Probability \& Computing

Probability Amplification

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

The Segmentation Problem

 Input- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

Example

- six points in \mathbb{R}^{2}
- σ is the inversed Euclidean distance
- segment into two sets

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

Applications: Compression, medical diagnosis, etc.

Example

- six points in \mathbb{R}^{2}
- σ is the inversed Euclidean distance
- segment into two sets

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

Applications: Compression, medical diagnosis, etc.
Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes

Example

- six points in \mathbb{R}^{2}
- σ is the inversed Euclidean distance
- segment into two sets

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

Applications: Compression, medical diagnosis, etc.
Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find cut-set (edges to remove) of minimal weight such that the graph decomposes into k components.

The Segmentation Problem

Input

- Set P of points in a feature space (e.g., \mathbb{R}^{d})
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_{+}$

Output: P_{1}, \ldots, P_{k} such that

- Points within a P_{i} have high similarity
- Points in distinct P_{i}, P_{j} have low similarity

Applications: Compression, medical diagnosis, etc.
Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find cut-set (edges to remove) of minimal weight such that the graph decomposes into k components.

Example

- six points in \mathbb{R}^{2}
- σ is the inversed Euclidean distance
- segment into two sets

Today
$k=2$ and $\sigma: P \times P \mapsto\{0,1\}$

$k=2$ and $\sigma: P \times P \mapsto\{0,1\}$

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$.
(in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$.
(in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$.
(in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts) - Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}

- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized
- max. k such that G is k-edge-connected

The Edge-Connectivity Problem

Cuts

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into parts V_{1}, V_{2} such that $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. (in general one can consider more than two parts)
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set
(or sum of weights in a weighted graph)

Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set

k-Edge-Connectivity

- k-edge-connected: a minimum cut has weight at least k
(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

- max. k such that G is k-edge-connected

Excursion: Flows

- given source s and target t
- assign flow to edges s.t.
- in-flow = out-flow for all vertices (not s and t)
- flow of an edge bounded by edge-capacity (here: ≤ 1)
- flow in t is maximized

Thm. Max-Flow = Min-Cut.

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O\left(n^{2} \cdot T_{\text {max-flow }}\right)$

Deterministic Algorithms for Edge-Connectivity

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O(n^{2} \cdot \overbrace{\text { max-flow }}) \subseteq O\left(n^{3} m\right)$
- Compute max-flow between v and all others $\rightarrow O\left(n \cdot T_{\text {max-flow }}\right) \subseteq O\left(n^{2} m\right) \rightarrow \Omega\left(n^{3}\right)$
(if a cut of size k exists, it has to cut v from some vertex)

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O(n^{2} \cdot \overbrace{\text { max-flow }}) \subseteq O\left(n^{3} m\right)$
- Compute max-flow between v and all others $\rightarrow O\left(n \cdot T_{\text {max-flow }}\right) \subseteq O\left(n^{2} m\right) \rightarrow \Omega\left(n^{3}\right)$
(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based

- Involved technique based on the fact that min-cut = max. number of dijsoint, directed spanning trees $\rightarrow O\left(m+k^{2} n \log (n / k)\right)$

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O(n^{2} \cdot \overbrace{\text { max-flow }}) \subseteq O\left(n^{3} m\right)$
- Compute max-flow between v and all others $\rightarrow O\left(n \cdot T_{\text {max-flow }}\right) \subseteq O\left(n^{2} m\right) \rightarrow \Omega\left(n^{3}\right)$
(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based

- Involved technique based on the fact that min-cut = max. number of dijsoint, directed spanning trees $\rightarrow O\left(m+k^{2} n \log (n / k)\right)$
- Good if k is small but still $\Omega\left(n^{3}\right)$ in the worst case

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O(n^{2} \cdot \overbrace{\text { max-flow }}) \subseteq O\left(n^{3} m\right)$
- Compute max-flow between v and all others $\rightarrow O\left(n \cdot T_{\text {max-flow }}\right) \subseteq O\left(n^{2} m\right) \rightarrow \Omega\left(n^{3}\right)$
(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based

- Involved technique based on the fact that min-cut = max. number of dijsoint, directed spanning trees $\rightarrow O\left(m+k^{2} n \log (n / k)\right)$
- Good if k is small but still $\Omega\left(n^{3}\right)$ in the worst case

Contraction-based

- Iteratively pick two vertices (in a smart way) and compare the min-cuts where they are / are not in the same part $\rightarrow O\left(m n+n^{2} \log (n)\right) \rightarrow \Omega\left(n^{3}\right)$

Deterministic Algorithms for Edge-Connectivity

Flow-based

- Compute max-flow between all vertex pairs $\rightarrow O(n^{2} \cdot \overbrace{\text { max-flow }}) \subseteq O\left(n^{3} m\right)$
- Compute max-flow between v and all others $\rightarrow O\left(n \cdot T_{\text {max-flow }}\right) \subseteq O\left(n^{2} m\right) \rightarrow \Omega\left(n^{3}\right)$
(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based

- Involved technique based on the fact that min-cut = max. number of dijsoint, directed spanning trees $\rightarrow O\left(m+k^{2} n \log (n / k)\right)$
- Good if k is small but still $\Omega\left(n^{3}\right)$ in the worst case

Contraction-based

- Iteratively pick two vertices (in a smart way) and compare the min-cuts where they are / are not in the same part $\rightarrow O\left(m n+n^{2} \log (n)\right) \rightarrow \Omega\left(n^{3}\right)$

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts ${ }^{2 n}{ }^{n}-2$
- Partitions with empty parts that do not represent cuts

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts ${ }^{2 n}{ }^{n}$
- Partitions with empty parts that do not represent cuts \qquad

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes. $\left(2^{n}-2\right) / 2$

- Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$
- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes. $\left(2^{n}-2\right) / 2$

- Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$
- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts \uparrow

- Partitions with empty parts that do not represent cuts \square
- Swapping parts does not yield a new partition
 Algorithm: Simple(?) Randomized Cut
- Simple idea: choose a cut at random among all possible cuts and return it.

