

Train Tracks with Gaps Applying the Probabilistic Method to Trains

Seminar Algorithmentechnik · November 10, 2023 Robert Krause

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

https://www.railwaytechnology.com/projects/amtraks-airopassenger-train-usa/

https://www.pics4learning.com/details.php?img=t

- trains drive on uninterrupted tracks
- very wasteful
- \Rightarrow build as little track as neccessary

- front and back quarter have to always be supported
- we will show:

- front and back quarter have to always be supported
- we will show:
 - $\mathcal{O}(\ell/n)$ track for equally spaced wheels
 - $\mathcal{O}(\frac{\ell \ln n}{n})$ track for arbitrary wheel arrangements

Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist

Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist

Lemma: It is possible to flip a coin three times so that the number of tails is at least 2

Probabilistic Method

- method for proving the existence of a mathematical object
- choose objects randomly, if the probability for prescribed object is greater 0 then it must exist

Lemma: It is possible to flip a coin three times so that the number of tails is at least 2

Proof:

- expected value is 1.5
- outcome is integer
- there exists an outcome \geq 1.5 \Rightarrow there have to be at least 2

probability w_i for wheel *i* to be supported by track is $< \frac{1}{n}$

Placing a track of length $\frac{1}{4n}$ every quarter of a train length is optimal

- assume a portion $< \frac{1}{n}$ of the track is built
- **a** probability w_i for wheel *i* to be supported by track is $< \frac{1}{n}$
- only looking at wheels in the back
- using union bound: $\mathbb{P}(\bigcup_{i=1}^n w_i) \leq \sum_{i=1}^n \mathbb{P}(w_i) < \sum_{i=1}^n \frac{1}{n} = 1$

Placing a track of length $\frac{1}{4n}$ every quarter of a train length is optimal

- assume a portion $< \frac{1}{n}$ of the track is built
- **a** probability w_i for wheel *i* to be supported by track is $< \frac{1}{n}$
- only looking at wheels in the back
- using union bound: $\mathbb{P}(\bigcup_{i=1}^n w_i) \leq \sum_{i=1}^n \mathbb{P}(w_i) < \sum_{i=1}^n \frac{1}{n} = 1$
- \Rightarrow there exists a position where the train falls though

The Setting formalised

The Setting formalised

integer steps

track length

- C = set of wheel positions, from the rear quarter, of size n
- $T \subseteq \{1, 2, \ldots, \ell\}$ = set of pillars
- $\bullet C + r = \{c + r | c \in C\}$
- *T* is valid \Leftrightarrow (*C* + *k*) \cap *T* \neq \emptyset , for *k* = 1, ..., ℓ *f*

• every pillar is built with probability $\frac{\ln n}{n}$

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic
- fix these instances by adding a pillar to support the train

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \leq \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic
- fix these instances by adding a pillar to support the train

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic
- fix these instances by adding a pillar to support the train

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic
- fix these instances by adding a pillar to support the train

- every pillar is built with probability $\frac{\ln n}{n}$
- train falls with probability $(1 \frac{\ln n}{n})^n \leq \frac{1}{e^{\ln n}} = \frac{1}{n}$
- out of all the possible train placements only $\frac{1}{n}$ -th is problematic
- fix these instances by adding a pillar to support the train

•
$$\frac{\ln n}{n} \cdot \ell + \frac{1}{n} \cdot \ell = (\frac{1+\ln n}{n}) \cdot \ell$$
 exp. tracks

• $\mathcal{O}(\ell n)$ runtime

- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$

- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$

- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$

- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$

- keep the calculated tracks
- check front quarter for every position
- running time still $\mathcal{O}(\ell n)$
- train falls with probability $(1 \frac{1 + \ln n}{n})^n \leq \frac{1}{e^{1 + \ln n}} = \frac{1}{ne}$
- build additional exp. $\frac{\ell}{ne}$ tracks

Further Algorithms

what we have seen so far:

	lower-bound	upper-bound
even	$\frac{\ell}{n}$	$\frac{\ell}{n}$
arbitrary	$\left(\frac{\ell \ln n}{n}\right)$	$\frac{\ell \ln n}{n}$

