Seminar Algorithmentechnik - Combinatorial Problems on \boldsymbol{H}-Graphs

 Kilian Krause

Motivation

Motivation

Computing the clique number is well known to be ... - NP-hard on general graphs

Motivation

Computing the clique number is well known to be ...

- NP-hard on general graphs
- but polynomial time solvable on
- chordal graphs
- planar graphs

Motivation

Computing the clique number is well known to be ...

- NP-hard on general graphs
- but polynomial time solvable on
- chordal graphs
- planar graphs
- ...
- We present other graph classes for which this problem is polytime solvable

Motivation

Computing the clique number is well known to be ...

- NP-hard on general graphs
- but polynomial time solvable on
- chordal graphs
- planar graphs
- ...
- We present other graph classes for which this problem is polytime solvable

H-graphs

Intersection graphs

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.
An intersection graph is a graph that admits an intersection representation.

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.
An intersection graph is a graph that admits an intersection representation.

Observation:

Every graph $G=(V, E)$ is an intersection graph with $S_{v}:=\{e \in E(G) \mid v \in e\}$.

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.
An intersection graph is a graph that admits an intersection representation.

Observation:

Every graph $G=(V, E)$ is an intersection graph with $S_{v}:=\{e \in E(G) \mid v \in e\}$.

Examples:

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.
An intersection graph is a graph that admits an intersection representation.

Observation:

Every graph $G=(V, E)$ is an intersection graph with $S_{v}:=\{e \in E(G) \mid v \in e\}$.

Examples:

Interval graph

Intersection graphs

Definition:

An intersection representation of a graph G is a collection of sets $\left\{S_{v}\right\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_{u} \cap S_{v} \neq \emptyset$.
An intersection graph is a graph that admits an intersection representation.

Observation:

Every graph $G=(V, E)$ is an intersection graph with $S_{v}:=\{e \in E(G) \mid v \in e\}$.

Examples:

Interval graph

Subdivisions

Let H be a graph.

Subdivisions

Let H be a graph.

C_{4}

Subdivisions

Let H be a graph.
A subdivision of H is a graph that can be obtained from H by replacing the edges with paths of arbitrary length.

C_{4}

Subdivisions

Let H be a graph.
A subdivision of H is a graph that can be obtained from H by replacing the edges with paths of arbitrary length.

C_{4}

subdivision of C_{4}

H-graphs

H-graphs

- Given a graph H

H-graphs

- Given a graph H
- H^{\prime} subdivision of H

H-graphs

- Given a graph H
- H^{\prime} subdivision of H
- Connected subgraphs of H^{\prime}

H-graphs

- Given a graph H
- H^{\prime} subdivision of H
- Connected subgraphs of H^{\prime}

- Intersection graph of the subgraphs

H-graphs

- Given a graph H
- H^{\prime} subdivision of H
- Connected subgraphs of H^{\prime}

- Intersection graph of the subgraphs

Interval graphs as \boldsymbol{H}-graphs

Interval graphs as \boldsymbol{H}-graphs

An interval graph is a K_{2}-graph

Interval graphs as \boldsymbol{H}-graphs

An interval graph is a K_{2}-graph
Instead of considering the real line

Interval graphs as \boldsymbol{H}-graphs

An interval graph is a K_{2}-graph
Instead of considering the real line

we can consider a path (discrete real line)

Interval graphs as \boldsymbol{H}-graphs

An interval graph is a K_{2}-graph
Instead of considering the real line
Instead of intervals

we can consider a path (discrete real line)

Interval graphs as \boldsymbol{H}-graphs

An interval graph is a K_{2}-graph
Instead of considering the real line
Instead of intervals

we can consider a path (discrete real line)
we can consider subpaths of the path

Circular-arc graphs as H-graphs

Circular-arc graphs as \boldsymbol{H}-graphs

A circular-arc graph is a K_{3}-graph

Circular-arc graphs as H-graphs

A circular-arc graph is a K_{3}-graph
Instead of considering a circle

Circular-arc graphs as H-graphs

A circular-arc graph is a K_{3}-graph
Instead of considering a circle
we can consider a graph-theoretic cycle

Circular-arc graphs as \boldsymbol{H}-graphs

A circular-arc graph is a K_{3}-graph

Instead of considering a circle Instead of circular-arcs
we can consider a graph-theoretic cycle

Circular-arc graphs as \boldsymbol{H}-graphs

A circular-arc graph is a K_{3}-graph

Instead of considering a circle Instead of circular-arcs
we can consider a graph-theoretic cycle we can consider subpaths of the cycle ${ }^{(*)}$

(*) subpaths or the cycle itself

The Helly property

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Less formal:
If sets intersect pairwise, they all have a common element.

