

Seminar Algorithmentechnik – Combinatorial Problems on H-Graphs Kilian Krause

www.kit.edu

Karlsruher Institut für Technologie

Motivation

Computing the clique number is well known to be ... **NP**-hard on general graphs

Computing the clique number is well known to be ...

- **NP**-hard on general graphs
- but polynomial time solvable on
 - chordal graphs
 - planar graphs
 - • •

Computing the clique number is well known to be ...

- **NP**-hard on general graphs
- but polynomial time solvable on
 - chordal graphs
 - planar graphs
 - ...

• We present other graph classes for which this problem is polytime solvable

Computing the clique number is well known to be ...

- **NP**-hard on general graphs
- but polynomial time solvable on
 - chordal graphs
 - planar graphs
 - ...

• We present other graph classes for which this problem is polytime solvable

H-graphs

Definition:

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

Definition:

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

An intersection graph is a graph that admits an intersection representation.

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

An *intersection graph* is a graph that admits an intersection representation.

Observation:

Every graph G = (V, E) is an intersection graph with $S_v := \{e \in E(G) \mid v \in e\}$.

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

An *intersection graph* is a graph that admits an intersection representation.

Observation:

Every graph G = (V, E) is an intersection graph with $S_v := \{e \in E(G) \mid v \in e\}$.

Examples:

Definition:

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

An *intersection graph* is a graph that admits an intersection representation.

Observation:

Every graph G = (V, E) is an intersection graph with $S_v := \{e \in E(G) \mid v \in e\}$.

Examples:

3

Definition:

An *intersection representation* of a graph *G* is a collection of sets $\{S_v\}_{v \in V(G)}$ such that $\{u, v\} \in E(G) \Leftrightarrow S_u \cap S_v \neq \emptyset$.

An *intersection graph* is a graph that admits an intersection representation.

Observation:

Every graph G = (V, E) is an intersection graph with $S_v := \{e \in E(G) \mid v \in e\}$.

Examples: Interval graph $A = \bigcup_{E} \bigcup_{E} \bigcup_{E} \bigcup_{G} \bigcup_{B} \bigcup_{E} \bigcup_{E} \bigcup_{C} \bigcup_{B} \bigcup_{E} \bigcup_{E} \bigcup_{D} \bigcup_{C} \bigcup_{B} \bigcup_{E} \bigcup_{E} \bigcup_{D} \bigcup_{C} \bigcup_{C} \bigcup_{C} \bigcup_{B} \bigcup_{E} \bigcup_{E} \bigcup_{C} \bigcup_{C} \bigcup_{D} \bigcup_{C} \bigcup_{C} \bigcup_{D} \bigcup_{C} \bigcup_{C$

Let *H* be a graph.

Let *H* be a graph.

 C_4

Let *H* be a graph.

A *subdivision* of *H* is a graph that can be obtained from *H* by replacing the edges with paths of arbitrary length.

Let *H* be a graph.

A *subdivision* of *H* is a graph that can be obtained from *H* by replacing the edges with paths of arbitrary length.

Given a graph *H*

Given a graph *H*

• *H*′ subdivision of *H*

- Given a graph *H*
- *H*′ subdivision of *H*
- Connected subgraphs of *H*′

- Given a graph *H*
- *H*′ subdivision of *H*
- Connected subgraphs of *H*′

Intersection graph of the subgraphs

- Given a graph *H*
- *H*′ subdivision of *H*
- Connected subgraphs of H'

An interval graph is a K_2 -graph

An interval graph is a K_2 -graph

Instead of considering the real line

An interval graph is a K_2 -graph

Instead of considering the real line

we can consider a path (discrete real line)

An interval graph is a K_2 -graph

Instead of considering the real line

Instead of intervals

we can consider a path (discrete real line)

An interval graph is a K_2 -graph

Instead of considering the real line

Instead of intervals

we can consider a path (discrete real line)

we can consider subpaths of the path

A circular-arc graph is a K_3 -graph

A circular-arc graph is a K_3 -graph

Instead of considering a circle

A circular-arc graph is a K_3 -graph

Instead of considering a circle

we can consider a graph-theoretic cycle

A circular-arc graph is a K_3 -graph

Instead of considering a circle Instead of circular-arcs we can consider a graph-theoretic cycle

