

Seminar Algorithmentechnik

Torsten Ueckerdt, Marcus Wilhelm, Max Katzmann, Thomas Bläsius, Michael Zündorf Paul Jungeblut, Max Göttlicher, Wendy Yi, Jean-Pierre von der Heydt, Adrian Feilhauer

Content

learn something about recent research in algorithms

see some interesting proofs and proof techniques

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Practice writing

- scientific writing
- understandable but formally correct proofs
- concise presentation

Content

- learn something about recent research in algorithms
- see some interesting proofs and proof techniques

Practice reading

- reading mathy scientific texts
- searching for additional literature/material

Practice presenting

- teaching proofs to others
- making complicated things easy to understand
- engaging and fun presentation
- improving tool skills

Practice writing

- scientific writing
- understandable but formally correct proofs
- concise presentation

Practice reviewing

- spot mistakes in other's reports
- give constructive feedback

	amount of work
Content	101
learn something about recent research in algorithms	10h
see some interesting proofs and proof techniques	
Practice reading	
reading mathy scientific texts	40h
searching for additional literature/material	
Practice presenting	
teaching proofs to others	
making complicated things easy to understand	30h
engaging and fun presentation	
improving tool skills	
Practice writing	
scientific writing	
understandable but formally correct proofs	30h
concise presentation	
Practice reviewing 10h	
spot mistakes in other's reports	
give constructive feedback	120h≘4LP

Schedule

27.10.	Introduction
3.11.	Ipe tutorial
10.11.	Short presentations (5 min)
17.11.	
24.11.	Your Presentations (35+5 min)
1.12.	
8.12.	
15.12.	
26.1.	First submission of written document
16.2.	Submission of reviews
15.3.	Final submission of written document

Karlsruher Institut für Technologie

Course of Action

Today

select a topic

Karlsruher Institut für Technologie

Course of Action

Today

- select a topic
- In two weeks (10.11.)
- short presentations (5 min)
 - advertise main presentation
 - motivate topic and intuitively explain highlights

Course of Action

Today

- select a topic
- In two weeks (10.11.)
- short presentations (5 min)
 - advertise main presentation
 - motivate topic and intuitively explain highlights

Two weeks before your presentation (at last)

- you should have
 - read and understood your paper in detail
 - performed a literature review
 - thought about what to present and how to present it

One week before your presentation (or earlier)

you should have

- finished your slides for the presentation
- send them to your advisor
- meet your advisor to discuss your slides

One week before your presentation (or earlier)

you should have

- finished your slides for the presentation
- send them to your advisor
- meet your advisor to discuss your slides

First document submission deadline (26.1.)

- submit your document (at most 10 pages)
- receive two documents to review

One week before your presentation (or earlier)

you should have

- finished your slides for the presentation
- send them to your advisor
- meet your advisor to discuss your slides

First document submission deadline (26.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (16.2.)

submit your reviews, receive other's reviews

One week before your presentation (or earlier)

you should have

- finished your slides for the presentation
- send them to your advisor
- meet your advisor to discuss your slides

First document submission deadline (26.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (16.2.)

submit your reviews, receive other's reviews

Final document submission deadline (15.3.)

submit your final revised document

One week before your presentation (or earlier)

you should have

- finished your slides for the presentation
- send them to your advisor
- meet your advisor to discuss your slides

First document submission deadline (26.1.)

- submit your document (at most 10 pages)
- receive two documents to review

Review submission deadline (16.2.)

submit your reviews, receive other's reviews

Final document submission deadline (15.3.)

submit your final revised document

Grading

- Quality of main presentation
- Quality of *final* written document

Input: Points $P = \{p_1, ..., p_n\}$

Frage: How many triangulations does *P* have?

Chains, Koch Chains, and Point Sets with Many Triangulations

DANIEL RUTSCHMANN and MANUEL WETTSTEIN, Department of Computer Science, ETH Zurich, Switzerland

We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered by xcoordinates, so that the edge between any two consecutive points is unavoidable as far as triangulations are
concerned. A general theory of the structural properties of chains is developed, alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to have $\Omega(9.08^n)$ triangulations. This is a significant improvement over the previous and long-standing lower bound of $\Omega(8.65^n)$ for the maximum number of triangulations of planar point sets.

> Symposium on Computational Geometry (SoCG 2022)

Input: Points $P = \{p_1, ..., p_n\}$

Frage: How many triangulations does *P* have?

Karlsruher Institut für Technologie

Chains, Koch Chains, and Point Sets with Many Triangulations

DANIEL RUTSCHMANN and MANUEL WETTSTEIN, Department of Computer Science, ETH Zurich, Switzerland

We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered by xcoordinates, so that the edge between any two consecutive points is unavoidable as far as triangulations are
concerned. A general theory of the structural properties of chains is developed, alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to have $\Omega(9.08^n)$ triangulations. This is a significant improvement over the previous and long-standing lower bound of $\Omega(8.65^n)$ for the maximum number of triangulations of planar point sets.