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Less formal:
If sets intersect pairwise, they all have a common element.

Examples:

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Less formal:
If sets intersect pairwise, they all have a common element.

Examples:

Intervals satisfy the Helly property

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Less formal:
If sets intersect pairwise, they all have a common element.

Examples:

Intervals satisfy the Helly property

Circular-arcs don't satisfy the Helly property

The Helly property

Definition:

A family $\left\{T_{i}\right\}_{i \in I}$ of sets satisfies the Helly property if for any $J \subseteq I$ the following holds: $T_{i} \cap T_{j} \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{j \in J} T_{j} \neq \emptyset$.

Less formal:
If sets intersect pairwise, they all have a common element.

A Helly H-graph G is a graph that admits an H representation which satisfies the Helly property.

Examples:

Intervals satisfy the Helly property

Circular-arcs don't satisfy Helly property

Maximal cliques in Helly \boldsymbol{H}-graphs

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.
- Let C be a (inclusion-)maximal clique of G.

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.
- Let C be a (inclusion-)maximal clique of G.
\Rightarrow all vertices in C are pairwise adjacent

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.
- Let C be a (inclusion-)maximal clique of G.
\Rightarrow all vertices in C are pairwise adjacent
\Rightarrow the corresponding subgraphs in H^{\prime} pairwise intersect

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.
- Let C be a (inclusion-)maximal clique of G.
\Rightarrow all vertices in C are pairwise adjacent
\Rightarrow the corresponding subgraphs in H^{\prime} pairwise intersect
$\Rightarrow \bigcap_{v \in C} H_{v}^{\prime} \neq \emptyset$

Maximal cliques in Helly \boldsymbol{H}-graphs

Lemma:

If a graph G has a Helly H-representation, then G has at most $|V(H)|+|E(H)| \cdot|V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H^{\prime} be a subdivision of H s.t. G has a Helly H-representation $\left\{H_{v}^{\prime} \mid v \in V(G)\right\}$.
- Let C be a (inclusion-)maximal clique of G.
\Rightarrow all vertices in C are pairwise adjacent
\Rightarrow the corresponding subgraphs in H^{\prime} pairwise intersect
$\Rightarrow \bigcap_{v \in C} H_{v}^{\prime} \neq \emptyset$
$\Rightarrow C$ corresponds to a node x_{C} of H^{\prime}

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G) Claim: G_{P} is Helly circular-arc graph

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G) Claim: G_{P} is Helly circular-arc graph
- Let $v \in V\left(G_{P}\right), C=P+x y$

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G) Claim: G_{P} is Helly circular-arc graph
- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G) Claim: G_{P} is Helly circular-arc graph
- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G) Claim: G_{P} is Helly circular-arc graph
- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$
- Otherwise: $C_{v}=\left.H_{v}^{\prime}\right|_{P}+x y$

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: G_{P} is Helly circular-arc graph

- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$
- Otherwise: $C_{v}=\left.H_{v}^{\prime}\right|_{P}+x y$
\Rightarrow this is a Helly C-representation

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: G_{P} is Helly circular-arc graph

- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$
- Otherwise: $C_{v}=\left.H_{v}^{\prime}\right|_{P}+x y$
\Rightarrow this is a Helly C-representation
\Rightarrow for every edge $x y \in E(H)$ we get a Helly circular-arc graph

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: G_{P} is Helly circular-arc graph

- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$
- Otherwise: $C_{v}=\left.H_{v}^{\prime}\right|_{P}+x y$
\Rightarrow this is a Helly C-representation
\Rightarrow for every edge $x y \in E(H)$ we get a Helly circular-arc graph
Fact: A Helly circular-arc graph G^{\prime} has at most $\left|V\left(G^{\prime}\right)\right|$ maximal cliques.

