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Definition:
An intersection representation of a graph G is a collection of sets {S,},cv(c)

such that {uv,v} € E(G) & S, NS, # 0.
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An intersection representation of a graph G is a collection of sets {S,},cv(c)
such that {u,v} € E(G) & S, NS, # 0.
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An intersection representation of a graph G is a collection of sets {S,},cv(c)
such that {u,v} € E(G) & S, NS, # 0.
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Let H be a graph.

A subdivision of H is a graph that can be obtained from H by replacing the
edges with paths of arbitrary length.

® ® o - 9
® ® ® ®
Cy subdivision of C,4
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m Given a graph H
® H’ subdivision of H
m Connected subgraphs of H’

® Intersection graph of the subgraphs A
O O

H-graph
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Interval graphs as H-graphs = b

An interval graph is a K>-graph

Instead of considering the real line Instead of intervals

_—_———— ——

-3 -2 -1 0 1 2 3 4

we can consider a path (discrete real line) we can consider subpaths of the path

v e e e
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A circular-arc graph is a K3-graph

Instead of considering a circle we can consider a graph-theoretic cycle
Instead of circular-arcs we can consider subpaths of the cycle *)

(%) subpaths or the cycle itself
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The Helly property

Definition:

A family {T;};cr of sets satisfies the Helly property
if for any J C I the following holds: T; N T; # 0 for
all i,j € Jimplies ";c, T; # 0.

Less formal:
If sets intersect pairwise, they all have a common
element.

A Helly H-graph G is a graph that admits an H-
representation which satisfies the Helly property.
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Lemma:
If a graph G has a Helly H-representation, then G has at most |V(H)| + |E(H)| - [V(G)|

(inclusion-)maximal cliques.
Proof:
m Let H' be a subdivision of H s.t. G has a Helly H-representation {H,, | v € V(G)}.
m Let C be a (inclusion-)maximal clique of G.
= all vertices in C are pairwise adjacent
= the corresponding subgraphs in H' pairwise intersect

= ﬂvEC H(/ # (D
= C corresponds to a node x¢ of H’
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mletxy € E(H)and P = (x,xy, ..., Xk, y) corresponding path in H'.
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Clique problem on Helly H-graphs

Theorem
The clique problem can be solved in polynomial time on Helly H-graphs.
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Theorem
The clique problem can be solved in polynomial time on Helly H-graphs.

Proof:
@ Maximal cligues can be enumerated with polynomial delay
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Theorem
The clique problem can be solved in polynomial time on Helly H-graphs.

Proof:
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m List all maximal cliques of an Helly H-graph G in polynomial time
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Clique problem on Helly H-graphs =25 bt

Theorem
The clique problem can be solved in polynomial time on Helly H-graphs.

Proof:

@ Maximal cligues can be enumerated with polynomial delay

m List all maximal cliques of an Helly H-graph G in polynomial time
m Return the largest maximal clique
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Cactus graphs

Definition:
A cactus graph (or just a cactus) is a connected
graph in which every edge belongs to at most one

cycle.
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Definition:
A clique cutset of a graph G is a clique C such that
G — C has more connected components than G.
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Definition:
A clique cutset of a graph G is a clique C such that /\
G — C has more connected components than G.

An atom of a graph G is an induced subgraph of G -
that has no clique cutset.

clique cutset
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Clique cutsets

Definition:
A clique cutset of a graph G is a clique C such that
G — C has more connected components than G.

An atom of a graph G is an induced subgraph of G
that has no clique cutset.

A clique-cutset decomposition of G is a set
{A1,..., A} of atoms in G such that G = | J_, A; and
for every i, j, V(A;) NV (A;) is either empty or induces
a clique in G.
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Clique cutsets —  =Z Dokl

Definition:
A clique cutset of a graph G is a clique C such that /\
G — C has more connected components than G.

An atom of a graph G is an induced subgraph of G -
that has no clique cutset.

atom

clique cutset
A clique-cutset decomposition of G is a set
{A1,..., A} of atoms in G such that G = | J_, A; and
for every i, j, V(A;) NV (A;) is either empty or induces
a clique in G.

Fact:

A clique-cutset decomposition {Aq, .. ., Ar} (with k < n) of a graph
G can be computed in polynomial time, s.t. a maximum clique in G
IS contained in some A;.
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Atoms of cactus-graphs

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.
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Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.
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Atoms of cactus-graphs i s

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.
d H‘A — UvEA HV
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Atoms of cactus-graphs i s

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.