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts $\xlongequal{\wedge}$

- Partitions with empty parts that do not represent cuts \square
- Swapping parts does not yield a new partition
 Algorithm: Simple(?) Randomized Cut
- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts \AA

- Partitions with empty parts that do not represent cuts \square
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$

- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$

- Partitions with empty parts that do not represent cuts \square
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
- Represent cut using bit-string

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$
- Partitions with empty parts that do not represent cuts \square
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
- Represent cut using bit-string
- How can we choose a unfiorm random bit-string while avoiding 11... 1 and 00...0?

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$
- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
- Represent cut using bit-string
- How can we choose a unfiorm random bit-string while avoiding 11... 1 and 00...0? n random bits? \rightarrow does not avoid $11 \ldots 1$ and $00 \ldots 0$

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$

- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
- Represent cut using bit-string
- How can we choose a unfiorm random bit-string while avoiding 11... 1 and 00...0? n random bits? \rightarrow does not avoid $11 \ldots 1$ and $00 \ldots 0$
rejection sampling? running time not deterministic (though probably what you'd do in practice)

A Simple(?) Randomized Algorithm

Observation: There are $2^{n-1}-1$ cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts ${ }^{\wedge}$

- Partitions with empty parts that do not represent cuts \qquad
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

> What do we mean?
> What distribution?

- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
- Represent cut using bit-string
- How can we choose a unfiorm random bit-string while avoiding 11... 1 and 00...0? n random bits? \rightarrow does not avoid $11 \ldots 1$ and $00 \ldots 0 \quad$ random number from $\left\{1, \ldots, 2^{n}-2\right\} ? \rightarrow$ exponential in input size rejection sampling? running time not deterministic (though probably what you'd do in practice)

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}

```
Assumptions: We can sample
uniformly from \(\{0, \ldots, O(n+m)\}\) in \(O(1)\) time
- uniformly from \([0,1]\) in \(O(1)\) time
Not possible in theory. Reasonable in practice.
```


Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2
$$

```
Assumptions: We can sample
uniformly from \(\{0, \ldots, O(n+m)\}\) in \(O(1)\) time
- uniformly from \([0,1]\) in \(O(1)\) time
Not possible in theory. Reasonable in practice.
```

$2^{n}-2\left\{\begin{array}{l}n=4 \\ 1000 \\ 0100 \\ 0010 \\ 0001 \\ 1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right.$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2
$$

$$
2^{n}=\sum_{k=0}^{n}\binom{n}{k}
$$

Assumptions: We can sample ..

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice
$2^{n}-2\left\{\begin{array}{l}n=4 \\ 1000 \\ 0100 \\ 0010 \\ 0001 \\ 1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right.$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ...

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.
$2^{n}-2\left\{\begin{array}{l}n=4 \\ 1000 \\ 0100 \\ 0010 \\ 0001 \\ 1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right.$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k} \quad\left(\begin{array}{l}
2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
\binom{n}{0}=\binom{n}{n}=1
\end{array}\right.
$$

Assumptions: We can sample ..

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.
choose $k\lrcorner \quad$ Lchoose k 1s in n bits
$2^{n}-2\left\{\begin{array}{l}n=4 \\ 1000 \\ 0100 \\ 0010 \\ 0001 \\ 1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right\} k=1$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ..
uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time

- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& ${ }^{\wedge}$ choose k 1s in n bits
$2^{n}-2\left\{\begin{array}{l}n=4 \\ 1000 \\ 0100 \\ 0010 \\ 0001 \\ 1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right\} k=1$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k} \quad\left[\begin{array}{l}
2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
\binom{n}{0}=\binom{n}{n}=1
\end{array}\right.
$$

Assumptions: We can sample

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& ${ }^{\wedge}$ choose k 1s in n bits

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ..

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& \downarrow choose k 1s in n bits
unibs(n)
$b:=00 \ldots 0 / / n$ zeros
$k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /$ number of $1 s-$ $P:=\operatorname{randSet}(\{1, \ldots, n\}, k) / /$ positions of 1 s $b[P]=1 / /$ set 1 s in b return b

\rightarrow How to sample k ?

- uniform?
$\operatorname{Pr}[1000]=1 / 3 \cdot 1 / 4=1 / 12$
$\operatorname{Pr}[1100]=1 / 3 \cdot 1 / 6=1 / 18$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ..

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& \downarrow choose k 1s in n bits
unibs(n)
$b:=00 \ldots 0 / / n$ zeros
$k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /$ number of $1 s-$
$P:=\operatorname{randSet}(\{1, \ldots, n\}, k) / /$ positions of 1 s $b[P]=1 / /$ set 1 s in b return b

\rightarrow How to sample k ?

uniform?
$\left.\begin{array}{l}\operatorname{Pr}[1000]=1 / 3 \cdot 1 / 4=1 / 12 \\ \operatorname{Pr}[1100]=1 / 3 \cdot 1 / 6=1 / 18\end{array}\right\} \neq 1 / 14\left\{\begin{array}{l}1100 \\ 1010 \\ 1001 \\ 0110 \\ 0101 \\ 0011 \\ 1110 \\ 1101 \\ 1011 \\ 0111\end{array}\right\} k=2$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ...

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& ${ }^{\wedge}$ choose k 1s in n bits
unibs(n)
$b:=00 \ldots 0 / / n$ zeros
$k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /$ number of $1 s-$
$P:=\operatorname{randSet}(\{1, \ldots, n\}, k) / /$ positions of 1 s $b[P]=1 / /$ set 1 s in b return b

\rightarrow How to sample k ?

- uniform?
$\operatorname{Pr}[1000]=1 / 3 \cdot 1 / 4=1 / 12$
$\operatorname{Pr}[1100]=1 / 3 \cdot 1 / 6=1 / 18\} \neq 1 / 14$
- choose k with prob $\binom{n}{k} /\left(2^{n}-2\right)$

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ...

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

- 2-step process: choose $k\lrcorner^{\wedge}$ \& ${ }^{\wedge}$ choose k 1s in n bits
unibs(n)
$b:=00 \ldots 0 / / n$ zeros
$k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /$ number of $1 s-$
$P:=\operatorname{randSet}(\{1, \ldots, n\}, k) / /$ positions of 1 s $b[P]=1 / /$ set 1 s in b return b

\rightarrow How to sample k ?