Maximal cliques in Helly \boldsymbol{H}-graphs

- Let $x y \in E(H)$ and $P=\left(x, x_{1}, \ldots, x_{k}, y\right)$ corresponding path in H^{\prime}.
- $G_{P}=$ union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: G_{P} is Helly circular-arc graph

- Let $v \in V\left(G_{P}\right), C=P+x y$
- Construct C-representation of G_{P}
- If $\left.H_{v}^{\prime}\right|_{P}$ is a subpath of $P: C_{v}=\left.H_{v}^{\prime}\right|_{P}$
- Otherwise: $C_{v}=\left.H_{v}^{\prime}\right|_{P}+x y$
\Rightarrow this is a Helly C-representation

\Rightarrow for every edge $x y \in E(H)$ we get a Helly circular-arc graph
Fact: A Helly circular-arc graph G^{\prime} has at most $\left|V\left(G^{\prime}\right)\right|$ maximal cliques.
$\Rightarrow G$ has at most $|V(H)|+|E(H)| \cdot|V(G)|$ maximal cliques

Clique problem on Helly H-graphs

Theorem

The clique problem can be solved in polynomial time on Helly H -graphs.

Clique problem on Helly H-graphs

Theorem

The clique problem can be solved in polynomial time on Helly H -graphs.

Proof:

- Maximal cliques can be enumerated with polynomial delay

Clique problem on Helly \boldsymbol{H}-graphs

Theorem

The clique problem can be solved in polynomial time on Helly H -graphs.

Proof:

- Maximal cliques can be enumerated with polynomial delay
- List all maximal cliques of an Helly H-graph G in polynomial time

Clique problem on Helly \boldsymbol{H}-graphs

Theorem

The clique problem can be solved in polynomial time on Helly H -graphs.

Proof:

- Maximal cliques can be enumerated with polynomial delay
- List all maximal cliques of an Helly H-graph G in polynomial time
- Return the largest maximal clique

Cactus graphs

Cactus graphs

Definition:

A cactus graph (or just a cactus) is a connected graph in which every edge belongs to at most one cycle.

Cactus graphs

Definition:

A cactus graph (or just a cactus) is a connected graph in which every edge belongs to at most one cycle.

Cactus graphs

Definition:

A cactus graph (or just a cactus) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Cactus graphs

Definition:

A cactus graph (or just a cactus) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Cactus graphs

Definition:

A cactus graph (or just a cactus) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Clique cutsets

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.

clique cutset

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.
An atom of a graph G is an induced subgraph of G that has no clique cutset.

clique cutset

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.
An atom of a graph G is an induced subgraph of G that has no clique cutset.

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.
An atom of a graph G is an induced subgraph of G that has no clique cutset.

A clique-cutset decomposition of G is a set $\left\{A_{1}, \ldots, A_{k}\right\}$ of atoms in G such that $G=\bigcup_{i=1}^{k} A_{i}$ and for every $i, j, V\left(A_{i}\right) \cap V\left(A_{j}\right)$ is either empty or induces a clique in G.

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.
An atom of a graph G is an induced subgraph of G that has no clique cutset.

A clique-cutset decomposition of G is a set $\left\{A_{1}, \ldots, A_{k}\right\}$ of atoms in G such that $G=\bigcup_{i=1}^{k} A_{i}$ and for every $i, j, V\left(A_{i}\right) \cap V\left(A_{j}\right)$ is either empty or induces a clique in G.

clique cutset

Clique cutsets

Definition:

A clique cutset of a graph G is a clique C such that $G-C$ has more connected components than G.
An atom of a graph G is an induced subgraph of G that has no clique cutset.

A clique-cutset decomposition of G is a set $\left\{A_{1}, \ldots, A_{k}\right\}$ of atoms in G such that $G=\bigcup_{i=1}^{k} A_{i}$ and for every $i, j, V\left(A_{i}\right) \cap V\left(A_{j}\right)$ is either empty or induces a clique in G.

Fact:

A clique-cutset decomposition $\left\{A_{1}, \ldots, A_{k}\right\}$ (with $k \leq n$) of a graph

clique cutset
 G can be computed in polynomial time, s.t. a maximum clique in G is contained in some A_{i}.

