Probability & Computing

Probability Amplification
The Segmentation Problem

Input
- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that
- Points within a P_i have high similarity
- Points in distinct P_i, P_j have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph
- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find *cut-set* (edges to remove) of minimal weight such that the graph decomposes into k components.

Example
- six points in \mathbb{R}^2
- σ is the inversed Euclidean distance
- segment into two sets

Today
- $k = 2$ and $\sigma: P \times P \mapsto \{0, 1\}$
The Edge-Connectivity Problem

Cuts
- \(G = (V, E) \) an unweighted, undirected, connected graph
- Cut: partition of \(V \) into parts \(V_1, V_2 \) such that \(V_1 \cap V_2 = \emptyset \) and \(V_1 \cup V_2 = V \).
- Cut-set: set of edges with one endpoint in \(V_1 \) and the other in \(V_2 \)
- Weight: size of the cut-set

Excursion: Cuts with Terminals
- each part contains exactly one of a specified vertex set

\[k \]-Edge-Connectivity
- \(k \)-edge-connected: a minimum cut has weight at least \(k \)
 (we cannot disconnect the graph by removing less than \(k \) edges)

Edge-Connectivity
- max. \(k \) such that \(G \) is \(k \)-edge-connected
 (exactly the weight of a min-cut)

Excursion: Flows
- given source \(s \) and target \(t \)
- assign flow to edges s.t.
 - in-flow = out-flow for all vertices (not \(s \) and \(t \))
 - flow of an edge bounded by edge-capacity (here: \(\leq 1 \))
- flow in \(t \) is maximized
Deterministic Algorithms for Edge-Connectivity

Flow-based
- Compute max-flow between all vertex pairs $\rightarrow O(n^2 \cdot T_{\text{max-flow}}) \subseteq O(n^3 m)$
- Compute max-flow between v and all others $\rightarrow O(n \cdot T_{\text{max-flow}}) \subseteq O(n^2 m) \rightarrow \Omega(n^3)$

(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based
- Involved technique based on the fact that min-cut $=$ max. number of disjoint, directed spanning trees $\rightarrow O(m + k^2 n \log(n/k))$
- Good if k is small but still $\Omega(n^3)$ in the worst case

Contraction-based
- Iteratively pick two vertices (in a smart way) and compare the min-cuts where they are / are not in the same part $\rightarrow O(mn + n^2 \log(n)) \rightarrow \Omega(n^3)$

"Max flows in $O(nm)$ time, or better", Orlin, STOC’13

A Matroid Approach to Finding Edge Connectivity and Packing Arborescences”, Gabow, JCSS, 1995

"A simple min-cut algorithm", Stoer & Wagner, JACM, 1997

Enter: The Power of Randomness!
A Simple(?) Randomized Algorithm

Observation: There are \(2^n - 1\) cuts in a graph with \(n\) nodes.

- Number of possible assignments of \(n\) nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it.

What do we mean? What distribution?

Uniform distribution: We do not want to potentially favor non-minimum cuts

Problem: How do we choose a cut \textit{uniformly} at random?

- Represent cut using bit-string
- How can we choose a uniform random bit-string \textit{while avoiding} \(11\ldots1\) and \(00\ldots0\)?
 - \(n\) random bits? → does not avoid \(11\ldots1\) and \(00\ldots0\)
 - Random number from \(\{1, \ldots, 2^n - 2\}\)? → exponential in input size
 - Rejection sampling? running time not deterministic (though probably what you’d do in practice)
Excursion: Uniform Non-Identical Bit Strings

[For educational purposes only!]

- **Goal**: Choose uniformly at random from the length n bit-strings that are not 0^n or 1^n
- **Number of valid bit-strings**:
 \[
 2^n - 2 = \left(\sum_{k=0}^{n} \binom{n}{k} \right) - 2 = \sum_{k=1}^{n-1} \binom{n}{k}
 \]
- **2-step process**: choose $k \leftarrow$ & \uparrow choose k 1s in n bits

unibs(n)
- $b := 00...0$ // n zeros
- $k := \text{rand}([1, \ldots, n-1])$ // number of 1s
- $P := \text{randSet}([1, \ldots, n], k)$ // positions of 1s
- $b[P] = 1$ // set 1s in b
- return b

Assumptions: We can sample …
- uniformly from $\{0, \ldots, O(n + m)\}$ in $O(1)$ time
- uniformly from $[0, 1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

How to sample k?
- **uniform?**
 - $\Pr[1000] = 1/3 \cdot 1/4 = 1/12$
 - $\Pr[1100] = 1/3 \cdot 1/6 = 1/18$
- **choose k with prob $\binom{n}{k} / (2^n - 2)$**
- **Reduce to uniform using Inverse Transform Sampling**

How to sample P?