- uniform?
$\operatorname{Pr}[1000]=1 / 3 \cdot 1 / 4=1 / 12$
$\operatorname{Pr}[1100]=1 / 3 \cdot 1 / 6=1 / 18\} \neq 1 / 14$
- choose k with prob $\binom{n}{k} /\left(2^{n}-2\right)$
- Reduce to uniform using Inverse Transform Sampling

Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit-strings that are not 0^{n} or 1^{n}
- Number of valid bit-strings:

$$
2^{n}-2=\left(\sum_{k=0}^{n}\binom{n}{k}\right)-2=\sum_{k=1}^{n-1}\binom{n}{k}
$$

$$
\begin{aligned}
& 2^{n}=\sum_{k=0}^{n}\binom{n}{k} \\
& \binom{n}{0}=\binom{n}{n}=1
\end{aligned}
$$

Assumptions: We can sample ...

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice

- 2-step process: choose $k\lrcorner^{\wedge}$ \& ${ }^{\wedge}$ choose k 1s in n bits unibs(n)
$b:=00 \ldots 0 / / n$ zeros
$k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /$ number of $1 s-$ $P:=\operatorname{randSet}(\{1, \ldots, n\}, k) / /$ positions of $1 s$ $b[P]=1 / /$ set 1 s in b return b

\rightarrow How to sample k ?

- uniform?
$\left.\begin{array}{l}\operatorname{Pr}[1000]=1 / 3 \cdot 1 / 4=1 / 12 \\ \operatorname{Pr}[1100]=1 / 3 \cdot 1 / 6=1 / 18\end{array}\right\} \neq 1 / 14$
- choose k with prob $\binom{n}{k} /\left(2^{n}-2\right)$
- Reduce to uniform using Inverse Transform Sampling
\rightarrow How to sample \boldsymbol{P} ?

Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

```
Assumptions: We can sample
- uniformly from \(\{0, \ldots, O(n+m)\}\) in \(O(1)\) time
- uniformly from \([0,1]\) in \(O(1)\) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

Karlsruhe Institute of Technology
[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.
- Idea:
- initialize reservoir with first k elements
- replace reservoir elements at random

```
Assumptions: We can sample
- uniformly from \(\{0, \ldots, O(n+m)\}\) in \(O(1)\) time
- uniformly from \([0,1]\) in \(O(1)\) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=$ unif($\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
```

Assumptions: We can sample

```
```

Assumptions: We can sample

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time
Not possible in theory. Reasonable in practice.

```
```

Not possible in theory. Reasonable in practice.

```
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
- uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
a uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
a uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do
$j:=\operatorname{unif}(\{1, \ldots, i\})$
if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.

- Idea:

- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do $j:=\operatorname{unif}(\{1, \ldots, i\})$ if $j \leq k$ then $r[j]=i$
return r

```
Assumptions: We can sample
a uniformly from {0,\ldots,O(n+m)} in O(1) time
- uniformly from [0,1] in O(1) time
Not possible in theory. Reasonable in practice.
```


Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

- Goal: Choose a set of size k uniformly at random from the n elements.
- Idea:
- initialize reservoir with first k elements
- replace reservoir elements at random
randSet $(\{1, \ldots, n\}, k)$
$r:=[1, \ldots, k] / /$ reservoir
for i from $k+1$ to n do $j:=\operatorname{unif}(\{1, \ldots, i\})$ if $j \leq k$ then $r[j]=i$ return r

Assumptions: We can sample

uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time

- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

// O(1)
// $O(n-k)$
// O(1)

- Running time: $O(n)$

Excursion: Uniform Non-Homogeneous Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit strings that are not 0^{n} or 1^{n}
- 2-step process
- choose k
- choose k 1s in n bits
unibs(n)

```
b:= 00...0 // n zeros
k:= rand({1,\ldots,n-1})// number of 1s
P:= randSet({1,\ldots, n}, k) // positions of 1s
b[P]=1// set 1s in b
return b
```


Excursion: Uniform Non-Homogeneous Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit strings that are not 0^{n} or 1^{n}
- 2-step process:
- choose k
- choose k 1s in n bits

Assumptions: We can sample

uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time

- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.
unibs(n)

```
\(b:=00 \ldots 0 / / n\) zeros \(/ / O(n)\)
\(k:=\operatorname{rand}(\{1, \ldots, n-1\}) / /\) number of 1s \(/ / O(\log (n))\) via Inverse Transform Sampling
\(P:=\operatorname{randSet}(\{1, \ldots, \mathrm{n}\}, \mathrm{k}) / /\) positions of 1s // O(n) via Reservoir Sampling
\(b[P]=1 / /\) set 1 s in \(b \quad / / O(k) \subseteq O(n)\)
return \(b\)
```


Excursion: Uniform Non-Homogeneous Bit Strings

[For educational purposes only!]

- Goal: Choose uniformly at random from the length n bit strings that are not 0^{n} or 1^{n}
- 2-step process:
- choose k
- choose k 1s in n bits

Assumptions: We can sample

uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time

- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.
unibs(n)

```
b:=00..0 // nzeros // O(n)
k:= rand({1,\ldots,n-1}) // number of 1s // O(log(n)) via Inverse Transform Sampling
P:= randSet({1,\ldots, n}, k) // positions of 1s // O(n) via Reservoir Sampling
b[P]=1// set 1s in b // O(k)\subseteqO(n)
return b
```

Under our assumptions, we can sample a length n bit string that is not 0^{n} or 1^{n} uniformly at random in time $O(n)$.

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right)$.