Atoms of cactus-graphs

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.
- C_{1}, \ldots, C_{t} be the components of $\left.H\right|_{A} \backslash\{x\}$ and $S:=\left\{v \mid v \in A\right.$ and $\left.x \in H_{v}\right\}$

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.

- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.
- C_{1}, \ldots, C_{t} be the components of $\left.H\right|_{A} \backslash\{x\}$ and $S:=\left\{v \mid v \in A\right.$ and $\left.x \in H_{v}\right\}$
$\Rightarrow S$ is a clique in A and S is not a clique-cutset

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.

- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.
- C_{1}, \ldots, C_{t} be the components of $\left.H\right|_{A} \backslash\{x\}$ and $S:=\left\{v \mid v \in A\right.$ and $\left.x \in H_{v}\right\}$
$\Rightarrow S$ is a clique in A and S is not a clique-cutset
$\Rightarrow \exists$ component C_{j} s.t. the subgraph $H^{\prime}:=V\left(C_{j}\right) \cup\{x\}$ of H is a representation of A

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.
- C_{1}, \ldots, C_{t} be the components of $\left.H\right|_{A} \backslash\{x\}$ and $S:=\left\{v \mid v \in A\right.$ and $\left.x \in H_{v}\right\}$
$\Rightarrow S$ is a clique in A and S is not a clique-cutset
$\Rightarrow \exists$ component C_{j} s.t. the subgraph $H^{\prime}:=V\left(C_{j}\right) \cup\{x\}$ of H is a representation of A
- If H^{\prime} is a path or cycle, we are done

Atoms of cactus-graphs

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

- Let H be a cactus, G an H-graph with H-representation $\left\{H_{v}\right\}_{v \in V(G)}$ and A an atom of G.
- $\left.H\right|_{A}:=\bigcup_{v \in A} H_{v}$
- If $\left.H\right|_{A}$ is a path or cycle, we are done
- Otherwise, $\left.H\right|_{A}$ contains a cut vertex x, because H is a cactus.
- C_{1}, \ldots, C_{t} be the components of $\left.H\right|_{A} \backslash\{x\}$ and $S:=\left\{v \mid v \in A\right.$ and $\left.x \in H_{v}\right\}$
$\Rightarrow S$ is a clique in A and S is not a clique-cutset
$\Rightarrow \exists$ component C_{j} s.t. the subgraph $H^{\prime}:=V\left(C_{j}\right) \cup\{x\}$ of H is a representation of A
- If H^{\prime} is a path or cycle, we are done
- Otherwise iteratively repeat this process until we obtain a path or cycle

Clique problem on \boldsymbol{H}-graphs, where \boldsymbol{H} is a cactus

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Clique problem on \boldsymbol{H}-graphs, where \boldsymbol{H} is a cactus

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of H -graphs, where H is a cactus.

Clique problem on \boldsymbol{H}-graphs, where \boldsymbol{H} is a cactus

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of H -graphs, where H is a cactus.

Proof:

- Compute a clique-cutset decomposition $\left\{A_{1}, \ldots, A_{k}\right\}$ of G in polynomial time.

Clique problem on \boldsymbol{H}-graphs, where \boldsymbol{H} is a cactus

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of H -graphs, where H is a cactus.

Proof:

- Compute a clique-cutset decomposition $\left\{A_{1}, \ldots, A_{k}\right\}$ of G in polynomial time.
- Solve the clique problem for each atom A_{i} in polynomial time.

Clique problem on \boldsymbol{H}-graphs, where \boldsymbol{H} is a cactus

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of H -graphs, where H is a cactus.

Proof:

- Compute a clique-cutset decomposition $\left\{A_{1}, \ldots, A_{k}\right\}$ of G in polynomial time.
- Solve the clique problem for each atom A_{i} in polynomial time.
- A maximum clique in some A_{i} is maximum in G.

2-subdivision of graphs

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.
Observation:
The complement of a 2-subdivision of a graph G can be covered by three cliques.

