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Let H be a graph.

A subdivision of H is a graph that can be obtained from H by replacing the
edges with paths of arbitrary length.
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H-graphs

Given a graph H

Connected subgraphs of H′

Intersection graph of the subgraphs

H-graph

H′ subdivision of H
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Interval graphs as H-graphs

An interval graph is a K2-graph

0 1 2 3 4−1−2−3

Instead of considering the real line

we can consider a path (discrete real line)

Instead of intervals

we can consider subpaths of the path
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Circular-arc graphs as H-graphs

A circular-arc graph is a K3-graph

Instead of considering a circle we can consider a graph-theoretic cycle
Instead of circular-arcs we can consider subpaths of the cycle (∗)

(∗) subpaths or the cycle itself
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The Helly property

Definition:
A family {Ti}i∈I of sets satisfies the Helly property
if for any J ⊆ I the following holds: Ti ∩ Tj ̸= ∅ for
all i ; j ∈ J implies

T
j∈J Tj ̸= ∅.

Less formal:
If sets intersect pairwise, they all have a common
element.

Examples:

A Helly H-graph G is a graph that admits an H-
representation which satisfies the Helly property.

Intervals satisfy
the Helly property

Circular-arcs
don’t satisfy the
Helly property
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Maximal cliques in Helly H-graphs

Lemma:
If a graph G has a Helly H-representation, then G has at most |V (H)| + |E(H)| · |V (G)|
(inclusion-)maximal cliques.
Proof:

Let H′ be a subdivision of H s.t. G has a Helly H-representation {H′
v | v ∈ V (G)}.

Let C be a (inclusion-)maximal clique of G.
⇒ all vertices in C are pairwise adjacent
⇒ the corresponding subgraphs in H′ pairwise intersect
⇒

T
v∈C H′

v ̸= ∅
⇒ C corresponds to a node xC of H′
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Let xy ∈ E(H) and P = (x; x1; : : : ; xk ; y) corresponding path in H′.
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GP = union of maximal cliques of G with corresponding nodes on P (subgraph of G)
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Clique problem on Helly H-graphs

Proof:
Maximal cliques can be enumerated with polynomial delay
List all maximal cliques of an Helly H-graph G in polynomial time
Return the largest maximal clique

Theorem
The clique problem can be solved in polynomial time on Helly H-graphs.
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An atom of a graph G is an induced subgraph of G
that has no clique cutset.

A clique-cutset decomposition of G is a set
{A1; : : : ; Ak} of atoms in G such that G =

Sk
i=1 Ai and
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Clique cutsets

Definition:
A clique cutset of a graph G is a clique C such that
G − C has more connected components than G.
An atom of a graph G is an induced subgraph of G
that has no clique cutset.

A clique-cutset decomposition of G is a set
{A1; : : : ; Ak} of atoms in G such that G =

Sk
i=1 Ai and

for every i ; j; V (Ai )∩ V (Aj) is either empty or induces
a clique in G.

atom

clique cutset

Fact:
A clique-cutset decomposition {A1; : : : ; Ak} (with k ≤ n) of a graph
G can be computed in polynomial time, s.t. a maximum clique in G
is contained in some Ai .
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If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
Let H be a cactus, G an H-graph with H-representation {Hv}v∈V (G) and A an atom of G.
H|A :=

S
v∈A Hv

If H|A is a path or cycle, we are done
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Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
Let H be a cactus, G an H-graph with H-representation {Hv}v∈V (G) and A an atom of G.
H|A :=

S
v∈A Hv

If H|A is a path or cycle, we are done
Otherwise, H|A contains a cut vertex x , because H is a cactus.
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S
v∈A Hv

If H|A is a path or cycle, we are done
Otherwise, H|A contains a cut vertex x , because H is a cactus.
C1; : : : ; Ct be the components of H|A \ {x} and S := {v | v ∈ A and x ∈ Hv}
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⇒ S is a clique in A and S is not a clique-cutset
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C1; : : : ; Ct be the components of H|A \ {x} and S := {v | v ∈ A and x ∈ Hv}
⇒ S is a clique in A and S is not a clique-cutset
⇒ ∃ component Cj s.t. the subgraph H′ := V (Cj) ∪ {x} of H is a representation of A
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Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
Let H be a cactus, G an H-graph with H-representation {Hv}v∈V (G) and A an atom of G.
H|A :=

S
v∈A Hv

If H|A is a path or cycle, we are done
Otherwise, H|A contains a cut vertex x , because H is a cactus.
C1; : : : ; Ct be the components of H|A \ {x} and S := {v | v ∈ A and x ∈ Hv}
⇒ S is a clique in A and S is not a clique-cutset
⇒ ∃ component Cj s.t. the subgraph H′ := V (Cj) ∪ {x} of H is a representation of A
If H′ is a path or cycle, we are done
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Atoms of cactus-graphs

Lemma:
If G is an H-graph for a cactus H, then each atom A of G is a circular-arc graph.