O H‘A = UvEA H.,
m |[f H|, is a path or cycle, we are done
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Atoms of cactus-graphs i s

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

m Let H be a cactus, G an H-graph with H-representation {H, },cv () and A an atom of G.
B Hl = UVGA H,

m |[f H|, is a path or cycle, we are done

m Otherwise, H|4 contains a cut vertex x, because H is a cactus.
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Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.
B Hl = UVGA H,

m |[f H|, is a path or cycle, we are done

m Otherwise, H|4 contains a cut vertex x, because H is a cactus.

w(Cy,...,Cibethe components of Hja\{x}and S :={v|veAand x € H,}
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If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.
Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.
B Hl = UVGA H,
m |[f H|, is a path or cycle, we are done
m Otherwise, H|4 contains a cut vertex x, because H is a cactus.
w(Cy,...,Cibethe components of Hja\{x}and S :={v|veAand x € H,}
= Sisacligue in Aand S is not a cligue-cutset
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Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.
Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv () and A an atom of G.
B Hl = UVGA H,
m |[f H|, is a path or cycle, we are done
m Otherwise, H|4 contains a cut vertex x, because H is a cactus.
w(Cy,...,Cibethe components of Hja\{x}and S :={v|veAand x € H,}
= Sisacligue in Aand S is not a cligue-cutset
= 3 component C; s.t. the subgraph H' := V(C;) U {x} of H is a representation of A
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Atoms of cactus-graphs i s

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.
Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv () and A an atom of G.
B Hl = UVGA H,
m |[f H|, is a path or cycle, we are done
m Otherwise, H|4 contains a cut vertex x, because H is a cactus.
w(Cy,...,Cibethe components of Hja\{x}and S :={v|veAand x € H,}

= Sisacligue in Aand S is not a cligue-cutset

= 3 component C; s.t. the subgraph H' := V(C;) U {x} of H is a representation of A
m If H' is a path or cycle, we are done
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Atoms of cactus-graphs i s

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.
Proof:
m Let H be a cactus, G an H-graph with H-representation {H, },cv(c) and A an atom of G.
. H‘A = UveA H,
m |[f H|, is a path or cycle, we are done
m Otherwise, H|4 contains a cut vertex x, because H is a cactus.
w(Cy,...,Cibethe components of Hja\{x}and S :={v|veAand x € H,}
= Sisacligue in Aand S is not a cligue-cutset
= 3 component C; s.t. the subgraph H' := V(C;) U {x} of H is a representation of A
m If H' is a path or cycle, we are done
m Otherwise iteratively repeat this process until we obtain a path or cycle
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Clique problem on H-graphs, where H is a cactus

Fact:
The clique problem can be solved in polynomial time on circular-arc graphs.
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Fact:
The clique problem can be solved in polynomial time on circular-arc graphs.

~

Theorem
The clique problem can be solved in polynomial time on the class of H-graphs, where H
is a cactus.
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Clique problem on H-graphs, where H is a cactus i s
Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem )
The clique problem can be solved in polynomial time on the class of H-graphs, where H

is a cactus.

Proof:

= Compute a clique-cutset decomposition {Ay, ..., Ar} of G in polynomial time.
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Theorem )
The clique problem can be solved in polynomial time on the class of H-graphs, where H

is a cactus.

Proof:

= Compute a clique-cutset decomposition {Ay, ..., Ar} of G in polynomial time.

® Solve the clique problem for each atom A; in polynomial time.
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Clique problem on H-graphs, where H is a cactus i s
Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem )
The clique problem can be solved in polynomial time on the class of H-graphs, where H

is a cactus.

Proof:

= Compute a clique-cutset decomposition {Ay, ..., Ar} of G in polynomial time.

® Solve the clique problem for each atom A; in polynomial time.
= A maximum clique in some A; iIs maximum in G.
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Definition:
The 2-subdivision G, of a graph G is the graph obtai-
ned from G by subdividing every edge twice.
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The 2-subdivision G, of a graph G is the graph obtai- ® ®
ned from G by subdividing every edge twice.

16 Kilian Krause — Combinatorial Problems on H-graphs Institut flr Theoretische Informatik



2-subdivision of graphs A“(IT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Definition:
The 2-subdivision G, of a graph G is the graph obtai- ® ®
ned from G by subdividing every edge twice.
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2-subdivision of graphs et

Definition:
The 2-subdivision G, of a graph G is the graph obtai- ® ®
ned from G by subdividing every edge twice.

Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques. ¢ ®
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Definition:
The 2-subdivision G, of a graph G is the graph obtai-
ned from G by subdividing every edge twice.

Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques.
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Definition:
The 2-subdivision G, of a graph G is the graph obtai- o— — —9
ned from G by subdividing every edge twice. !

Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques. o000

Facts:
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Definition:
The 2-subdivision G, of a graph G is the graph obtai- o-—- — —9
ned from G by subdividing every edge twice.

Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques. o000

Facts:
® Graph isomorphism is closed under k-subdivision: G = H < G, = H,
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Definition:
The 2-subdivision G, of a graph G is the graph obtai- o-—- — —9
ned from G by subdividing every edge twice. 1

Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques. o000

Facts:
® Graph isomorphism is closed under k-subdivision: G = H < G, = H,

= Graph isomorphism is closed under complement operation: G = H < G = H
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Definition:

The 2-subdivision G, of a graph G is the graph obtai- - — —0
ned from G by subdividing every edge twice. fs
Observation: >
The complement of a 2-subdivision of a graph G can

be covered by three cliques. /A\A/A\_

Facts:
® Graph isomorphism is closed under k-subdivision: G = H < G, = H,

= Graph isomorphism is closed under complement operation: G = H < G = H

— the class SUBD, := {G, | G, is a 2-subdivision of any graph G} is isomorphism-
complete
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2-subdivision of graphs et

Definition:

The 2-subdivision G, of a graph G is the graph obtai- - — —0
ned from G by subdividing every edge twice. fs
Observation: >
The complement of a 2-subdivision of a graph G can

be covered by three cliques. /A\A/A\_

Facts:
® Graph isomorphism is closed under k-subdivision: G = H < G, = H,

= Graph isomorphism is closed under complement operation: G = H < G = H

— the class SUBD, := {G, | G, is a 2-subdivision of any graph G} is isomorphism-
complete

® The clique problem is APX-hard on SUBD,
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Graphs containing the double triangle as a minor

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

~
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Graphs containing the double triangle as a minor

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

~
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Graphs containing the double triangle as a minor e M

~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:
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~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:

o
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Graphs containing the double triangle as a minor e M

~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:

G=(V,E)agraph,V ={v,...,v,}and E ={e1,..., em}
o=
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Graphs containing the double triangle as a minor e M

~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:

G=(V,E)agraph,V ={v,...,v,}and E ={e1,..., em}
o=

For ex = vjv; € E with i < j define £(k) := i and r(k) :=j (left
and right end of ey).
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~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:
G=(V,E)agraph,V ={v,...,v,}and E ={e1,..., em}

For ex = vjv; € E with i < j define £(k) := i and r(k) :=j (left
and right end of ¢y).

‘ ‘ ex € E(G) is replaced by the path (v; = vy, ak, bk, vr(k) = vj)
N Go.
S
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~

Theorem
It H contains the double triangle as a minor, then every graph

G, € SUBD, is an H-graph.

.

Proof: double triangle graph
Since H contains the double triangle as a minor, it is of the following form:
G=(V,E)agraph,V ={v,...,v,}and E ={e1,..., em}

For ex = vjv; € E with i < j define £(k) := i and r(k) :=j (left
and right end of ¢y).

‘ ‘ ex € E(G) is replaced by the path (v; = vy, ak, bk, vr(k) = vj)
N Go.
S

ve(k) vr (k) ve(k) ak  br  vi(k)
® e ——» © ®
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Construction of a subdivision H' of H

H1

/ Yo <0 a1
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H1

/ Yo o a1
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H, H,NH, #0

o

iy, 01 H 0,1 4())

xy(j)+1

Hy,  Hy, 0 Hy, £ 0
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Intersection representation of H' foré, @ =0 ey

H, H,NH, #0

This is a valid intersection re-
presentation

o

Hy, 0 HL, 0,1 4 £()

xy(j)+1

Hy,  Hy, 0 Hy, £ 0
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To summarize...

® Given a graph H that contains the double triangle as a minor

® we constructed a subdivision H' of H

® and specified certain connected subgraphs of H’
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To summarize...

® Given a graph H that contains the double triangle as a minor
® we constructed a subdivision H' of H

® and specified certain connected subgraphs of H’

= such that every G, € SUBD, is an H-graph.
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To summarize...

® Given a graph H that contains the double triangle as a minor
® we constructed a subdivision H' of H

® and specified certain connected subgraphs of H’

= such that every G, € SUBD, is an H-graph.

~

Corollary

Let H be a graph containing the double triangle as a minor. Then the clique problem is
APX-hard on the class of all H-graphs and this class is also isomorphism-complete.
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Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a
cactus?
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What is the time complexity for computing the clique number on H-graphs, if H is not a
cactus?

What is the time complexity for computing the cligue number on H-graphs, if H does not
contain the double triangle as a minor?
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Open problems e M

What is the time complexity for computing the clique number on H-graphs, if H is not a
cactus?

What is the time complexity for computing the cligue number on H-graphs, if H does not
contain the double triangle as a minor?

What is the time complexity of the isomorphism problem on H-graphs, if H = K3, that is
the class of circular-arc graphs?
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I h a n k yo u ! Karlsruher Institut fur Technologie

Questions?
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