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under k-subdivision: $G \cong H \Leftrightarrow G_{2} \cong H_{2}$

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under k-subdivision: $G \cong H \Leftrightarrow G_{2} \cong H_{2}$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \bar{G} \cong \bar{H}$

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under k-subdivision: $G \cong H \Leftrightarrow G_{2} \cong H_{2}$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \bar{G} \cong \bar{H}$
\Rightarrow the class $\overline{\mathrm{SUBD}_{2}}:=\left\{\overline{G_{2}} \mid G_{2}\right.$ is a 2-subdivision of any graph $\left.G\right\}$ is isomorphismcomplete

2-subdivision of graphs

Definition:

The 2-subdivision G_{2} of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under k-subdivision: $G \cong H \Leftrightarrow G_{2} \cong H_{2}$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \bar{G} \cong \bar{H}$
\Rightarrow the class $\overline{\mathrm{SUBD}_{2}}:=\left\{\overline{G_{2}} \mid G_{2}\right.$ is a 2-subdivision of any graph $\left.G\right\}$ is isomorphismcomplete
- The clique problem is APX-hard on $\overline{\operatorname{SUBD}}_{2}$

Graphs containing the double triangle as a minor

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \mathrm{SUBD}_{2}$ is an H-graph.

double triangle graph

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H -graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H -graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H -graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

$$
G=(V, E) \text { a graph, } V=\left\{v_{1}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H -graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

$$
G=(V, E) \text { a graph, } V=\left\{v_{1}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

For $e_{k}=v_{i} v_{j} \in E$ with $i<j$ define $\ell(k):=i$ and $r(k):=j$ (left and right end of e_{k}).

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H -graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

$$
G=(V, E) \text { a graph, } V=\left\{v_{1}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

For $e_{k}=v_{i} v_{j} \in E$ with $i<j$ define $\ell(k):=i$ and $r(k):=j$ (left and right end of e_{k}).
$e_{k} \in E(G)$ is replaced by the path $\left(v_{i}=v_{\ell(k)}, a_{k}, b_{k}, v_{r(k)}=v_{j}\right)$ in G_{2}.

Graphs containing the double triangle as a minor

Theorem

If H contains the double triangle as a minor, then every graph $\overline{G_{2}} \in \overline{\mathrm{SUBD}}_{2}$ is an H-graph.

Proof:

double triangle graph

Since H contains the double triangle as a minor, it is of the following form:

$$
G=(V, E) \text { a graph, } V=\left\{v_{1}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

For $e_{k}=v_{i} v_{j} \in E$ with $i<j$ define $\ell(k):=i$ and $r(k):=j$ (left and right end of e_{k}).
$e_{k} \in E(G)$ is replaced by the path $\left(v_{i}=v_{\ell(k)}, a_{k}, b_{k}, v_{r(k)}=v_{j}\right)$ in G_{2}.

Construction of a subdivision \boldsymbol{H}^{\prime} of \boldsymbol{H}

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{2}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{2}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{2}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{\mathbf{2}}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{2}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{\mathbf{2}}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{\mathbf{2}}}$

Intersection representation of \boldsymbol{H}^{\prime} for $\overline{\boldsymbol{G}_{\mathbf{2}}}$

This is a valid intersection representation

Hardness Results

To summarize...

Hardness Results

To summarize...

- Given a graph H that contains the double triangle as a minor

Hardness Results

To summarize...

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H^{\prime} of H

Hardness Results

To summarize...

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H^{\prime} of H
- and specified certain connected subgraphs of H^{\prime}

Hardness Results

To summarize...

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H^{\prime} of H
- and specified certain connected subgraphs of H^{\prime}
- such that every $\overline{G_{2}} \in \overline{\text { SUBD }_{2}}$ is an H-graph.

Hardness Results

To summarize...

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H^{\prime} of H
- and specified certain connected subgraphs of H^{\prime}
- such that every $\overline{G_{2}} \in \overline{\mathrm{SUBD}_{2}}$ is an H-graph.

Corollary

Let H be a graph containing the double triangle as a minor. Then the clique problem is APX-hard on the class of all H -graphs and this class is also isomorphism-complete.

Open problems

Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a cactus?

Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a cactus?

What is the time complexity for computing the clique number on H-graphs, if H does not contain the double triangle as a minor?

Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a cactus?

What is the time complexity for computing the clique number on H-graphs, if H does not contain the double triangle as a minor?

What is the time complexity of the isomorphism problem on H-graphs, if $H=K_{3}$, that is the class of circular-arc graphs?

Thank you!

Questions?