Further Algorithms

what we have seen so far:

	lower-bound	upper-bound
even	$\frac{\ell}{n}$	$\frac{\ell}{n}$
arbitrary	$\left(\frac{\ell \ln n}{n}\right)$	<u>ℓ ln n</u> n

Goals for algorithms:

- 1. correctness: Find set T such that for each $k \in \{0, 1, ..., \ell f\}$, the set $(C + k) \cap T \neq \emptyset$
- 2. runtime: exp. $\mathcal{O}(n\ell)$
- 3. track length: $|T| \in \exp \mathcal{O}(\frac{\ell \ln n}{n})$

Convert proof via the probabilistic method to efficient, deterministic alogrithm

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1

- Convert proof via the probabilistic method to efficient, deterministic alogrithm
- replace random root-to-leaf walk with deterministic walk
- maintain invariant: the conditional probability of failure, given the current state, is less than 1

Deterministic Algorithm: Overview

Algorithm 1: deterministic algorithm

- 1 initially no pillars are built;
- 2 initialize objective function value;
- 3 for *offset* $k = 1, ..., \ell$ do
- 4 | calculate Δ_0 for not building pillar at k;
- 5 calculate Δ_1 for not building pillar at k;
- 6 choose option minimizing obj. function;

let X₁,..., X_l be zero-one random variables with P[X_i = 1] = ^{ln n}/_n
 let x₁,..., x_l be given values for the random variables

let X_1, \ldots, X_ℓ be zero-one random variables with $\mathbb{P}[X_i = 1] = \frac{\ln n}{n}$

- let x_1, \ldots, x_ℓ be given values for the random variables
- $T_k = \{i | x_i = 1\} \cup \{j | X_j = 1\}$
- **p_i** = probability that train falls through track at position *i*

- let X_1, \ldots, X_ℓ be zero-one random variables with $\mathbb{P}[X_i = 1] = \frac{\ln n}{n}$
- let x_1, \ldots, x_ℓ be given values for the random variables
- $T_k = \{i | x_i = 1\} \cup \{j | X_j = 1\}$
- p_i = probability that train falls through track at position *i*
- **T** adds a pillar for each position j where the train falls through the track

- let X_1, \ldots, X_ℓ be zero-one random variables with $\mathbb{P}[X_i = 1] = \frac{\ln n}{n}$
- let x_1, \ldots, x_ℓ be given values for the random variables

•
$$T_k = \{i | x_i = 1\} \cup \{j | X_j = 1\}$$

- p_i = probability that train falls through track at position *i*
- T adds a pillar for each position *j* where the train falls through the track
- let $F(x_1, \ldots, x_k, X_{k+1}, \ldots, X_\ell) = |T|$ be the objective function

• choosing 1: $\mathbb{E}[|T_{k+1}|] = \mathbb{E}[|T_k|] + 1 - \frac{\ln n}{n}$, $p_i = 0$ where $k + 1 \in (C + i)$

• choosing 1: $\mathbb{E}[|T_{k+1}|] = \mathbb{E}[|T_k|] + 1 - \frac{\ln n}{n}$, $p_i = 0$ where $k + 1 \in (C + i)$

• choosing 0: $\mathbb{E}[|T_{k+1}|] = \mathbb{E}[|T_k|] - \frac{\ln n}{n}$, update affected p_i with $\frac{p_i}{1 - (\ln n)/n}$

$$\mathbb{E}[F(x_1, \dots, x_k, X_{k+1}, \dots, X_{\ell})] = \{i | x_i = 1\} + \frac{\ln n}{n}(\ell - k) + \sum_i p_i$$
Already built pillars ______ exp. additional pillars in T_k _____ exp. #positions where train falls through $\mathbb{E}[|T_k|]$ $\mathbb{E}[T \setminus T_k]$

- choosing 1: $\mathbb{E}[|T_{k+1}|] = \mathbb{E}[|T_k|] + 1 \frac{\ln n}{n}$, $p_i = 0$ where $k + 1 \in (C + i)$
- choosing 0: $\mathbb{E}[|T_{k+1}|] = \mathbb{E}[|T_k|] \frac{\ln n}{n}$, update affected p_i with $\frac{p_i}{1 (\ln n)/n}$
- correctness:
- runtime: ℓ iterations with $\mathcal{O}(n)$
- track length: arbitrary wheel arrangement proof showed $\mathbb{E}[F(x_1, \ldots, x_k, X_{k+1}, \ldots, X_{\ell})] \leq \frac{1+\ln n}{n}$