A circular-arc graph is a K_3 -graph

Instead of considering a circle Instead of circular-arcs we can consider a graph-theoretic cycle we can consider subpaths of the cycle ^(*)

(*) subpaths or the cycle itself

The Helly property

The Helly property

Definition:

A family $\{T_i\}_{i \in I}$ of sets satisfies the *Helly property* if for any $J \subseteq I$ the following holds: $T_i \cap T_j \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

The Helly property

Definition:

A family $\{T_i\}_{i \in I}$ of sets satisfies the *Helly property* if for any $J \subseteq I$ the following holds: $T_i \cap T_j \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

Less formal: If sets intersect pairwise, they *all* have a common element.

8 Kilian Krause – Combinatorial Problems on *H*-graphs

The Helly property

Definition:

A family $\{T_i\}_{i \in I}$ of sets satisfies the *Helly property* if for any $J \subseteq I$ the following holds: $T_i \cap T_j \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

Less formal: If sets intersect pairwise, they *all* have a common element.

Examples:

all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

Less formal:

8

Definition:

If sets intersect pairwise, they *all* have a common element.

A family $\{T_i\}_{i \in I}$ of sets satisfies the *Helly property*

The Helly property

if for any $J \subseteq I$ the following holds: $T_i \cap T_j \neq \emptyset$ for all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

Less formal:

Definition:

If sets intersect pairwise, they *all* have a common element.

A Helly H-graph G is a graph that admits an H-

representation which satisfies the Helly property.

all $i, j \in J$ implies $\bigcap_{i \in J} T_j \neq \emptyset$.

Definition:

Less formal:

element.

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

• Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

• Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.

• Let *C* be a (inclusion-)maximal clique of *G*.

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

• Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.

Let C be a (inclusion-)maximal clique of G.

 \Rightarrow all vertices in *C* are pairwise adjacent

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.
- Let C be a (inclusion-)maximal clique of G.
 - \Rightarrow all vertices in *C* are pairwise adjacent
 - \Rightarrow the corresponding subgraphs in H' pairwise intersect

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.
- Let C be a (inclusion-)maximal clique of G.
 - \Rightarrow all vertices in C are pairwise adjacent
 - \Rightarrow the corresponding subgraphs in H' pairwise intersect

 $\Rightarrow \bigcap_{v \in C} H'_v \neq \emptyset$

Lemma:

If a graph *G* has a Helly *H*-representation, then *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ (inclusion-)maximal cliques.

Proof:

- Let H' be a subdivision of H s.t. G has a Helly H-representation $\{H'_v \mid v \in V(G)\}$.
- Let C be a (inclusion-)maximal clique of G.
 - \Rightarrow all vertices in C are pairwise adjacent
 - \Rightarrow the corresponding subgraphs in H' pairwise intersect
 - $\Rightarrow \bigcap_{v \in C} H'_v \neq \emptyset$
 - \Rightarrow *C* corresponds to a node *x*_{*C*} of *H*^{*t*}

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G) **Claim:** G_P is Helly circular-arc graph

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G) **Claim:** G_P is Helly circular-arc graph

• Let $v \in V(G_P)$, C = P + xy

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

- G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G) **Claim:** G_P is Helly circular-arc graph
 - Let $v \in V(G_P)$, C = P + xy

• Construct *C*-representation of *G*_{*P*}

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: *G*_{*P*} is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct *C*-representation of *G*_{*P*}

• If
$$H'_{\nu}|_P$$
 is a subpath of $P: C_{\nu} = H'_{\nu}|_P$

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: *G*_{*P*} is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct *C*-representation of *G*_{*P*}
- If $H'_{v}|_{P}$ is a subpath of $P: C_{v} = H'_{v}|_{P}$
- Otherwise: $C_v = H'_v|_P + xy$

