Coupling Degrees in $\boldsymbol{G}(\boldsymbol{n}, \boldsymbol{p})$

- Consider a $G(n, p)$ containing vertices u and v
- We are interested in the probability $q=\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d]-\operatorname{Pr}[\operatorname{deg}(v)=d]^{2}$
- Consider $Y_{1}, Y_{2} \sim \operatorname{Bin}(n-2, p)$, and $X_{1}, X_{2} \sim \operatorname{Ber}(p)$ and the coupling

In a shared probability space and all independent

- Then $\operatorname{Pr}[\operatorname{deg}(v)=d]=\operatorname{Pr}\left[X_{1}+Y_{1}=d\right]=\operatorname{Pr}\left[X_{2}+Y_{2}=d\right]$

- Thus $q=\operatorname{Pr}[\operatorname{deg}(v)=d \wedge \operatorname{deg}(u)=d]-\operatorname{Pr}\left[X_{1}+Y_{1}=d\right] \operatorname{Pr}\left[X_{2}+Y_{2}=d\right]$
- Now define random variables as tuples of random variables: $Z=(\operatorname{deg}(v), \operatorname{deg}(u))$ and $Z^{\prime}=\left(X_{1}+Y_{1}, X_{2}+Y_{2}\right)$, and consider the coupling

$$
\begin{gathered}
Z=(\operatorname{deg}(v), \operatorname{deg}(u)) \underset{\text { independent }}{\longrightarrow}\left(X_{1}+Y_{1}, X_{2}+Y_{2}\right)=Z^{\prime} \\
\text { ॥e } \\
\left(X_{1}+Y_{1}, X_{1}+Y_{2}\right) \xrightarrow{\text { dependent }}\left(X_{1}+Y_{1}, X_{2}+Y_{2}\right)
\end{gathered}
$$

- Then $q=\operatorname{Pr}\left[X_{1}+Y_{1}=d \wedge X_{1}+Y_{2}=d\right]-\operatorname{Pr}\left[X_{1}+Y_{1}=d\right] \operatorname{Pr}\left[X_{2}+Y_{2}=d\right]$