$2^n = \sum_{k=0}^{n} \binom{n}{k}$

$\binom{n}{0} = \binom{n}{n} = 1$

$2^n - 2 = \sum_{k=1}^{n-1} \binom{n}{k}$

$n = 4$

- 1000
- 0100
- 0010
- 0001
- 1100
- 1010
- 1001
- 0110
- 0101
- 0011
- 1110
- 1101
- 1011
- 0111

$k = 1$

$k = 2$

$k = 3$
Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

Goal: Choose a set of size k uniformly at random from the n elements.

Idea:
- initialize reservoir with first k elements
- replace reservoir elements at random

```
randSet(\{1, \ldots, n\}, k)
```

```
r := \{1, \ldots, k\} // reservoir
for i from k + 1 to n do
    j := unif(\{1, \ldots, i\})
    if j \leq k then r[j] = i
return r
```

Running time: $O(n)$

Assumptions: We can sample ...

- uniformly from $\{0, \ldots, O(n + m)\}$ in $O(1)$ time
- uniformly from $[0, 1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.

Reasonable in practice.

Running time: $O(n)$ // $O(k)$ // $O(n - k)$ // $O(1)$ // $O(1)$ // $O(n - k)$ [For educational purposes only!]
Excursion: Uniform Non-Homogeneous Bit Strings

[For educational purposes only!]

Goal: Choose uniformly at random from the length \(n \) bit strings that are not \(0^n \) or \(1^n \)

2-step process:
- choose \(k \)
- choose \(k \) 1s in \(n \) bits

\(\text{unibs}(n) \)

\[
\begin{align*}
b &:= 00 \ldots 0 \quad // \text{\(n \) zeros} & & // O(n) \\
k &:= \text{rand}(\{1, \ldots, n-1\}) \quad // \text{number of 1s} & & // O(\log(n)) \text{ via Inverse Transform Sampling} \\
P &:= \text{randSet}(\{1, \ldots, n\}, k) \quad // \text{positions of 1s} & & // O(n) \text{ via Reservoir Sampling} \\
b[P] &:= 1 \quad // \text{set 1s in} \ b & & // O(k) \subseteq O(n) \\
\text{return } b
\end{align*}
\]

Assumptions: We can sample . . .
- uniformly from \(\{0, \ldots, O(n + m)\} \) in \(O(1) \) time
- uniformly from \([0, 1] \) in \(O(1) \) time

Not possible in theory. Reasonable in practice.

Under our assumptions, we can sample a length \(n \) bit string that is not \(0^n \) or \(1^n \) uniformly at random in time \(O(n) \).
Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
- Running time: $O(n)$ \textit{much better than the} $\Omega(n^3)$ \textit{in the deterministic setting, but...}

Success probability

- $2^{n-1} - 1$ cuts in a graph with n nodes
- How many min-cuts? \textit{pessimistic assumption: 1}

\textbf{Observation}: On a graph with n nodes, \textbf{Simple Randomized Cut} runs in $O(n)$ time and returns a minimum cut with probability at least $1/(2^{n-1} - 1)$. \textit{exponentially small!}

Amplification

- Repeat the algorithm to obtain t independent random cuts, return the smallest

$\Pr[\text{“minimum found”}] \geq 1 - (1 - 1/(2^{n-1} - 1))^t \geq 1 - e^{-t/(2^{n-1}-1)}$

\begin{align*}
1 + x & \leq e^x \text{ for } x \in \mathbb{R}
\end{align*}

- For $t = 2^{n-1} - 1$ minimum found with constant probability $1 - 1/e \approx 0.63$
- For $t = (2^{n-1} - 1) \cdot \log(n)$ minimum found with high probability $1 - 1/n$
Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in (0, 1)$.