Proof:
Let H be a cactus, G an H-graph with H-representation {Hv}v∈V (G) and A an atom of G.
H|A :=

S
v∈A Hv

If H|A is a path or cycle, we are done
Otherwise, H|A contains a cut vertex x , because H is a cactus.
C1; : : : ; Ct be the components of H|A \ {x} and S := {v | v ∈ A and x ∈ Hv}
⇒ S is a clique in A and S is not a clique-cutset
⇒ ∃ component Cj s.t. the subgraph H′ := V (Cj) ∪ {x} of H is a representation of A
If H′ is a path or cycle, we are done
Otherwise iteratively repeat this process until we obtain a path or cycle
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The clique problem can be solved in polynomial time on circular-arc graphs.
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The clique problem can be solved in polynomial time on the class of H-graphs, where H
is a cactus.
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The clique problem can be solved in polynomial time on circular-arc graphs.
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Proof:
Compute a clique-cutset decomposition {A1; : : : ; Ak} of G in polynomial time.
Solve the clique problem for each atom Ai in polynomial time.

Theorem
The clique problem can be solved in polynomial time on the class of H-graphs, where H
is a cactus.

Fact:
The clique problem can be solved in polynomial time on circular-arc graphs.
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Clique problem on H-graphs, where H is a cactus

Proof:
Compute a clique-cutset decomposition {A1; : : : ; Ak} of G in polynomial time.
Solve the clique problem for each atom Ai in polynomial time.
A maximum clique in some Ai is maximum in G.

Theorem
The clique problem can be solved in polynomial time on the class of H-graphs, where H
is a cactus.

Fact:
The clique problem can be solved in polynomial time on circular-arc graphs.
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Facts:
Graph isomorphism is closed under k-subdivision: G ∼= H ⇔ G2
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⇒ the class SUBD2 := {G2 | G2 is a 2-subdivision of any graph G} is isomorphism-
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2-subdivision of graphs

Definition:
The 2-subdivision G2 of a graph G is the graph obtai-
ned from G by subdividing every edge twice.
Observation:
The complement of a 2-subdivision of a graph G can
be covered by three cliques.

Facts:
Graph isomorphism is closed under k-subdivision: G ∼= H ⇔ G2

∼= H2

Graph isomorphism is closed under complement operation: G ∼= H ⇔ G ∼= H

⇒ the class SUBD2 := {G2 | G2 is a 2-subdivision of any graph G} is isomorphism-
complete

The clique problem is APX-hard on SUBD2
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Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.



Kilian Krause – Combinatorial Problems on H-graphs Institut für Theoretische Informatik17

Graphs containing the double triangle as a minor

double triangle graph

Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.



Kilian Krause – Combinatorial Problems on H-graphs Institut für Theoretische Informatik17

Graphs containing the double triangle as a minor

double triangle graph
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If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.

Proof:
Since H contains the double triangle as a minor, it is of the following form:
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Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.

Proof:
Since H contains the double triangle as a minor, it is of the following form:

H1

H2H3

G = (V; E) a graph, V = {v1; : : : ; vn} and E = {e1; : : : ; em}
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double triangle graph

Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.

Proof:
Since H contains the double triangle as a minor, it is of the following form:

H1

H2H3

G = (V; E) a graph, V = {v1; : : : ; vn} and E = {e1; : : : ; em}
For ek = vivj ∈ E with i < j define ‘(k) := i and r(k) := j (left
and right end of ek ).
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double triangle graph

Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.

Proof:
Since H contains the double triangle as a minor, it is of the following form:

H1

H2H3

G = (V; E) a graph, V = {v1; : : : ; vn} and E = {e1; : : : ; em}
For ek = vivj ∈ E with i < j define ‘(k) := i and r(k) := j (left
and right end of ek ).

ek ∈ E(G) is replaced by the path (vi = v‘(k); ak ; bk ; vr(k) = vj)
in G2.
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Graphs containing the double triangle as a minor

double triangle graph

Theorem
If H contains the double triangle as a minor, then every graph
G2 ∈ SUBD2 is an H-graph.

Proof:
Since H contains the double triangle as a minor, it is of the following form:

H1

H2H3

G = (V; E) a graph, V = {v1; : : : ; vn} and E = {e1; : : : ; em}
For ek = vivj ∈ E with i < j define ‘(k) := i and r(k) := j (left
and right end of ek ).

ek ∈ E(G) is replaced by the path (vi = v‘(k); ak ; bk ; vr(k) = vj)
in G2.

vr (k)v‘(k) ak bkvr (k)v‘(k)
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Hardness Results

To summarize...
Given a graph H that contains the double triangle as a minor
we constructed a subdivision H′ of H
and specified certain connected subgraphs of H′

such that every G2 ∈ SUBD2 is an H-graph.
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Hardness Results

Corollary
Let H be a graph containing the double triangle as a minor. Then the clique problem is
APX-hard on the class of all H-graphs and this class is also isomorphism-complete.

To summarize...
Given a graph H that contains the double triangle as a minor
we constructed a subdivision H′ of H
and specified certain connected subgraphs of H′

such that every G2 ∈ SUBD2 is an H-graph.
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Open problems
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Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a
cactus?
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Open problems

What is the time complexity for computing the clique number on H-graphs, if H is not a
cactus?

What is the time complexity for computing the clique number on H-graphs, if H does not
contain the double triangle as a minor?

What is the time complexity of the isomorphism problem on H-graphs, if H = K3, that is
the class of circular-arc graphs?
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Thank you!

Questions?