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest $\operatorname{Pr}\left[\right.$ "minimum found"] $\geq 1-\left(1-1 /\left(2^{n-1}-1\right)\right)^{t}$

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr ["minimum found"] $\geq 1-(\underbrace{1-}_{\text {not }} \underbrace{1 /\left(2^{n-1}-1\right)}_{\text {minimum }})^{t}$

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest

$$
\operatorname{Pr}[\text { "minimum found"] } \geq 1-(\underbrace{1-\underbrace{1 /\left(2^{n-1}-1\right)}_{\text {minimum }})_{\downarrow}^{t} \underbrace{t}_{t \text { times }}}_{\text {not }}
$$

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest
$\operatorname{Pr}\left[\right.$ "minimum found"] $\geq 1-\left(1-1 /\left(2^{n-1}-1\right)\right)^{t} \geq 1-e^{-t /\left(2^{n-1}-1\right)} \quad 1+x \leq e^{x}$ for $x \in \mathbb{R}$

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest
$\operatorname{Pr}\left[\right.$ "minimum found"] $\geq 1-\left(1-1 /\left(2^{n-1}-1\right)\right)^{t} \geq 1-e^{-t /\left(2^{n-1}-1\right)} \quad 1+x \leq e^{x}$ for $x \in \mathbb{R}$
- For $t=2^{n-1}-1$ minimum found with constant probability $1-1 / e \approx 0.63$

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ much better than the $\Omega\left(n^{3}\right)$ in the deterministic setting , but...

Success probability

- $2^{n-1}-1$ cuts in a graph with n nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in $O(n)$ time and returns a minimum cut with probability at least $1 /\left(2^{n-1}-1\right) . \rightarrow$ exponentially small!

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest
$\operatorname{Pr}\left[\right.$ "minimum found"] $\geq 1-\left(1-1 /\left(2^{n-1}-1\right)\right)^{t} \geq 1-e^{-t /\left(2^{n-1}-1\right)} \quad 1+x \leq e^{\times}$for $x \in \mathbb{R}$
- For $t=2^{n-1}-1$ minimum found with constant probability $1-1 / e \approx 0.63$
- For $t=\left(2^{n-1}-1\right) \cdot \log (n)$ minimum found with high probability $1-1 / n$

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased

x answers are always correct
\checkmark answers are correct with bounded probability

$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{3} \\ & \overrightarrow{0} \end{aligned}$	Correct Answer	
	x	\checkmark
	true	false
	neg	ne
8	false	true
¢	pos	pos

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
\checkmark answers are always correct
x answers are correct with bounded probability

$\begin{aligned} & \stackrel{\rightharpoonup}{訁} \\ & \stackrel{n}{7} \end{aligned}$		Correct Answer	
		x	\checkmark
		true	false
		neg	neg
	,	false	true
¢	\checkmark	pos	pos

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias

	Correct Answer		
		X	\checkmark
$\begin{aligned} & \frac{\pi}{2} \\ & \frac{9}{2} \\ & 0 \end{aligned}$	X	true	false
		neg	neg
O		false	true
¢	\checkmark	pos	pos

x answers are correct with bounded probability
\checkmark answers are correct with bounded probability

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum

		X	\checkmark
$\stackrel{\square}{7}$	x	true	false
$\stackrel{3}{5}$		neg	neg
응	\checkmark	false	rue
¢	\checkmark	pos	pos

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum

	Correct Answer		
		x	\checkmark
\#	x	true	false
$\stackrel{3}{3}$		neg	neg
8	,	false	true
$\stackrel{1}{4}$		pos	pos

Definition: Probability amplification is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum best

Definition: Probability amplification is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

- After t (independent) runs return the ...

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum best

Definition: Probability amplification is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

- After t (independent) runs return the $\operatorname{Pr}\left[\right.$ "success"] $\geq 1-(1-p)^{t} \geq 1-e^{-p t} \quad$ (for two-sided errors it's a bit more complicated)
- Error probability decreases exponentially in t

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in(0,1)$.

- In decision problems p is the probability of giving the correct answer
- One-sided error: either false-biased or true-biased
- Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum best

Definition: Probability amplification is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

- After t (independent) runs return the

$$
\operatorname{Pr}\left[\text { "success"] } \geq 1-(1-p)^{t} \geq 1-e^{-p t} \quad\right. \text { (for two-sided errors it's a bit more complicated) }
$$

- Error probability decreases exponentially in t

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of min-cut

- Motivation: distinguish non-essential
as well as essential edges part of min-cut
\& hope there are few essential ones

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut
\& hope there are few essential ones

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut
\& hope there are few essential ones

```
Karger(G}=(\mp@subsup{V}{0}{\prime},\mp@subsup{E}{0}{})
for i=1 to n-2 do
    e := unif(E
    G}=\mp@subsup{G}{i-1}{}.\operatorname{contract(e)
return unique cut in G}\mp@subsup{G}{n-2}{
```


Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges part of a min-ut
\& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
for $i=1$ to $n-2$ do $/ / O(n)$
$e:=\operatorname{unif}\left(E_{i-1}\right) \quad / / O(1)$
$G_{i}=G_{i-1}$.contract $(e) / / O(n)$
return unique cut in G_{n-2}
- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges \} partof min-out \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
for $i=1$ to $n-2$ do $/ / O(n)$ $e:=\operatorname{unif}\left(E_{i-1}\right) \quad / / O(1)$ $G_{i}=G_{i-1}$.contract $(e) / / O(n)$ return unique cut in G_{n-2}
- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.
Because endpoints of removed edges (self-loops) are within the same part in a cut in G_{i}.

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut not partof ta min-cut Contraction Algorithm
- Motivation: distinguish non-essential as well as essential edges \} part of min-out \& hope there are few essential ones

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$

```
\(\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)\)
for \(i=1\) to \(n-2\) do \(/ / O(n)\)
    \(e:=\operatorname{unif}\left(E_{i-1}\right) \quad / / O(1)\)
    \(G_{i}=G_{i-1}\).contract \((e) / / O(n)\)
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut
not part of a min-cut
Contraction Algorithm
- Motivation: distinguish non-essential as well as essential edges part of a min-uut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
for $i=1$ to $n-2$ do $/ / O(n)$ $e:=\operatorname{unif}\left(E_{i-1}\right) \quad / / O(1)$ $G_{i}=G_{i-1}$.contract $(e) / / O(n)$ return unique cut in G_{n-2}
- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

essential

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "
$\operatorname{Pr}\left[\mathcal{E}_{1}\right]=1-\frac{k}{m}$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E (E-1) // O(1)
    Gi=Gi-1
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right]=1-\frac{k}{m}$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E (E-1) // O(1)
    Gi=G汭.contract(e)// O(n)
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} " Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right]=1-\frac{k}{m}$
(holds for all G_{i} due to 1 st observation)

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E}(\mp@subsup{E}{i-1}{})\quad//O(1
    Gi=Gi-1
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "
$\operatorname{Pr}\left[\mathcal{E}_{1}\right]=1-\frac{k}{m}$
Observation. A cut in G, is a cut in G_{0}. \quad o.w. 2

Observation: min-degree $\geq k$

$$
\begin{array}{r}
\quad \text { (holds for all } G_{i} \text { due to 1st observation) } \\
m=\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v) \geq \frac{1}{2} \sum_{v \in V} k \geq \frac{1}{2} n k
\end{array}
$$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
        e := unif(E (E-1 ) // O(1)
        Gi=G泣.contract(e)// O(n)
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "
$\operatorname{Pr}\left[\mathcal{E}_{1}\right]=1-\frac{k}{m}$
$\geq 1-\frac{k}{n k / 2}$
$=1-\frac{2}{n}$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E (E-1) // O(1)
    Gi=G汭.contract(e)// O(n)
```