- In decision problems p is the probability of giving the correct answer
 - **One-sided error**: either false-biased or true-biased
 - **Two-sided error**: no bias
- In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

- After t (independent) runs return the ... $\Pr[\text{"success"}] \geq 1 - (1 - p)^t \geq 1 - e^{-pt}$ (for two-sided errors it's a bit more complicated)
- Error probability decreases exponentially in t

For Simple Randomized Cut we had to pay with exponentially large running time...
Karger’s Algorithm

Edge Contraction
- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
- Motivation: distinguish non-essential as well as essential edges & hope there are few essential ones

Karger($G_0 = (V_0, E_0)$)

\[
\text{for } i = 1 \text{ to } n - 2 \text{ do } \quad \text{// } O(n)
\]
\[
e := \text{unif}(E_{i-1}) \quad \text{// } O(1)
\]
\[
G_i = G_{i-1}.\text{contract}(e) \quad \text{// } O(n)
\]

\text{return unique cut in } G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

Success Probability

Observation: A cut in G_i is a cut in G_0.

Consider min-cut with cut set C and $|C| = k$

$E_i = "C \text{ in } G_i"$

$\Pr[E_1] = 1 - \frac{k}{m}$

\[
\geq 1 - \frac{k}{nk/2} = 1 - \frac{2}{n}
\]

Observation: min-degree $\geq k$ (holds for all G_i due to 1st observation)

\[
m = \frac{1}{2} \sum_{v \in V} \deg(v) \geq \frac{1}{2} \sum_{v \in V} k \geq \frac{1}{2} nk
\]
Karger’s Algorithm

Edge Contraction
- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm
- Motivation: distinguish non-essential as well as essential edges & hope there are few essential ones

\[
\text{Karger}(G_0 = (V_0, E_0))
\]

\[
\text{for } i = 1 \text{ to } n - 2 \text{ do } \quad // O(n)
\]
\[
e := \text{unif}(E_{i-1}) \quad // O(1)
\]
\[
G_i = G_{i-1}.\text{contract}(e) \quad // O(n)
\]

return unique cut in \(G_{n-2}\)

- Running time in \(O(n^2)\)
- Can be implemented to run in \(O(m)\)

Success Probability

\[
\text{Observation: } \text{A cut in } G_i \text{ is a cut in } G_0.
\]

\[
\text{Consider min-cut with cut set } C \text{ and } |C| = k
\]

\[
\mathcal{E}_i = \text{“C in } G_i\text{”}
\]

\[
\text{Observation: min-degree } \geq k
\]

\[
\text{Pr}[\mathcal{E}_1] \geq 1 - \frac{2}{n}
\]

(holds for all \(G_i\) due to 1st observation)

\[
\text{Pr}[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1} \implies \text{Pr}[\mathcal{E}_i | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \geq 1 - \frac{2}{n-i+1}
\]

\[
\text{Pr}[\mathcal{E}_{n-2}] = \text{Pr}[\mathcal{E}_1] \cdot \text{Pr}[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot \text{Pr}[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]
\]

\[
\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\ldots\left(\frac{2}{n-i}\right)\left(\frac{1}{n-i+1}\right)
\]

\[
\geq \frac{2}{n(n-1)}
\]
Karger’s Algorithm Amplified

Theorem: On a graph with \(n \) nodes, Karger’s algorithm runs in \(O(n^2) \) time and returns a minimum cut with probability at least \(2/(n(n-1)) \).

\[
\Pr["\text{min-cut found}""] \geq 1 - \exp\left(-\frac{2t}{n(n-1)}\right) = 1 - \frac{1}{n}
\]

for \(t = \frac{n(n-1)}{2} \log(n) \)

Success probability \(\geq p \)
Number of repetitions \(t \)
Amplified prob. \(\geq 1 - e^{-pt} \)

Corollary: On a graph with \(n \) nodes, \(O(n^2 \log(n)) \) Karger repetitions run in \(O(n^4 \log(n)) \) total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
- Let \(C_1, \ldots, C_\ell \) be all the min-cuts in \(G \) and \(E_i \) for \(i \in [\ell] \) be the event that \(C_i \) is returned by Karger’s algorithm.
- Just seen: \(\Pr[E_{n-2}^i] \geq \frac{2}{n(n-1)} \)

\[
1 \geq \Pr \left[\bigcup_{i \in [\ell]} E_{n-2}^i \right] = \sum_{i \in [\ell]} \Pr[E_{n-2}^i] \geq \frac{2\ell}{n(n-1)}
\]

Observation: A graph on \(n \) nodes contains at most \(\frac{n(n-1)}{2} \) minimum cuts.

