Coupling Degrees in G(n, p)

• Consider a G(n, p) containing vertices u and v

• We are interested in the probability $q = \Pr[\deg(v) = d \land \deg(u) = d] - \Pr[\deg(v) = d]^2$

• Consider Y_1 , $Y_2 \sim Bin(n-2, p)$, and X_1 , $X_2 \sim Ber(p)$ and the coupling

In a shared probability space and all independent

Then
$$\Pr[\deg(v) = d] = \Pr[X_1 + Y_1 = d] = \Pr[X_2 + Y_2 = d]$$

Thus
$$q = \Pr[\deg(v) = d \land \deg(u) = d] - \Pr[X_1 + Y_1 = d] \Pr[X_2 + Y_2 = d]$$

Now define random variables as tuples of random variables: $Z = (\deg(v), \deg(u))$ and $Z' = (X_1 + Y_1, X_2 + Y_2)$, and consider the coupling $Z = (\deg(v), \deg(u)) \bigoplus_{\text{independent}} (X_1 + Y_1, X_2 + Y_2) = Z'$

Then
$$q = \Pr[\frac{X_1 + Y_1}{d} = d \land \frac{X_1 + Y_2}{d} = d] - \Pr[\frac{X_1 + Y_1}{d} = d] \Pr[\frac{X_2 + Y_2}{d} = d]$$

