
alogrithm

replace random root-to-leaf walk with deterministic walk

maintain invariant: the conditional probability of failure, given the current
state, is less than 1

Convert proof via the probabilistic method to efficient, deterministic
alogrithm

replace random root-to-leaf walk with deterministic walk

maintain invariant: the conditional probability of failure, given the current
state, is less than 1

0.5

0.25

0

00010111

0.50.5
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1

prob. of failure
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Deterministic Algorithm: Overview

Algorithm 1: deterministic algorithm

1 initially no pillars are built;
2 initialize objective function value;
3 for offset k = 1, . . . , ℓ do
4 calculate ∆0 for not building pillar at k ;
5 calculate ∆1 for not building pillar at k ;
6 choose option minimizing obj. function;

10
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Deterministic Algorithm

let X1, . . . , Xℓ be zero-one random variables with P[Xi = 1] = ln n
n

let x1, . . . , xℓ be given values for the random variables

Tk = {i|xi = 1} ∪ {j|Xj = 1}
pi = probability that train falls through track at position i

T adds a pillar for each position j where the train falls through the track

let F (x1, . . . , xk , Xk+1, . . . , Xℓ) = |T | be the objective function

11
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Deterministic Algorithm

E[F (x1, . . . , xk , Xk+1, . . . , Xℓ)] = {i|xi = 1} + ln n
n (ℓ− k ) +

∑
i pi

Already built pillars
exp. additional pillars in Tk

exp. #positions
where train falls

through

E[|Tk |] E[T \ Tk ]

12



Robert Krause – Train Tracks with Gaps Institute of Theoretical Informatics
Algorithmics Group

Deterministic Algorithm

choosing 1: E[|Tk+1|] = E[|Tk |] + 1 − ln n
n , pi = 0 where k + 1 ∈ (C + i)

choosing 0: E[|Tk+1|] = E[|Tk |] − ln n
n , update affected pi with pi

1−(ln n)/n
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Deterministic Algorithm

choosing 1: E[|Tk+1|] = E[|Tk |] + 1 − ln n
n , pi = 0 where k + 1 ∈ (C + i)

choosing 0: E[|Tk+1|] = E[|Tk |] − ln n
n , update affected pi with pi

1−(ln n)/n

correctness:

runtime: ℓ iterations with O(n)

track length: arbitrary wheel arrangement proof showed
E[F (x1, . . . , xk , Xk+1, . . . , Xℓ)] ≤ 1+ln n

n

E[F (x1, . . . , xk , Xk+1, . . . , Xℓ)] = {i|xi = 1} + ln n
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Lovász Local Lemma (LLL)

E1 E2 E3 E4 E5

X1 X2 X3 X4 X5
0 1 1 0 0

Events

Random Variables

connected Xi determine event outcome

d = #events connected via path of length 2

each event depends on at most d other events

13
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Lovász Local Lemma (LLL)

E1 E2 E3 E4 E5

X1 X2 X3 X4 X5
0 1 1 0 0

Events

Random Variables

connected Xi determine event outcome

d = #events connected via path of length 2

each event depends on at most d other events

Lemma: Given p with P[Ei ] ≤ p and pde ≤ 1,
then P[none of the events Ei occur] > 0

13
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Algorithmic Lovász Local Lemma

given the LLL holds

the fix-it algorithm resamples an event Ei at most exp. 1
d times

Algorithm 2: fix-it algorithm
Data: independent random variables X1, . . . , Xs, events

E1, . . . , Em;
1 Independently sample each X1, . . . , Xs;
2 while ∃Ei that holds do
3 select Ei ;
4 resample all Xj , Ei depends on;

⇒ exp. m
d iterations

14
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Fix-it Algorithm for Train Tracks

P[Xi = 1] = 1+2 ln n
n decides wether to build pillar i

Ei = event that train falls through tracks at offset i

what is d?

15
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Fix-it Algorithm for Train Tracks

P[Xi = 1] = 1+2 ln n
n decides wether to build pillar i

Ei = event that train falls through tracks at offset i

what is d?

offset 4

offset 1
offset 4 offset 4

offset 7

15



Robert Krause – Train Tracks with Gaps Institute of Theoretical Informatics
Algorithmics Group

Fix-it Algorithm for Train Tracks

P[Xi = 1] = 1+2 ln n
n decides wether to build pillar i

Ei = event that train falls through tracks at offset i

d = n2

P[Ei ] = (1 − 1+2 ln n
n )n < 1

e1+2 ln n ≤ 1
en2 = p

pde = 1
en2 n2e = 1

correctness:

runtime: Algorithmic LLL ⇒ ℓ
n2 iterations each naively O(n3)

track length:

worst case each resample gives n ones ⇒ O( ℓn )

initial: O( ℓ+2ℓ ln n
n )

16
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n2 iterations each naively O(n3)

track length:

worst case each resample gives n ones ⇒ O( ℓn )

initial: O( ℓ+2ℓ ln n
n )
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Min-Hash

given collection of sets S
technique for sampling one element for each set S ∈ S
hash elements h(s) ∈ (0, 1)

select element with minimum hash
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Min-Hash

Two important Properties

if sets S1 and S2 are similar, then their min-hash is likely to be the
same
if s ∈ S is the minimum-hashed element in one set it is likely to be the
minimum-hashed element in other sets

given collection of sets S
technique for sampling one element for each set S ∈ S
hash elements h(s) ∈ (0, 1)

select element with minimum hash
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The Algorithm

assign random real numbers r1, . . . , rℓ ∈ (0, 1) to each possible track
pillar

iterate over all possible positions

choose the pillar with the smallest hash that is at a wheel position

correctness:

runtime O(ℓn):

track length:

0.7 0.2 0.5 0.9 0.1 0.4 0.8 0.3 0.6 0.7 0.2 0.5 0.9 0.1 0.4 0.8 0.3
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Proof: Min-Hashing Algorithm

Sk = (C + k ) the wheel positions of the rear quarter at offset k

selected pillar: arg mins∈Sk
rs

key observation: almost all sampled pillars have small rs

let rs >
ln n
n

⇒ all other s′ ∈ S have larger values

prob. of selecting such a pillar: (1 − ln n
n )n ≤ 1

eln n = 1
n

the expected number of pillars then is ℓ−f
n ≤ ℓ

n

exp number of pillars with rs ≤ ln n
n is at most ℓ ln n

n

⇒ overall ≤ ℓ(1+ln n)
n
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What have we learned?

Probabilistic Method and its applications for train tracks
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What have we learned?

Probabilistic Method and its applications for train tracks

O(ℓ/n) track for equally spaced wheels

O( ℓ ln n
n ) track for arbitrary wheel arrangements

Derandomisation using the method of conditional probabilities

Fix-it algorithm based on algorithmic Lovász Local Lemma

Min-Hash based algorithm
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Deterministic Algorithm: Correctness

why is the result not F (0, . . . , 0) ≤ 1+ln n
n ?

let X be the set of pillars the event Ei depends on

let 0 = xi ∈ X , i ̸= k

∆0 = − ln n
n + ∆∑

pi ≥ − ln n
n + (1 − ln n

n ) > 0

∆1 = 1 − ln n
n − (1 − ln n

n ) = 0

choosing 1: E[|Tk+1|] = E[|Tk |] + 1 − ln n
n and zeroing out all pi where

xk ∈ (C + i)

choosing 0: E[|Tk+1|] = E[|Tk |] − ln n
n and updating affected pi with

pi
1−(ln n)/n
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