
1

Probability & Computing

Probability Amplification

www.kit.eduKIT – The Research University in the Helmholtz Association



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

The Segmentation Problem

Input
Set P of points in a feature space (e.g., Rd )
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
segment into two sets

Approach: Model as graph
Each point is a node
Edges between all node pairs, with the weight given by
the similarity of the two nodes
Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into k components.

Applications: Compression, medical diagnosis, etc.

Today
k = 2 and ff : P × P 7→ {0; 1}
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The Edge-Connectivity Problem

k-Edge-Connectivity
k-edge-connected : a minimum cut has weight at least k

Cuts
G = (V; E) an unweighted, undirected, connected graph
Cut : partition of V into parts V1, V2 such that V1 ∩ V2 = ∅
and V1 ∪ V2 = V .
Cut-set : set of edges with one endpoint in V1 and the other
in V2
Weight : size of the cut-set (or sum of weights in a weighted graph)

Excursion: Cuts with Terminals
each part contains exectly one of a specified vertex set

(in general one can consider more than two parts)

(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity
max. k such that G is k-edge-connected (exactly the weight of a min-cut)

Excursion: Flows
given source s and target t

s

t

assign flow to edges s.t.
in-flow = out-flow for all vertices

flow of an edge bounded by
edge-capacity (here: ≤ 1)

Thm. Max-Flow = Min-Cut.

(not s and t)

flow in t is maximized

1

1

1

1

1
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Deterministic Algorithms for Edge-Connectivity

Involved technique based on the fact that min-cut = max. number of dijsoint, directed
spanning trees → O(m + k2n log(n=k))

Flow-based
Compute max-flow between all vertex pairs → O(n2 · Tmax-flow)

O(nm)

⊆ O(n3m)

“Max flows in O(nm) time, or better”, Orlin, STOC’13

Compute max-flow between v and all others → O(n · Tmax-flow) ⊆ O(n2m)
(if a cut of size k exists, it has to cut v from some vertex)

→ Ω(n3)

Matroid-based

Good if k is small but still Ω(n3) in the worst case

Contraction-based “A simple min-cut algorithm”, Stoer & Wagner, JACM, 1997

Iteratively pick two vertices (in a smart way) and compare the min-cuts where they are /
are not in the same part → O(mn + n2 log(n))

“A Matroid Approach to Finding Edge Connectivity and Packing Arborescences”, Gabow, JCSS, 1995

→ Ω(n3)

Enter: The Power of Randomness!
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A Simple(?) Randomized Algorithm

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2( )

011111
V2

V1

Algorithm: Simple(?) Randomized Cut
Simple idea: choose a cut at random among all possible cuts and return it.

Problem: How do we choose a cut uniformly at random?

What do we mean?
What distribution?

Uniform distribution: We do not want to potentially favor non-minimum cuts

Represent cut using bit-string
How can we choose a unfiorm random bit-string while avoiding 11...1 and 00...0?
n random bits? → does not avoid 11...1 and 00...0

rejection sampling? running time not deterministic (though probably what you’d do in practice)
random number from {1; : : : ; 2n − 2}? → exponential in input size
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Excursion: Uniform Non-Identical Bit Strings

Goal: Choose uniformly at random from the length n bit-strings that are not 0n or 1n

Number of valid bit-strings:

=

 
nX

k=0

 
n

k

!!
−2 =

n−1X
k=1

 
n

k

!

choose k 1s in n bitschoose k

1110
1101
1011
0111

n = 4

k = 1

k = 3

k = 2

1000
0100
0010
0001
1100
1010
1001
0110
0101
0011

2n − 2

unibs(n)

return b

k := rand({1; : : : ; n − 1}) // number of 1s

b[P ] = 1 // set 1s in b
P := randSet({1; : : : ; n}; k) // positions of 1s

b := 00...0 // n zeros

2-step process:

2n =
nX

k=0

“n
k

”
“n
0

”
=
“n
n

”
= 1

&

Not possible in theory. Reasonable in practice.

Assumptions: We can sample . . .
uniformly from {0; :::; O(n +m)} in O(1) time
uniformly from [0; 1] in O(1) time

How to sample k?
uniform?
Pr[1000] = 1=3 · 1=4 = 1=12

Pr[1100] = 1=3 · 1=6 = 1=18
̸= 1=14

choose k with prob
`
n
k

´
=(2n − 2)

Reduce to uniform using
Inverse Transform Sampling

How to sample P?

2n − 2

[For educational purposes only!]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Excursion-Excursion: Reservoir Sampling

randSet({1; : : : ; n}; k)

return r

j := unif({1; : : : ; i})

r := [1; : : : ; k] // reservoir
for i from k + 1 to n do

if j ≤ k then r [j ] = i

Goal: Choose a set of size k uniformly at random from the n elements.

Not possible in theory.