• Let $xy \in E(H)$ and $P = (x, x_1, ..., x_k, y)$ corresponding path in H'.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: *G*_{*P*} is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct *C*-representation of *G*_{*P*}
- If $H'_{\nu}|_P$ is a subpath of $P: C_{\nu} = H'_{\nu}|_P$
- Otherwise: $C_v = H'_v|_P + xy$
- \Rightarrow this is a Helly *C*-representation

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: *G*_{*P*} is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct C-representation of G_P
- If $H'_{\nu}|_P$ is a subpath of $P: C_{\nu} = H'_{\nu}|_P$
- Otherwise: $C_v = H'_v|_P + xy$
- \Rightarrow this is a Helly *C*-representation

 \Rightarrow for every edge $xy \in E(H)$ we get a Helly circular-arc graph

• Let $xy \in E(H)$ and $P = (x, x_1, \ldots, x_k, y)$ corresponding path in H'.

 $\Box G_P$ = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: G_P is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct *C*-representation of *G*_{*P*}
- If $H'_{v}|_{P}$ is a subpath of $P: C_{v} = H'_{v}|_{P}$
- Otherwise: $C_v = H'_v|_P + xy$
- \Rightarrow this is a Helly *C*-representation

 \Rightarrow for every edge $xy \in E(H)$ we get a Helly circular-arc graph **Fact:** A Helly circular-arc graph G' has at most |V(G')| maximal cliques.

• G_P = union of maximal cliques of G with corresponding nodes on P (subgraph of G)

Claim: *G^P* is Helly circular-arc graph

- Let $v \in V(G_P)$, C = P + xy
- Construct *C*-representation of *G*_{*P*}
- If $H'_{\nu}|_P$ is a subpath of $P: C_{\nu} = H'_{\nu}|_P$
- Otherwise: $C_v = H'_v|_P + xy$
- \Rightarrow this is a Helly *C*-representation

⇒ for every edge $xy \in E(H)$ we get a Helly circular-arc graph **Fact:** A Helly circular-arc graph *G'* has at most |V(G')| maximal cliques. ⇒ *G* has at most $|V(H)| + |E(H)| \cdot |V(G)|$ maximal cliques

The clique problem can be solved in polynomial time on Helly *H*-graphs.

The clique problem can be solved in polynomial time on Helly *H*-graphs.

Proof:

Maximal cliques can be enumerated with polynomial delay

The clique problem can be solved in polynomial time on Helly *H*-graphs.

Proof:

- Maximal cliques can be enumerated with polynomial delay
- List all maximal cliques of an Helly *H*-graph *G* in polynomial time

The clique problem can be solved in polynomial time on Helly *H*-graphs.

Proof:

- Maximal cliques can be enumerated with polynomial delay
- List all maximal cliques of an Helly *H*-graph *G* in polynomial time
- Return the largest maximal clique

Definition:

A *cactus graph* (or just a *cactus*) is a connected graph in which every edge belongs to at most one cycle.

Definition:

A *cactus graph* (or just a *cactus*) is a connected graph in which every edge belongs to at most one cycle.

Definition:

A *cactus graph* (or just a *cactus*) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Definition:

A *cactus graph* (or just a *cactus*) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Definition:

A *cactus graph* (or just a *cactus*) is a connected graph in which every edge belongs to at most one cycle.

Observation:

The subdivision of a cactus is a cactus.

Clique cutsets

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

Institut für Theoretische Informatik

Clique cutsets

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

An *atom of a graph G* is an induced subgraph of *G* that has no clique cutset.

Clique cutsets

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

An *atom of a graph G* is an induced subgraph of *G* that has no clique cutset.

Clique cutsets

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

An *atom of a graph G* is an induced subgraph of *G* that has no clique cutset.

A *clique-cutset decomposition* of *G* is a set $\{A_1, \ldots, A_k\}$ of atoms in *G* such that $G = \bigcup_{i=1}^k A_i$ and for every $i, j, V(A_i) \cap V(A_j)$ is either empty or induces a clique in *G*.

Clique cutsets

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

An *atom of a graph G* is an induced subgraph of *G* that has no clique cutset.