> Symposium on Computational Geometry (SoCG 2022)

Input: Points $P = \{p_1, ..., p_n\}$

Frage: How many triangulations does *P* have?

Karlsruher Institut für Technologie

Chains, Koch Chains, and Point Sets with Many Triangulations

DANIEL RUTSCHMANN and MANUEL WETTSTEIN, Department of Computer Science, ETH Zurich, Switzerland

We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered by xcoordinates, so that the edge between any two consecutive points is unavoidable as far as triangulations are
concerned. A general theory of the structural properties of chains is developed, alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to have $\Omega(9.08^n)$ triangulations. This is a significant improvement over the previous and long-standing lower bound of $\Omega(8.65^n)$ for the maximum number of triangulations of planar point sets.

> Symposium on Computational Geometry (SoCG 2022)

Input: Points $P = \{p_1, ..., p_n\}$

Frage: How many triangulations does *P* have?

Theorem: There are sets of points with $\Omega(9.08^n)$ different triangulations.

Chains, Koch Chains, and Point Sets with Many Triangulations

DANIEL RUTSCHMANN and MANUEL WETTSTEIN, Department of Computer Science, ETH Zurich, Switzerland

We introduce the abstract notion of a chain, which is a sequence of n points in the plane, ordered by xcoordinates, so that the edge between any two consecutive points is unavoidable as far as triangulations are
concerned. A general theory of the structural properties of chains is developed, alongside a general understanding of their number of triangulations.

We also describe an intriguing new and concrete configuration, which we call the Koch chain due to its similarities to the Koch curve. A specific construction based on Koch chains is then shown to have $\Omega(9.08^n)$ triangulations. This is a significant improvement over the previous and long-standing lower bound of $\Omega(8.65^n)$ for the maximum number of triangulations of planar point sets.

> Symposium on Computational Geometry (SoCG 2022)

Imagine a train driving on tracks

Imagine a train driving on tracks
 This is very wasteful. We can get by with much less rail

Imagine a train driving on tracks
 This is very wasteful. We can get by with much less rail

- Imagine a train driving on tracks
- This is very wasteful. We can get by with much less rail
- \blacksquare More wheels \longrightarrow less tracks

- Imagine a train driving on tracks
- This is very wasteful. We can get by with much less rail
- \blacksquare More wheels \longrightarrow less tracks

- Imagine a train driving on tracks
- This is very wasteful. We can get by with much less rail
- \blacksquare More wheels \longrightarrow less tracks
- Iower and upper bounds for the fraction of tracks
Topic 3: Train Tracks with Gaps

Solo Chess

capture one piece in every move

Solo Chess

capture one piece in every move

Solo Chess

capture one piece in every move

Solo Chess

- capture one piece in every move
- each piece moves at most twice

Solo Chess

- capture one piece in every move
- each piece moves at most twice

Solo Chess

- capture one piece in every move
- each piece moves at most twice
- game is won if only one piece remains

Solo Chess

- capture one piece in every move
- each piece moves at most twice
- game is won if only one piece remains

GENERALIZED SOLO CHESS

Solo Chess

- capture one piece in every move
- each piece moves at most twice
- game is won if only one piece remains

GENERALIZED SOLO CHESS

- Infinite 2-dimensional board
- maximum number of moves may be different for each piece

Solo Chess

- capture one piece in every move
- each piece moves at most twice
- game is won if only one piece remains

GENERALIZED SOLO CHESS

- Infinite 2-dimensional board
- maximum number of moves may be different for each piece

Is there a winning sequence of moves?

The Problem

The world is full of graphs (the internet, social networks, your brain, etc.)

They consist of vertices and edges

The Problem

- The world is full of graphs (the internet, social networks, your brain, etc.)
- They consist of vertices and edges
- Sometimes we only know the vertices of the graph but not the edges
 - No one knows the whole internet graph

The Problem

- The world is full of graphs (the internet, social networks, your brain, etc.)
- They consist of vertices and edges
- Sometimes we only know the vertices of the graph but not the edges
 - No one knows the whole internet graph

The Solution?

- We perform measurements to determine distances between the vertices in the graph
 - "The packet visited 3 routers before reaching the target computer"

The Problem

- The world is full of graphs (the internet, social networks, your brain, etc.)
- They consist of vertices and edges
- Sometimes we only know the vertices of the graph but not the edges
 - No one knows the whole internet graph

The Solution?

- We perform measurements to determine distances between the vertices in the graph
 - "The packet visited 3 routers before reaching the target computer"
- Formally, this is modelled using an *oracle* that answers queries like: "What is the distance between these two vertices?"

The Problem

- The world is full of graphs (the internet, social networks, your brain, etc.)
- They consist of vertices and edges
- Sometimes we only know the vertices of the graph but not the edges
 - No one knows the whole internet graph

The Solution?

- We perform measurements to determine distances between the vertices in the graph
 - "The packet visited 3 routers before reaching the target computer"
- Formally, this is modelled using an *oracle* that answers queries like: "What is the distance between these two vertices?"