Assumptions: We can sample . . .
uniformly from {0; :::; O(n +m)} in O(1) time
uniformly from [0; 1] in O(1) time

Idea:
initialize reservoir with first k elements
replace reservoir elements at random

81 2 3 4 5 6 7

3 i

j

Reasonable in practice.

5 7

Running time: O(n)

// O(k)

// O(1)
// O(1)

// O(n − k)

[For educational purposes only!]
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Excursion: Uniform Non-Homogeneous Bit Strings

Goal: Choose uniformly at random from the length n bit strings that are not 0n or 1n

unibs(n)

return b

k := rand({1; : : : ; n − 1}) // number of 1s

b[P ] = 1 // set 1s in b
P := randSet({1, . . . , n}, k) // positions of 1s

b := 00...0 // n zeros

2-step process:

// O(n)
// O(log(n)) via Inverse Transform Sampling
// O(n) via Reservoir Sampling
// O(k) ⊆ O(n)

Under our assumptions, we can sample a length n bit string that is not 0n or 1n uniformly
at random in time O(n).

Not possible in theory.

Assumptions: We can sample . . .
uniformly from {0; :::; O(n +m)} in O(1) time
uniformly from [0; 1] in O(1) time

Reasonable in practice.

choose k
choose k 1s in n bits

[For educational purposes only!][For educational purposes only!]
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Simple Randomized Cut

Amplification

Simple idea: choose a cut uniformly at random among all possible cuts and return it.
Running time: O(n)

Success probability
2n−1 − 1 cuts in a graph with n nodes
How many min-cuts? → pessimistic assumption: 1

Observation: On a graph with n nodes, Simple Randomized Cut runs in O(n) time and
returns a minimum cut with probability at least 1=(2n−1 − 1).1=(2n−1 − 1) → exponentially small!

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“minimum found”] ≥ 1−

`
1− 1=(2n−1 − 1)

´t ≥ 1− e−t=(2n−1−1) 1 + x ≤ ex for x ∈ R

For t = 2n−1 − 1 minimum found with constant probability 1− 1=e ≈ 0:63

For t = (2n−1 − 1) · log(n) minimum found with high probability 1− 1=n

much better than the Ω(n3) in the deterministic setting , but...
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Probability Amplification

For Simple Randomized Cut we had to pay with exponentially large running time . . .

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates
deterministically and whose output is correct only with a certain probability p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

After t (independent) runs return the . . .

majority

bias

best

Pr[“success”] ≥ 1− (1− p)t ≥ 1− e−pt (for two-sided errors it’s a bit more complicated)

Error probability decreases exponentially in t

A
lg

o
O

ut
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t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓
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Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
e := unif(Ei−1)
Gi = Gi−1:contract(e)

return unique cut in Gn−2

xw
A (multi) graph with two nodes has a unique cut

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut with cut set C and |C| = k

m =
1

2

X
v∈V

deg(v) ≥ 1

2

X
v∈V

k ≥ 1

2
nk

Ei = “C in Gi ”
Pr[E1] = 1− k

m

≥ 1− k
nk=2

= 1− 2
n

Observation: A cut in Gi is a cut in G0.

Observation: min-degree ≥ k

(holds for all Gi due to 1st observation)

non-essential

essential
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Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
e := unif(Ei−1)
Gi = Gi−1:contract(e)

return unique cut in Gn−2

xw
A (multi) graph with two nodes has a unique cut

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut with cut set C and |C| = k

Observation: A cut in Gi is a cut in G0.

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

≥ 2
n (n−1)
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2=(n(n − 1)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp

„
− 2t

n(n − 1)

«
= 1− 1

n

for t = n(n−1)
2 log(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E i

n−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E i

n−2] ≥ 2
n(n−1)

disjoint, since the algorithm returns only one cut

Pr
hS

i∈[‘] E
i
n−2

i
=
P

i∈[‘] Pr[E
i
n−2] ≥ 2·‘

n(n−1)
1 ≥

Observation: A graph on n nodes contains at
most n(n−1)

2 minimum cuts.

Much better than exp. time Simple Randomized Cut!
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More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei ] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)

With increasing number of steps the probability for
a min-cut to survive decreases
Idea: stop when a min-cut is still likely to exist and recurse

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut

e := unif(Ei−1)
Gi = Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to t = |V0| − |V0|√
2
− 1 do

After t = n − n=
√
2− 1 steps we have

(n − (n − n=
√
2− 1))(n − (n − n=

√
2− 1)− 1)

n(n − 1)
Pr[Et ] = =

n2=2 + n=
√
2

n(n − 1)
≥ 1

2

C1 := KargerStein(Gt)

C2 := KargerStein(Gt)
// pendent
// runs

// inde-

Probability that no mistake made after t steps still large

+ + + +
=

n(n=2 + 1=
√
2)

n(n − 1)
=

1

2
· n +

√
2

n − 1

≥ 1
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Karger-Stein: Running Time