Lovász Local Lemma (LLL)

- connected X_i determine event outcome
- d =#events connected via path of length 2
- each event depends on at most d other events

Lovász Local Lemma (LLL)

- connected X_i determine event outcome
- d =#events connected via path of length 2
- each event depends on at most d other events

Lemma: Given *p* with $\mathbb{P}[E_i] \leq p$ and $pde \leq 1$, then $\mathbb{P}[\text{none of the events } E_i \text{ occur}] > 0$

Algorithmic Lovász Local Lemma

- given the LLL holds
- the fix-it algorithm resamples an event E_i at most exp. $\frac{1}{d}$ times

Algorithm 2: fix-it algorithm

Data: independent random variables X_1, \ldots, X_s , events

$$E_1,\ldots,E_m;$$

- 1 Independently sample each X_1, \ldots, X_s ;
- 2 while $\exists E_i$ that holds do
- $\mathbf{s} \mid \text{select } E_i;$
- 4 resample all X_j , E_i depends on;

\Rightarrow exp. $\frac{m}{d}$ iterations

- $\mathbb{P}[X_i = 1] = \frac{1+2\ln n}{n}$ decides wether to build pillar *i*
- E_i = event that train falls through tracks at offset *i*
- what is d?

- $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*
- E_i = event that train falls through tracks at offset *i*
- what is d?

- $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*
- E_i = event that train falls through tracks at offset *i*
- what is d?

• $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*

- E_i = event that train falls through tracks at offset *i*
- $d = n^2$
- $\mathbb{P}[E_i] = (1 \frac{1 + 2 \ln n}{n})^n < \frac{1}{e^{1 + 2 \ln n}} \leq \frac{1}{e^{n^2}} = p$ $pde = \frac{1}{e^n^2} n^2 e = 1$

• $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*

- E_i = event that train falls through tracks at offset *i*
- $\bullet d = n^2$
- $\mathbb{P}[E_i] = (1 \frac{1+2\ln n}{n})^n < \frac{1}{e^{1+2\ln n}} \le \frac{1}{e^n} = p$
- $pde = \frac{1}{en^2}n^2e = 1$ • correctness:

23

• $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*

- E_i = event that train falls through tracks at offset *i*
- $\bullet d = n^2$
- $\mathbb{P}[E_i] = (1 \frac{1+2\ln n}{n})^n < \frac{1}{e^{1+2\ln n}} \leq \frac{1}{e^{n^2}} = p$
- $\square pde = \frac{1}{en^2}n^2e = 1$
- correctness:
- runtime: Algorithmic LLL $\Rightarrow \frac{\ell}{n^2}$ iterations each naively $\mathcal{O}(n^3)$

• $\mathbb{P}[X_i = 1] = \frac{1+2 \ln n}{n}$ decides wether to build pillar *i*

- E_i = event that train falls through tracks at offset *i*
- $\bullet d = n^2$
- $\mathbb{P}[E_i] = (1 \frac{1+2\ln n}{n})^n < \frac{1}{e^{1+2\ln n}} \leq \frac{1}{e^{n^2}} = p$
- $\square pde = \frac{1}{en^2}n^2e = 1$
- correctness:
- runtime: Algorithmic LLL $\Rightarrow \frac{\ell}{n^2}$ iterations each naively $\mathcal{O}(n^3)$
- track length:
 - worst case each resample gives n ones $\Rightarrow O(\frac{\ell}{n})$
 - initial: $\mathcal{O}(\frac{\ell+2\ell \ln n}{n})$

Min-Hash

- given collection of sets \mathcal{S}
- technique for sampling one element for each set $m{S}\in \mathcal{S}$
- hash elements $h(s) \in (0, 1)$
- select element with minimum hash

Min-Hash

- given collection of sets \mathcal{S}
- technique for sampling one element for each set $m{S}\in \mathcal{S}$
- hash elements $h(s) \in (0, 1)$
- select element with minimum hash