Much better than exp. time Simple Randomized Cut!
More Amplification: Karger-Stein

Motivation

- Probability that a min-cut survives \(i \) contractions

\[
\Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}]
\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)
\]
\[
= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)
\]
\[
= \frac{(n-i)(n-i-1)}{n(n-1)}
\]

- With increasing number of steps the probability for a min-cut to survive decreases

- Idea: stop when a min-cut is still likely to exist and recurse

- After \(t = n - n/\sqrt{2} - 1 \) steps we have

\[
\Pr[\mathcal{E}_t] = \frac{(n - n + n/\sqrt{2} + 1)(n - n + n/\sqrt{2} + 1)}{n(n-1)} = \frac{n^2/2 + n/\sqrt{2}}{n(n-1)} = \frac{\mathfrak{n}(n/2 + 1/\sqrt{2})}{\mathfrak{n}(n-1)} = \frac{1}{2} \cdot \frac{n + \sqrt{2}}{n-1} \geq \frac{1}{2}
\]

- Probability that no mistake made after \(t \) steps still large

KargerStein\((G_0 = (V_0, E_0))\)

\begin{align*}
\text{if } |V_0| = 2 & \text{ then return unique cut } \\
\text{for } i = 1 \text{ to } t = |V_0| - |V_0|/\sqrt{2} - 1 & \text{ do } \\
& \quad e := \text{unif}(E_{i-1}) \\
& \quad G_i = G_{i-1} \cdot \text{contract}(e) \\
C_1 & := \text{KargerStein}(G_t) \quad // \text{independent} \\
C_2 & := \text{KargerStein}(G_t) \quad // \text{pendent} \\
\text{return smaller of } C_1, C_2 & \end{align*}

Probability that a min-cut survives \(i \) contractions

\[
\Pr[E_i] = \Pr[E_1] \cdot \Pr[E_2 | E_1] \cdot \ldots \cdot \Pr[E_i | E_1 \cap \ldots \cap E_{i-1}]
\]

With increasing number of steps the probability for a min-cut to survive decreases

Idea: stop when a min-cut is still likely to exist and recurse

After \(t = n - n/\sqrt{2} - 1 \) steps we have

\[
\Pr[\mathcal{E}_t] = \frac{(n - n + n/\sqrt{2} + 1)(n - n + n/\sqrt{2} + 1)}{n(n-1)} = \frac{n^2/2 + n/\sqrt{2}}{n(n-1)} = \frac{\mathfrak{n}(n/2 + 1/\sqrt{2})}{\mathfrak{n}(n-1)} = \frac{1}{2} \cdot \frac{n + \sqrt{2}}{n-1} \geq \frac{1}{2}
\]

Probability that no mistake made after \(t \) steps still large
Karger-Stein: Running Time

Recursion
- After \(t = n - \frac{n}{\sqrt{2}} - 1 \) steps the number of nodes is \(\frac{n}{\sqrt{2}} + 1 \)

\[
T(n) = 2T \left(\frac{n}{\sqrt{2}} + 1 \right) + O(n^2)
\]

Recursion tree
- Layers: \(\log \sqrt{2}(n) \)
- Nodes on layer \(j \): \(2^j \)
- Time on layer \(j \): \(O \left(\left(\frac{n}{\sqrt{2}^j} \right)^2 \right) \)

\[
T(n) = \sum_{j=1}^{\log \sqrt{2}(n)} 2^j \cdot O \left(\left(\frac{n}{\sqrt{2}^j} \right)^2 \right) = O \left(n^2 \cdot \sum_{j=1}^{\log \sqrt{2}(n)} 2^j \frac{2^j}{2^j} \right) = O \left(n^2 \log \sqrt{2}(n) \right) = O \left(n^2 \log(n) \right)
\]

KargerStein\((G_0 = (V_0, E_0))\)

if \(|V_0| = 2 \) then return unique cut

for \(i = 1 \) to \(t = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1 \) do

\(e := \text{unif}(E_{i-1}) \)

\(G_i = G_{i-1}.\text{contract}(e) \)

\(C_1 := \text{KargerStein}(G_t) \) // inde-

\(C_2 := \text{KargerStein}(G_t) \) // pendent

return smaller of \(C_1, C_2 \)
Karger-Stein: Success Probability

- After \(t = n - n/\sqrt{2} - 1 \) steps we have \(\Pr[\mathcal{E}_t] \geq 1/2 \) (\(t \) was chosen to achieve exactly that)