// O(1)

// O(n)
// O(1)

Recursion

T (n) = 2T

„
n√
2
+ 1

«
+O(n2)

After t = n−n=
√
2−1 steps the number

of nodes is n=
√
2 + 1

// O(n)

Recursion tree
Layers: log√2(n)

Nodes on layer j : 2j

Time on layer j : O
„“

n√
2
j

”2«

T (n) =

log√2(n)X
j=1

2j · O

0@ n
√
2
j

!2
1A = O

0@n2 · log√2(n)X
j=1

2j

2j

1A = O
`
n2 log√2(n)

´
= O

`
n2 log(n)

´

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut

e := unif(Ei−1)
Gi = Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to t = |V0| − |V0|√
2
− 1 do

C1 := KargerStein(Gt)

C2 := KargerStein(Gt)
// pendent
// runs

// inde-
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Karger-Stein: Success Probability

After t = n− n=
√
2− 1 steps we have Pr[Et ] ≥ 1=2 (t was chosen to achieve exactly that)

Recursion tree
A node is a successful node if it still contains a min-cut of the original graph
A path is a successful path if it contains only successful nodes

Pd : there exists a successful path of length d starting at the root
Pr[P0] ≥ 1=2

Pr[Pd ] = Pr[P0] ·
`
1− (1− Pr[Pd−1])

2´

d

d − 1

≥ 1
2
·
`
1− (1− Pr[Pd−1])

2´= Pr[Pd−1]− 1
2
Pr[Pd−1]

2

Claim Pr[Pd ] ≥ 1
d+2

(proof via induction)
, Assumption: Pr[Pd−1] ≥ 1

d+1

Pr[Pd ] ≥ Pr[Pd−1]− 1
2
Pr[Pd−1]

2

Base case d = 0: Pr[P0] ≥ 1=2

Step:

f (x) = x − 1
2
x2

1
2

1

1
2

f (x)

f (x) d
dx

= 1− x

≥ 0
for x ∈ [0; 1]

smaller x yields smaller f (x)

x

≥ 1
d+1

− 1
2

`
1

d+1

´2
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Karger-Stein: Success Probability

After t = n− n=
√
2− 1 steps we have Pr[Et ] ≥ 1=2 (t was chosen to achieve exactly that)

Recursion tree
A node is a successful node if it still contains a min-cut of the original graph
A path is a successful path if it contains only successful nodes

Pd : there exists a successful path of length d starting at the root
Pr[P0] ≥ 1=2

Pr[Pd ] = Pr[P0] ·
`
1− (1− Pr[Pd−1])

2´

d

d − 1

≥ 1
2
·
`
1− (1− Pr[Pd−1])

2´= Pr[Pd−1]− 1
2
Pr[Pd−1]

2

Claim Pr[Pd ] ≥ 1
d+2

(proof via induction)
, Assumption: Pr[Pd−1] ≥ 1

d+1

Pr[Pd ] ≥ Pr[Pd−1]− 1
2
Pr[Pd−1]

2

Base case d = 0: Pr[P0] ≥ 1=2

Step:

≥ 1
d+1

− 1
(2d+2)(d+1)

2d ≥ d
for d ≥ 0 ≥ 1

d+1
− 1

(d+2)(d+1)

= d+1
(d+1)(d+2)

= 1
d+2

Pr[“min-cut on layer d”] ≥ 1
d+2

How many layers in the tree?
→ log√2(n)

Pr[“min-cut returned”] ≥ 1
O(log(n))
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Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Reminder: Karger → 1=O(n2) in O(n2) time

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp

„
− t

O(log(n))

«
= 1−O

„
1

n

«
for t = log2(n)

Corollary: On a graph with n nodes, O(log2(n)) repetitions of Karger-Stein run in
O(n2 log3(n)) total time and return a minimum cut with high probability.

Compared to O(n4 log(n)) for Karger

Compared to Ω(n3) for deterministic approaches

Amplification
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Conclusion

V1 V2

Cuts
Fundamental graph problem
Many deterministic flow-based algorithms
. . . with worst-case running times in Ω(n3)

Randomized Algorithms
Simple randomized cut via reservoir sampling

Not possible in theory.

Assumptions: We can sample . . .
uniformly from {0; :::; O(n +m)} in O(1) time
uniformly from [0; 1] in O(1) time

Reasonable in practice.
Karger’s edge-contraction algorithm

Probability Amplification
Monte Carlo algorithms with and without biases

A
lg
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Correct Answer

false
pos

true
pos

false
neg

Repetitions amplify success probability
Karger-Stein: Amplify before failure probability gets large

Outlook
“Minimum cuts in near-linear time”, Karger, J.Acm. ’00

Success w.h.p. in time O(m log3(n))

“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’20

Success w.h.p. in time O(m log(n)) and O(m + n log3(n))

✗ ✓

✗

✓

true
neg