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} " Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n}$
(holds for all G_{i} due to 1 st observation)

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$ for $i=1$ to $n-2$ do $\quad / / O(n)$
$\left\lvert\, \begin{array}{ll}e & :=\operatorname{unif}\left(E_{i-1}\right) \\ G_{i}=G_{i-1} \cdot \operatorname{contract}(e) & / / O(n)\end{array}\right.$ return unique cut in G_{n-2}
- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1}$
$4 \quad$ none of the k edges of C contracted
do not contract k edges in an $n-1$-node graph

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E (E-1) // O(1)
```


return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} " Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof a min-cut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

```
for i=1 to n-2 do // O(n)
    e := unif(E (E-1) // O(1)
```


return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n}$
(holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\underbrace{\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]}$
chain rule of probability

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$

$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$
$\geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$

$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \rightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \\
& \begin{array}{ll}
e & : / / O(n) \\
G_{i}=G_{i-1}\left(E_{i-1}\right) & \\
\text { contract }(e) & / / O(n)
\end{array}
\end{aligned}
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$

$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$
$\geq\left(\frac{n}{n}-\frac{2}{n}\right)\left(\frac{n-1}{n-1}-\frac{2}{n-1}\right)\left(\frac{n-2}{n-2}-\frac{2}{n-2}\right) \cdots\left(\frac{4}{4}-\frac{2}{4}\right)\left(\frac{3}{3}-\frac{2}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$
$\geq\left(\frac{n-2}{n}\right)\left(\frac{n-1-2}{n-1}\right)\left(\frac{n-2-2}{n-2}\right) \cdots\left(\frac{4-2}{4}\right)\left(\frac{3-2}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$ $\geq\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$
$\geq\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \quad / / O(n) \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(1) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} / / O(n)
$$

return unique cut in G_{n-2}

- Running time in $O\left(n^{2}\right)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n}$
(holds for all G_{i} due to 1 st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$ $\geq\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{2}{A}\right)\left(\frac{1}{3}\right)$

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
not part of a min-cut

- Motivation: distinguish non-essential as well as essential edges partof min-ut \& hope there are few essential ones
$\operatorname{Karger}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$

$$
\begin{aligned}
& \text { for } i=1 \text { to } n-2 \text { do } \\
& \begin{array}{ll}
e & :=\text { unif }\left(E_{i-1}\right)
\end{array} \quad / / O(n) \\
& G_{i}=G_{i-1} \cdot \operatorname{contract}(e)
\end{aligned} \quad / / O(n)
$$

return unique cut in G_{n-2}
Running time in $O\left(n^{2}\right)$

- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_{i} is a cut in G_{0}.

- Consider min-cut with cut set C and $|C|=k$
- $\mathcal{E}_{i}=$ " C in G_{i} "

Observation: min-degree $\geq k$
$\operatorname{Pr}\left[\mathcal{E}_{1}\right] \geq 1-\frac{2}{n} \quad$ (holds for all G_{i} due to 1st observation)
$\operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \geq 1-\frac{2}{n-1} \longrightarrow \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \geq 1-\frac{2}{n-i+1}$
$\operatorname{Pr}\left[\mathcal{E}_{n-2}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{n-2} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{n-3}\right]$
$\geq\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{2}{A}\right)\left(\frac{1}{\not-3}\right)$
$\geq \frac{2}{n(n-1)}$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.
Success probability $\geq p$
Number of repetitions t
Amplified prob. $\geq 1-e^{-p t}$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n} \begin{array}{r}
\begin{array}{r}
\text { Success probability } \geq p \\
\text { Number of repetitions } t \\
\text { Amplified prob. } \geq 1-e^{-p t}
\end{array} \\
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array}\right.
$$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n} \begin{array}{r}
\text { Success probability } \geq p \\
\text { Number of repetitions } t \\
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array} \begin{array}{r}
\text { Amplified prob. } \geq 1-e^{-p t}
\end{array}\right.
$$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=\begin{array}{c}
1-\frac{1}{n} \\
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array} \begin{array}{r}
\text { Success probability } \geq p \\
\text { Number of repetitions } t \\
\text { Amplified prob. } \geq 1-e^{-p t}
\end{array}\right.
$$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=\begin{array}{c}
1-\frac{1}{n} \\
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array} \begin{array}{r}
\text { Success probability } \geq p \\
\text { Number of repetitions } t \\
\text { Amplified prob. } \geq 1-e^{-p t}
\end{array}\right.
$$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=\begin{array}{c}
1-\frac{1}{n} \\
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array} \begin{array}{r}
\text { Success probability } \geq p \\
\text { Number of repetitions } t \\
\text { Amplified prob. } \geq 1-e^{-p t}
\end{array}\right.
$$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm

- Just seen: $\operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2}{n(n-1)}$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\begin{aligned}
\operatorname{Pr}[" m i n-c u t ~ f o u n d "]
\end{aligned} \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n}\left[\begin{array}{l}
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array}\right.
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm
disjoint, since the algorithm returns only one cu