Two important Properties

- if sets S_1 and S_2 are similar, then their min-hash is likely to be the same
- if $s \in S$ is the minimum-hashed element in one set it is likely to be the minimum-hashed element in other sets

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position
- correctness:
- runtime $\mathcal{O}(\ell n)$: 💙

- assign random real numbers $r_1, \ldots, r_\ell \in (0, 1)$ to each possible track pillar
- iterate over all possible positions
- choose the pillar with the smallest hash that is at a wheel position
- correctness:
- runtime $\mathcal{O}(\ell n)$:
- track length:

• $S_k = (C + k)$ the wheel positions of the rear quarter at offset k

- $S_k = (C + k)$ the wheel positions of the rear quarter at offset k
- Selected pillar: arg min $_{s \in S_k} r_s$
- **•** key observation: almost all sampled pillars have small r_s

- $S_k = (C + k)$ the wheel positions of the rear quarter at offset k
- Selected pillar: arg min $_{s \in S_k} r_s$
- **•** key observation: almost all sampled pillars have small r_s
- let $r_s > \frac{\ln n}{n}$ \Rightarrow all other $s' \in S$ have larger values
- prob. of selecting such a pillar: $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$

• the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$

- $S_k = (C + k)$ the wheel positions of the rear quarter at offset k
- Selected pillar: arg min $_{s \in S_k} r_s$
- **•** key observation: almost all sampled pillars have small r_s
- let $r_s > \frac{\ln n}{n}$ \Rightarrow all other $s' \in S$ have larger values
- prob. of selecting such a pillar: $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$
- exp number of pillars with $r_s \leq \frac{\ln n}{n}$ is at most $\frac{\ell \ln n}{n}$

- $S_k = (C + k)$ the wheel positions of the rear quarter at offset k
- Selected pillar: arg min $_{s \in S_k} r_s$
- **•** key observation: almost all sampled pillars have small r_s
- let $r_s > \frac{\ln n}{n}$ \Rightarrow all other $s' \in S$ have larger values
- prob. of selecting such a pillar: $(1 \frac{\ln n}{n})^n \le \frac{1}{e^{\ln n}} = \frac{1}{n}$
- the expected number of pillars then is $\frac{\ell-f}{n} \leq \frac{\ell}{n}$
- exp number of pillars with $r_s \leq \frac{\ln n}{n}$ is at most $\frac{\ell \ln n}{n}$ \Rightarrow overall $\leq \frac{\ell(1+\ln n)}{n}$

Probabilistic Method and its applications for train tracks

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell/n)$ track for equally spaced wheels

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell/n)$ track for equally spaced wheels
- $\mathcal{O}(\frac{\ell \ln n}{n})$ track for arbitrary wheel arrangements

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell/n)$ track for equally spaced wheels
- $\mathcal{O}(\frac{\ell \ln n}{n})$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell/n)$ track for equally spaced wheels
- $\mathcal{O}(\frac{\ell \ln n}{n})$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities
- Fix-it algorithm based on algorithmic Lovász Local Lemma

- Probabilistic Method and its applications for train tracks
- $\mathcal{O}(\ell/n)$ track for equally spaced wheels
- $\mathcal{O}(\frac{\ell \ln n}{n})$ track for arbitrary wheel arrangements
- Derandomisation using the method of conditional probabilities
- Fix-it algorithm based on algorithmic Lovász Local Lemma
- Min-Hash based algorithm

Appendix

Deterministic Algorithm: Correctness

- why is the result not $F(0, \ldots, 0) \leq \frac{1+\ln n}{n}$?
- let X be the set of pillars the event E_i depends on
- let $0 = x_i \in X, i \neq k$ $\Delta_0 = -\frac{\ln n}{n} + \Delta_{\sum p_i} \ge -\frac{\ln n}{n} + (1 \frac{\ln n}{n}) > 0$ $\Delta_1 = 1 \frac{\ln n}{n} (1 \frac{\ln n}{n}) = 0$
- choosing 1: E[|T_{k+1}|] = E[|T_k|] + 1 ln n/n and zeroing out all p_i where x_k ∈ (C + i)
 choosing 0: E[|T_{k+1}|] = E[|T_k|] ln n/n and updating affected p_i with ^{p_i}/_{1-(ln n)/n}