Recursion tree
- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \(\mathcal{P}_d \): there exists a successful path of length \(d \) starting at the root
 \[
 \Pr[\mathcal{P}_0] \geq 1/2
 \]
 \[
 \Pr[\mathcal{P}_d] = \Pr[\mathcal{P}_0] \cdot (1 - (1 - \Pr[\mathcal{P}_{d-1}])^2) \geq \frac{1}{2} \cdot (1 - (1 - \Pr[\mathcal{P}_{d-1}])^2) = \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2
 \]

Claim \(\Pr[\mathcal{P}_d] \geq \frac{1}{d+2} \) (proof via induction)
- Base case \(d = 0 \): \(\Pr[\mathcal{P}_0] \geq 1/2 \), Assumption: \(\Pr[\mathcal{P}_{d-1}] \geq \frac{1}{d+1} \)
- Step: \(\Pr[\mathcal{P}_d] \geq \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2 \)
 \[
 \geq \frac{1}{d+1} - \frac{1}{2} \left(\frac{1}{d+1} \right)^2
 \]

\[f(x) = x - \frac{1}{2} x^2 \]
\[f(x) \frac{d}{dx} = 1 - x \]
for \(x \in [0, 1] \)
smaller \(x \) yields smaller \(f(x) \)
Karger-Stein: Success Probability

- After \(t = n - \frac{n}{\sqrt{2}} - 1 \) steps we have \(\Pr[\mathcal{E}_t] \geq \frac{1}{2} \) (\(t \) was chosen to achieve exactly that)

Recursion tree

- A node is a **successful node** if it still contains a min-cut of the original graph
- A path is a **successful path** if it contains only successful nodes
- \(\mathcal{P}_d \): there exists a successful path of length \(d \) starting at the root

\[
\Pr[\mathcal{P}_d] \geq \frac{1}{d+1} \\
\Pr[\mathcal{P}_0] \geq \frac{1}{2}
\]

\[
\Pr[\mathcal{P}_d] = \Pr[\mathcal{P}_0] \cdot (1 - (1 - \Pr[\mathcal{P}_{d-1}])^2) \geq \frac{1}{2} \cdot (1 - (1 - \Pr[\mathcal{P}_{d-1}])^2) = \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2
\]

Claim \(\Pr[\mathcal{P}_d] \geq \frac{1}{d+2} \) (proof via induction)

- Base case \(d = 0 \): \(\Pr[\mathcal{P}_0] \geq \frac{1}{2} \), Assumption: \(\Pr[\mathcal{P}_{d-1}] \geq \frac{1}{d+1} \)
- Step: \(\Pr[\mathcal{P}_d] \geq \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2 \)

\[
2d \geq d \\
\text{for } d \geq 0
\]

- \(\Pr[\text{"min-cut on layer } d\text{"}] \geq \frac{1}{d+2} \)
- How many layers in the tree? \(\rightarrow \log \sqrt{2}(n) \)
- \(\Pr[\text{"min-cut returned"}] \geq \frac{1}{O(\log(n))} \)
Karger-Stein Amplified

Theorem: On a graph with \(n \) nodes, Karger-Stein runs in \(O(n^2 \log(n)) \) time and returns a minimum cut with probability at least \(1/O(\log(n)) \).

Amplification

\[
\Pr["\text{min-cut found}"] \geq 1 - \exp \left(-\frac{t}{O(\log(n))} \right) = 1 - O \left(\frac{1}{n} \right) \text{ for } t = \log^2(n)
\]

Success probability \(\geq p \)

Number of repetitions \(t \)

Amplified prob. \(\geq 1 - e^{-pt} \)

Corollary: On a graph with \(n \) nodes, \(O(\log^2(n)) \) repetitions of Karger-Stein run in \(O(n^2 \log^3(n)) \) total time and return a minimum cut with high probability.

- Compared to \(O(n^4 \log(n)) \) for Karger
- Compared to \(\Omega(n^3) \) for deterministic approaches
Conclusion

Cuts
- Fundamental graph problem
- Many deterministic flow-based algorithms
- \ldots with worst-case running times in $\Omega(n^3)$

Randomized Algorithms
- Simple randomized cut via reservoir sampling
- Karger’s edge-contraction algorithm

Probability Amplification
- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large

Outlook

Minimum cuts in near-linear time, Karger, J.Acm. ’00

Faster algorithms for edge connectivity via random 2-out contractions, Ghaffari & Nowicki & Thorup, SODA’20

Assumptions: We can sample \ldots
- uniformly from $\{0, \ldots, O(n + m)\}$ in $O(1)$ time
- uniformly from $[0, 1]$ in $O(1)$ time

Not possible in theory. Reasonable in practice.