- Just seen: $\operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2}{n(n-1)}$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\begin{aligned}
\operatorname{Pr}[" m i n-c u t ~ f o u n d "]
\end{aligned} \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n}\left[\begin{array}{l}
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array}\right.
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm
disjoint, since the algorithm returns only one cut
- Just seen: $\operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2}{n(n-1)}$

$$
\operatorname{Pr}\left[\bigcup_{i \in[\ell]} \mathcal{E}_{n-2}^{i}\right]=\sum_{i \in[\ell]} \operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2 \cdot \ell}{n(n-1)}
$$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\begin{aligned}
\operatorname{Pr}[" m i n-c u t ~ f o u n d "]
\end{aligned} \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n}\left[\begin{array}{l}
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array}\right.
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm
disjoint, since the algorithm returns only one cu
- Just seen: $\operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2}{n(n-1)}$
$1 \geq \operatorname{Pr}\left[\bigcup_{i \in[\ell]} \mathcal{E}_{n-2}^{i}\right]=\sum_{i \in[\ell]} \operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2 \cdot \ell}{n(n-1)}$

Karger's Algorithm Amplified

Theorem: On a graph with n nodes, Karger's algorithm runs in $O\left(n^{2}\right)$ time and returns a minimum cut with probability at least $2 /(n(n-1))$.

$$
\begin{aligned}
\operatorname{Pr}[" m i n-c u t ~ f o u n d "]
\end{aligned} \geq 1-\exp \left(-\frac{2 t}{n(n-1)}\right)=1-\frac{1}{n}\left[\begin{array}{l}
\text { for } t=\frac{n(n-1)}{2} \log (n)
\end{array}\right.
$$

Success probability $\geq p$
Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(n^{2} \log (n)\right)$ Karger repetitions run in $O\left(n^{4} \log (n)\right)$ total time and return a min-cut with high probability.

Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_{1}, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^{i} for $i \in[\ell]$ be the event that C_{i} is returned by Karger's algorithm
- Just seen: $\operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2}{n(n-1)}$ $1 \geq \operatorname{Pr}\left[\bigcup_{i \in[\ell]} \mathcal{E}_{n-2}^{i}\right]=\sum_{i \in[\ell]} \operatorname{Pr}\left[\mathcal{E}_{n-2}^{i}\right] \geq \frac{2 \cdot \ell}{n(n-1)}$
disjoint, since the algorithm returns only one cut
Observation: A graph on n nodes contains at most $\frac{n(n-1)}{2}$ minimum cuts.

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \\
& \quad \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)
\end{aligned}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \\
& \quad \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& \quad=\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i+2-2}{n-i+2}\right)\left(\frac{n-i+1-2}{n-i+1}\right)
\end{aligned}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] \\
& \quad \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& \quad=\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right)
\end{aligned}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
& \operatorname{Pr} {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& \quad=\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& \quad=\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-(n-n / \sqrt{2}-1))(n-(n-n / \sqrt{2}-1)-1)}{n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}=\frac{n(n / 2+1 / \sqrt{2})}{n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}=\frac{\not n(n / 2+1 / \sqrt{2})}{\not n(n-1)}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}=\frac{\not n(n / 2+1 / \sqrt{2})}{\not n(n-1)}=\frac{1}{2} \cdot \frac{n+\sqrt{2}}{n-1}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right] } \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}=\frac{\not n(n / 2+1 / \sqrt{2})}{\not n(n-1)}=\frac{1}{2} \cdot \underbrace{\frac{n+\sqrt{2}}{n-1}}_{\geq 1} \geq \frac{1}{2} \\
& \text { Probability that no mistake made after } t \text { steps still large }
\end{aligned}
$$

More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives i contractions $\operatorname{Pr}\left[\mathcal{E}_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{2} \mid \mathcal{E}_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}\right]$

$$
\begin{aligned}
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right) \cdots\left(\frac{n-i}{n-i+2}\right)\left(\frac{n-i-1}{n-i+1}\right) \\
& =\frac{(n-i)(n-i-1)}{n(n-1)}
\end{aligned}
$$

- With increasing number of steps the probability for a min-cut to survive decreases
$\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
if $\left|V_{0}\right|=2$ then return unique cut for $i=1$ to $t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1$ do $e:=\operatorname{unif}\left(E_{i-1}\right)$
$G_{i}=G_{i-1} . \operatorname{contract}(e)$
$C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / / /$ inde- pendent
$C_{2}:=\operatorname{KargerStein}\left(G_{t}\right) / /$ runs
return smaller of C_{1}, C_{2}
- Idea: stop when a min-cut is still likely to exist and recurse
- After $t=n-n / \sqrt{2}-1$ steps we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{E}_{t}\right]=\frac{(n-n+n / \sqrt{2}+1)(n-n+n / \sqrt{2}+1-1)}{n(n-1)}=\frac{n^{2} / 2+n / \sqrt{2}}{n(n-1)}=\frac{\eta(n / 2+1 / \sqrt{2})}{\not n(n-1)}=\frac{1}{2} \cdot \underbrace{\frac{n+\sqrt{2}}{n-1}}_{\geq 1} \geq \frac{1}{2} \\
& \text { Probability that no mistake made after } t \text { steps still large }
\end{aligned}
$$

Karger-Stein: Running Time

$$
\begin{array}{l|l}
& \text { KargerStein }\left(G_{0}=\left(V_{0}, E_{0}\right)\right) \\
/ / O(1) & \text { if }\left|V_{0}\right|=2 \text { then return unique cut } \\
/ / O(n) & \text { for } i=1 \text { to } t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1 \text { do } \\
/ / O(1) & e:=\text { unif }\left(E_{i-1}\right) \\
/ / O(n) & G_{i}=G_{i-1} \cdot \operatorname{contract}(e) \\
& C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / / \text { inde- } \\
& C_{2}:=\text { KargerSendent } \\
& \text { return smaller of } \left.C_{1}, C_{2}\right) / / \text { runs }
\end{array}
$$

Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