Reconstruction Algorithms

- Performance measured by counting queries (In general $\Omega(n^2)$ queries needed for graphs with *n* vertices)
- In the paper: A simple algorithm requiring $\tilde{O}(n)$ queries on graphs with special structure

Topic 6: Baba is You is Undecidable

Topic 7: Product structure extension of the Alon–Seymour–Thomas theorem

Theorem (Distel et al., 2023+)

Every planar graph is a subgraph of $H \boxtimes K_m$.

very *simple* graph (bounded treewidth)

- qualitative strengthening of the planar separator theorem
- introduction of several advanced graph-theoretical concepts
- technical proof via stronger theorems
- rewarded by nice structural insights
- prerequisites: familiarity with minors and Menger's theorem

blow-up vertices of H with cliques of size m:

https://arxiv.org/abs/2212.08739

clique of size $m \in O(\sqrt{n})$

Topic 8: Reconfiguration of Polygonal Subdivisions via Recombination

Problem:

- Given subdivided polygon
- Merge and then split two neighboring areas
- Keep areas connected
- (How fast) Can we reconfigure?

Results:

- Any area-compatible maps can be reconfigured
- Low move count for few areas

Topics: overview

- 1. Point Sets with Many Triangulations
- 2. Computing Tree Decompositions with Small Independence Number
- 3. Train Tracks with Gaps
- 4. Chess Is Hard Even for a Single Player
- 5. A Simple Algorithm for Graph Reconstruction
- 6. Baba is You is Undecidable
- 7. Product structure extension of the Alon–Seymour–Thomas theorem
- 8. Reconfiguration of Polygonal Subdivisions via Recombination

Reading

first look through the paper, then read thoroughly

Karlsruher Institut für Technologie

Comments

- first look through the paper, then read thoroughly
- establish overview of related work

Karlsruher Institut für Technologie

Comments

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know **why** things are done the way they are done?

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know **why** things are done the way they are done?

Presentation

Timing: roughly 35 min talk + 5 min discussion

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know **why** things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know **why** things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content
 - Target group: CS graduate students

Reading

- first look through the paper, then read thoroughly
- establish overview of related work
 - first read title, maybe abstract, maybe introduction, maybe more
- Did you really understand the content?
- Do you know **why** things are done the way they are done?

- Timing: roughly 35 min talk + 5 min discussion
 - wisely select content
 - Target group: CS graduate students
- Slides: we recommend to use lpe

More comments

More comments

Presentation

Is the introduction gentle, smooth and easy to follow?

More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?

More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?

More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?

More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?
- Can some arguments be simplified?

More comments

- Is the introduction gentle, smooth and easy to follow?
- How many things you already said have to be remembered by the audience to be able to follow?
- Is it clear what you are trying to prove and how you prove it?
- Can the building blocks of your presentation be reordered?
- What is the best order and why?
- Can some arguments be simplified?
- Is your presentation fun? Interactive?

Some more comments

Written Document

Some more comments

Written Document

Structure:

Some more comments

Written Document

Structure:

- short and clear abstract
- introduction, related work, (applications)
- selected topics in detail
- summary / conclusion
- complete references (BibTeX)

Some more comments

Written Document

Structure:

- short and clear abstract
- introduction, related work, (applications)
- selected topics in detail
- summary / conclusion
- complete references (BibTeX)
- General writing advice:
 - do not copy text: express in your own words
 - avoid too long sentences, paragraphs
 - use pictures
 - cite and specify all sources correctly
 - check grammar and spelling!

Some more comments

Written Document

Structure:

- short and clear abstract
- introduction, related work, (applications)
- selected topics in detail
- summary / conclusion
- complete references (BibTeX)
- General writing advice:
 - do not copy text: express in your own words
 - avoid too long sentences, paragraphs

use pictures

- cite and specify all sources correctly
- check grammar and spelling!

- regularly read what you just wrote
 - check correctness, clarity
 - what is the purpose of a sentence / paragraph?
- should sentences / paragraphs be rearranged?

Even more comments

Mutual Reviews

- written statement (form provided)
- optionally: annotations
- Structure:
 - short summary of the content
 - strengths and weaknesses of the work
 - review of the text (comprehensibility, structure, accuracy, language, topic coverage, ambiguities, ...)
- be constructive: detailed comments and correction instructions
- as detailed as you would like to get review for your work
- objective and fair

Website

Organization

- https://scale.iti.kit.edu/teaching/2023ws/seminar
- you find these slides there
- other information like dates of the talks
- slides of all participants

Next week: Ipe tutorial

- install ipe and make sure it works
 - get and install ipe: ipe.otfried.org
 - make sure LATEX is installed
 - open Ipe and check whether LATEX works: press "l"; click somewhere in the drawing area; insert some text; click Ok; check whether it nicely rendered your text (it might be necessary to press "Ctrl+l" to make sure it renders correctly)
- bring a laptop and a mouse