A *clique-cutset decomposition* of *G* is a set $\{A_1, \ldots, A_k\}$ of atoms in *G* such that $G = \bigcup_{i=1}^k A_i$ and for every $i, j, V(A_i) \cap V(A_j)$ is either empty or induces a clique in *G*.

Definition:

A *clique cutset* of a graph G is a clique C such that G - C has more connected components than G.

An *atom of a graph G* is an induced subgraph of *G* that has no clique cutset.

A *clique-cutset decomposition* of *G* is a set $\{A_1, \ldots, A_k\}$ of atoms in *G* such that $G = \bigcup_{i=1}^k A_i$ and for every $i, j, V(A_i) \cap V(A_j)$ is either empty or induces a clique in *G*.

Fact:

A clique-cutset decomposition $\{A_1, \ldots, A_k\}$ (with $k \le n$) of a graph *G* can be computed in polynomial time, s.t. a maximum clique in *G* is contained in some A_i .

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

• Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:

• Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.

• $H|_A := \bigcup_{v \in A} H_v$

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $\bullet H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.
- C_1, \ldots, C_t be the components of $H|_A \setminus \{x\}$ and $S := \{v \mid v \in A \text{ and } x \in H_v\}$

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $\bullet H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.
- C_1, \ldots, C_t be the components of $H|_A \setminus \{x\}$ and $S := \{v \mid v \in A \text{ and } x \in H_v\}$
 - \Rightarrow *S* is a clique in *A* and *S* is not a clique-cutset

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.
- C_1, \ldots, C_t be the components of $H|_A \setminus \{x\}$ and $S := \{v \mid v \in A \text{ and } x \in H_v\}$
 - \Rightarrow *S* is a clique in *A* and *S* is not a clique-cutset
 - $\Rightarrow \exists$ component C_j s.t. the subgraph $H' := V(C_j) \cup \{x\}$ of H is a representation of A

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.
- C_1, \ldots, C_t be the components of $H|_A \setminus \{x\}$ and $S := \{v \mid v \in A \text{ and } x \in H_v\}$
 - \Rightarrow *S* is a clique in *A* and *S* is not a clique-cutset
 - $\Rightarrow \exists$ component C_j s.t. the subgraph $H' := V(C_j) \cup \{x\}$ of H is a representation of A
- If H' is a path or cycle, we are done

Lemma:

If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

- Let *H* be a cactus, *G* an *H*-graph with *H*-representation $\{H_v\}_{v \in V(G)}$ and *A* an atom of *G*.
- $H|_A := \bigcup_{v \in A} H_v$
- If $H|_A$ is a path or cycle, we are done
- Otherwise, $H|_A$ contains a cut vertex x, because H is a cactus.
- C_1, \ldots, C_t be the components of $H|_A \setminus \{x\}$ and $S := \{v \mid v \in A \text{ and } x \in H_v\}$
 - \Rightarrow S is a clique in A and S is not a clique-cutset
 - $\Rightarrow \exists$ component C_j s.t. the subgraph $H' := V(C_j) \cup \{x\}$ of H is a representation of A
- If H' is a path or cycle, we are done
- Otherwise iteratively repeat this process until we obtain a path or cycle

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of *H*-graphs, where *H* is a cactus.

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of *H*-graphs, where *H* is a cactus.

Proof:

• Compute a clique-cutset decomposition $\{A_1, \ldots, A_k\}$ of G in polynomial time.

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of H-graphs, where H is a cactus.

- Compute a clique-cutset decomposition $\{A_1, \ldots, A_k\}$ of G in polynomial time.
- Solve the clique problem for each atom A_i in polynomial time.

Fact:

The clique problem can be solved in polynomial time on circular-arc graphs.

Theorem

The clique problem can be solved in polynomial time on the class of *H*-graphs, where *H* is a cactus.

- Compute a clique-cutset decomposition $\{A_1, \ldots, A_k\}$ of G in polynomial time.
- Solve the clique problem for each atom A_i in polynomial time.
- A maximum clique in some A_i is maximum in G.

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph *G* can be covered by three cliques.