```
\(\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)\)
    if \(\left|V_{0}\right|=2\) then return unique cut
    for \(i=1\) to \(t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1\) do
        \(e:=\operatorname{unif}\left(E_{i-1}\right)\)
        \(G_{i}=G_{i-1} . \operatorname{contract}(e)\)
\(C_{1}:=\operatorname{KargerStein}\left(G_{t}\right)\) /// inde- pendent
\(C_{2}:=\operatorname{KargerStein}\left(G_{t}\right) / /\) runs
return smaller of \(C_{1}, C_{2}\)
```


Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

Recursion tree

Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

Recursion tree

- Layers: $\log _{\sqrt{2}}(n)$

$\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
if $\left|V_{0}\right|=2$ then return unique cut for $i=1$ to $t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1$ do $e:=\operatorname{unif}\left(E_{i-1}\right)$
$G_{i}=G_{i-1} . \operatorname{contract}(e)$
$C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / /$ inde- pendent
$C_{2}:=\operatorname{KargerStein}\left(G_{t}\right) / /$ runs return smaller of C_{1}, C_{2}

Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

Recursion tree

- Layers: $\log _{\sqrt{2}}(n)$
- Nodes on layer j : 2^{j}

$\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
if $\left|V_{0}\right|=2$ then return unique cut for $i=1$ to $t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1$ do $e:=\operatorname{unif}\left(E_{i-1}\right)$
$G_{i}=G_{i-1} . \operatorname{contract}(e)$
$C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / /$ inde- pendent
$C_{2}:=\operatorname{KargerStein}\left(G_{t}\right) / /$ runs return smaller of C_{1}, C_{2}

Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

Recursion tree

- Layers: $\log _{\sqrt{2}}(n)$
- Nodes on layer $j: 2^{j}$
- Time on layer $j: O\left(\left(\frac{n}{\sqrt{2}}\right)^{2}\right)$ ond ond o d
// O(1) $/ / O(n)$ // O(1)
// O(n)

$\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
if $\left|V_{0}\right|=2$ then return unique cut for $i=1$ to $t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1$ do $e:=\operatorname{unif}\left(E_{i-1}\right)$
$G_{i}=G_{i-1} . \operatorname{contract}(e)$
$C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / /$ inde- pendent
$C_{2}:=\operatorname{KargerStein}\left(G_{t}\right) / / /$ runs return smaller of C_{1}, C_{2}

Karger-Stein: Running Time

Recursion

- After $t=n-n / \sqrt{2}-1$ steps the number of nodes is $n / \sqrt{2}+1$

$$
T(n)=2 T\left(\frac{n}{\sqrt{2}}+1\right)+O\left(n^{2}\right)
$$

Recursion tree

- Layers: $\log _{\sqrt{2}}(n)$
- Nodes on layer $j: 2^{j}$
- Time on layer $j: O\left(\left(\frac{n}{\sqrt{2}^{j}}\right)^{2}\right)$

// O(1)
$/ / O(n)$
// O(1)
// O(n)
$\operatorname{KargerStein}\left(G_{0}=\left(V_{0}, E_{0}\right)\right)$
if $\left|V_{0}\right|=2$ then return unique cut for $i=1$ to $t=\left|V_{0}\right|-\frac{\left|V_{0}\right|}{\sqrt{2}}-1$ do $e:=\operatorname{unif}\left(E_{i-1}\right)$
$G_{i}=G_{i-1} . \operatorname{contract}(e)$
$C_{1}:=\operatorname{KargerStein}\left(G_{t}\right) / / /$ inde-
$C_{2}:=\operatorname{KargerStein}\left(G_{t}\right)$ // runs return smaller of C_{1}, C_{2}

$$
T(n)=\sum_{j=1}^{\log _{\sqrt{2}}(n)} 2^{j} \cdot O\left(\left(\frac{n}{\sqrt{2}^{j}}\right)^{2}\right)=O\left(n^{2} \cdot \sum_{j=1}^{\log _{\sqrt{2}}(n)} \frac{2^{j}}{2^{j}}\right)=O\left(n^{2} \log _{\sqrt{2}}(n)\right)=O\left(n^{2} \log (n)\right)
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that) Recursion tree

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot(1-(\underbrace{1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]}_{\text {no path }})^{2})
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root
$\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot(1-\underbrace{\left.1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}}_{\text {no path for left and right child (independently) }})
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot(\underbrace{(1-\underbrace{\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}}_{\text {no path for left }}}_{\text {at least one path among left and right }})
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{P}_{0}\right] & \geq 1 / 2 \\
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) & \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \\
& =\frac{1}{2} \cdot\left(1-\left(1-2 \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]+\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}\right)\right)
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2 \\
& \operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \\
&=\frac{1}{2} \cdot\left(\nsim-\left(\nsim-2 \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]+\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}\right)\right) \\
&=\frac{1}{2} \cdot\left(2 \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}\right)
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2 \\
& \operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \\
&=\frac{1}{2} \cdot\left(\not{\mathcal{Y}}-\left(\not{\mathcal{P}}-2 \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]+\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}\right)\right) \\
&=\frac{1}{2} \cdot\left(2 \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}\right) \\
&=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

$$
\Delta
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2} ?
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1} \mathbb{L}^{\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}} ?
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1} \mathbb{L}^{\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}} ?
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1} \mathbb{L}^{\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}} ?
$$

smaller x

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1} \mathbb{L}^{\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}} ?
$$

smaller x yields smaller $f(x)$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{2}\left(\frac{1}{d+1}\right)^{2}
$$

smaller x yields smaller $f(x)$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{2}\left(\frac{1}{d+1}\right)^{2}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{2(d+1)(d+1)}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
& \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
2 d \geq d & \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
2 d \geq d & \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{1}{(d+2)(d+1)} \\
& =\frac{1}{(d+1)(d+2)}-\frac{1}{(d+2)(d+1)}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
2 d \geq d & \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+2-1}{(d+1)(d+2)}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
2 d \geq d & \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+1}{(d+1)(d+2)}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
& \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
2 d \geq d & \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+1}{(d+1)(d+2)}=\frac{1}{d+2}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

- $\operatorname{Pr}\left[\right.$ "min-cut on layer d "] $\geq \frac{1}{d+2}$

$$
\begin{aligned}
& \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { for } d \geq 0 & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+I}{(d+1)(d+2)}=\frac{1}{d+2}
\end{aligned}
$$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
& \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { 2d } d \geq d & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+1}{(d+1)(d+2)}=\frac{1}{d+2}
\end{aligned}
$$

$$
\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2
$$

- $\operatorname{Pr}\left[\right.$ "min-cut on layer d "] $\geq \frac{1}{d+2}$
- How many layers in the tree?
$\rightarrow \log _{\sqrt{2}}(n)$

Karger-Stein: Success Probability

- After $t=n-n / \sqrt{2}-1$ steps we have $\operatorname{Pr}\left[\mathcal{E}_{t}\right] \geq 1 / 2$ (t was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_{d} : there exists a successful path of length d starting at the root $\operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$

$$
\operatorname{Pr}\left[\mathcal{P}_{d}\right]=\operatorname{Pr}\left[\mathcal{P}_{0}\right] \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right) \geq \frac{1}{2} \cdot\left(1-\left(1-\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]\right)^{2}\right)=\operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}
$$

Claim $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \frac{1}{d+2}$ (proof via induction)

- Base case $d=0: \operatorname{Pr}\left[\mathcal{P}_{0}\right] \geq 1 / 2$, Assumption: $\operatorname{Pr}\left[\mathcal{P}_{d-1}\right] \geq \frac{1}{d+1}$
- Step: $\operatorname{Pr}\left[\mathcal{P}_{d}\right] \geq \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]-\frac{1}{2} \operatorname{Pr}\left[\mathcal{P}_{d-1}\right]^{2}$

$$
\begin{aligned}
& \geq \frac{1}{d+1}-\frac{1}{(2 d+2)(d+1)} \\
\text { for } d \geq d & \geq \frac{1}{d+1}-\frac{\downarrow}{(d+2)(d+1)} \\
& =\frac{d+1}{(d+1)(d+2)}=\frac{1}{d+2}
\end{aligned}
$$

- $\operatorname{Pr}\left[\right.$ "min-cut on layer d "] $\geq \frac{1}{d+2}$
- How many layers in the tree?
$\rightarrow \log _{\sqrt{2}}(n)$
- $\operatorname{Pr}\left[\right.$ "min-cut returned"] $\geq \frac{1}{O(\log (n))}$

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

Reminder: Karger $\rightarrow 1 / O\left(n^{2}\right)$ in $O\left(n^{2}\right)$ time

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

$$
\text { Reminder: Karger } \rightarrow 1 / O\left(n^{2}\right) \text { in } O\left(n^{2}\right) \text { time }
$$

Amplification

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

$$
\text { Reminder: Karger } \rightarrow 1 / O\left(n^{2}\right) \text { in } O\left(n^{2}\right) \text { time }
$$

Amplification

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{t}{O(\log (n))}\right)=\begin{array}{l}
1-O\left(\frac{1}{n}\right) \\
\text { for } t=\log ^{2}(n)
\end{array}\right.
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

$$
\text { Reminder: Karger } \rightarrow 1 / O\left(n^{2}\right) \text { in } O\left(n^{2}\right) \text { time }
$$

Amplification

$$
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{t}{O(\log (n))}\right)=1-O\left(\frac{1}{n}\right) . \begin{array}{l}
\text { for } t=\log ^{2}(n)
\end{array}\right.
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(\log ^{2}(n)\right)$ repetitions of Karger-Stein run in $O\left(n^{2} \log ^{3}(n)\right)$ total time and return a minimum cut with high probability.

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in $O\left(n^{2} \log (n)\right)$ time and returns a minimum cut with probability at least $1 / O(\log (n))$.

$$
\text { Reminder: Karger } \rightarrow 1 / O\left(n^{2}\right) \text { in } O\left(n^{2}\right) \text { time }
$$

Amplification

$$
\begin{aligned}
\operatorname{Pr}\left[\text { "min-cut found"] } \geq 1-\exp \left(-\frac{t}{O(\log (n))}\right)=1-O\left(\frac{1}{n}\right)\right. \\
\text { for } t=\log ^{2}(n)
\end{aligned}
$$

Success probability $\geq p$ Number of repetitions t Amplified prob. $\geq 1-e^{-p t}$

Corollary: On a graph with n nodes, $O\left(\log ^{2}(n)\right)$ repetitions of Karger-Stein run in $O\left(n^{2} \log ^{3}(n)\right)$ total time and return a minimum cut with high probability.

- Compared to $O\left(n^{4} \log (n)\right)$ for Karger
- Compared to $\Omega\left(n^{3}\right)$ for deterministic approaches

Conclusion

Cuts

- Fundamental graph problem
- Many deterministic flow-based algorithms
- . . . with worst-case running times in $\Omega\left(n^{3}\right)$

Conclusion

Cuts

- Fundamental graph problem
- Many deterministic flow-based algorithms
- . . . with worst-case running times in $\Omega\left(n^{3}\right)$

Randomized Algorithms

- Simple randomized cut via reservoir sampling
- Karger's edge-contraction algorithm

Assumptions: We can sample

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

Conclusion

Cuts

- Fundamental graph problem
- Many deterministic flow-based algorithms
- . . . with worst-case running times in $\Omega\left(n^{3}\right)$

Randomized Algorithms

- Simple randomized cut via reservoir sampling
- Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large

$\begin{aligned} & \text { 苍 } \\ & \text { 을 } \end{aligned}$	Correct Answer		
		x	\checkmark
	x	true	false
	χ	neg	neg
앙	\checkmark	false	true
$\stackrel{1}{4}$	\checkmark	pos	pos

Conclusion

Cuts

- Fundamental graph problem
- Many deterministic flow-based algorithms
- . . . with worst-case running times in $\Omega\left(n^{3}\right)$

Randomized Algorithms

- Simple randomized cut via reservoir sampling
- Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large

Outlook

$\begin{aligned} & \text { F } \\ & \text { 를 } \\ & 0 \end{aligned}$	Correct Answer		
		x	\checkmark
		true	false
		neg	neg
앙	\checkmark	false	true
¢	\checkmark	pos	pos

Assumptions: We can sample

- uniformly from $\{0, \ldots, O(n+m)\}$ in $O(1)$ time
- uniformly from $[0,1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.
"Minimum cuts in near-linear time", Karger, J.Acm. '00
"Faster algorithms for edge connectivity via random 2-out contractions", Ghaffari \& Nowicki \& Thorup, SODA'20