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

• Graph isomorphism is closed under *k*-subdivision: $G \cong H \Leftrightarrow G_2 \cong H_2$

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under k-subdivision: $G \cong H \Leftrightarrow G_2 \cong H_2$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \overline{G} \cong \overline{H}$

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under *k*-subdivision: $G \cong H \Leftrightarrow G_2 \cong H_2$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \overline{G} \cong \overline{H}$

 \Rightarrow the class $\overline{\text{SUBD}_2} := \{\overline{G_2} \mid G_2 \text{ is a 2-subdivision of any graph } G\}$ is isomorphism-complete

Definition:

The 2-subdivision G_2 of a graph G is the graph obtained from G by subdividing every edge twice.

Observation:

The complement of a 2-subdivision of a graph G can be covered by three cliques.

Facts:

- Graph isomorphism is closed under *k*-subdivision: $G \cong H \Leftrightarrow G_2 \cong H_2$
- Graph isomorphism is closed under complement operation: $G \cong H \Leftrightarrow \overline{G} \cong \overline{H}$

 \Rightarrow the class $\overline{\text{SUBD}_2} := \{\overline{G_2} \mid G_2 \text{ is a 2-subdivision of any graph } G\}$ is isomorphism-complete

• The clique problem is APX-hard on SUBD₂

Graphs containing the double triangle as a minor

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Graphs containing the double triangle as a minor

17

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

double triangle graph

Institut für Theoretische Informatik

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

double triangle graph

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

$$G = (V, E)$$
 a graph, $V = \{v_1, ..., v_n\}$ and $E = \{e_1, ..., e_m\}$

Institut für Theoretische Informatik

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

$$G = (V, E)$$
 a graph, $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$
For $e_k = v_i v_j \in E$ with $i < j$ define $\ell(k) := i$ and $r(k) := j$ (left
and right end of e_k).

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

Since *H* contains the double triangle as a minor, it is of the following form:

$$G = (V, E)$$
 a graph, $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$
For $e_k = v_i v_j \in E$ with $i < j$ define $\ell(k) := i$ and $r(k) := j$ (left
and right end of e_k).

 $e_k \in E(G)$ is replaced by the path $(v_i = v_{\ell(k)}, a_k, b_k, v_{r(k)} = v_j)$ in G_2 .

Graphs containing the double triangle as a minor

Theorem

If *H* contains the double triangle as a minor, then every graph $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Proof:

$$G = (V, E)$$
 a graph, $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$
For $e_k = v_i v_j \in E$ with $i < j$ define $\ell(k) := i$ and $r(k) := j$ (left
and right end of e_k).

$$e_k \in E(G)$$
 is replaced by the path $(v_i = v_{\ell(k)}, a_k, b_k, v_{r(k)} = v_j)$ in G_2 .

To summarize...

• Given a graph *H* that contains the double triangle as a minor

- Given a graph *H* that contains the double triangle as a minor
- we constructed a subdivision H' of H

- Given a graph *H* that contains the double triangle as a minor
- we constructed a subdivision H' of H
- and specified certain connected subgraphs of H'

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H' of H
- and specified certain connected subgraphs of H'
- such that every $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

To summarize...

- Given a graph H that contains the double triangle as a minor
- we constructed a subdivision H' of H
- and specified certain connected subgraphs of H'
- such that every $\overline{G_2} \in \overline{\text{SUBD}_2}$ is an *H*-graph.

Corollary

Let *H* be a graph containing the double triangle as a minor. Then the clique problem is APX-hard on the class of all *H*-graphs and this class is also isomorphism-complete.

Open problems

What is the time complexity for computing the clique number on *H*-graphs, if *H* is not a cactus?

What is the time complexity for computing the clique number on *H*-graphs, if *H* is not a cactus?

What is the time complexity for computing the clique number on *H*-graphs, if *H* does not contain the double triangle as a minor?

What is the time complexity for computing the clique number on *H*-graphs, if *H* is not a cactus?

What is the time complexity for computing the clique number on *H*-graphs, if *H* does not contain the double triangle as a minor?

What is the time complexity of the isomorphism problem on *H*-graphs, if $H = K_3$, that is the class of circular-arc graphs?

Thank you!

Questions?