

Probability & Computing

Probability Amplification

www.kit.edu

The Segmentation Problem

Input

• Set P of points in a feature space (e.g., \mathbb{R}^d)

• Similarity measure $\sigma \colon P \times P \mapsto \mathbb{R}_+$

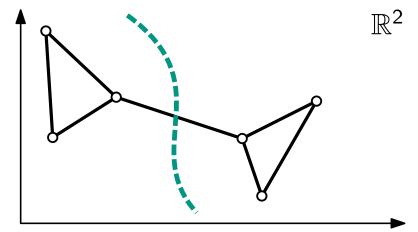
Output: P_1, \ldots, P_k such that

- Points within a P_i have high similarity
- Points in distinct P_i , P_j have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find *cut-set* (edges to remove) of minimal weight such that the graph decomposes into k components.



Example

- six points in \mathbb{R}^2
- σ is the inversed Euclidean distance
- segment into two sets

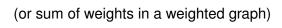
Today

$$k=2 \text{ and } \sigma \colon P imes P \mapsto \{0,1\}$$

The Edge-Connectivity Problem

Cuts

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of *V* into parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.
- Cut-set: set of edges with one endpoint in V₁ and the other in V₂
- Weight: size of the cut-set



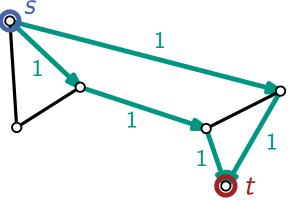
Excursion: Cuts with Terminals

- each part contains exectly one of a specified vertex set
- k-Edge-Connectivity
- k-edge-connected: a minimum cut has weight at least k

(we cannot disconnect the graph by removing less than k edges)

Edge-Connectivity

• max. *k* such that *G* is *k*-edge-connected (exactly the weight of a min-cut)



Excursion: Flows

- given source s and target t
- assign *flow* to edges s.t.
 - in-flow = out-flow for all vertices (not s and t)
 - flow of an edge bounded by edge-capacity (here: \leq 1)
 - flow in t is maximized

Thm. Max-Flow = Min-Cut.

Deterministic Algorithms for Edge-Connectivity

- Compute max-flow between all vertex pairs $\rightarrow O(n^2 \cdot T_{\text{max-flow}}) \subseteq O(n^3 m)$
- Compute max-flow between v and all others $\rightarrow O(n \cdot T_{\text{max-flow}}) \subseteq O(n^2 m) \rightarrow \Omega(n^3)$

(if a cut of size k exists, it has to cut v from some vertex)

Matroid-based

"A Matroid Approach to Finding Edge Connectivity and Packing Arborescences", Gabow, JCSS, 1995

O(nm)

- Involved technique based on the fact that min-cut = max. number of dijsoint, directed spanning trees $\rightarrow O(m + k^2 n \log(n/k))$
- Good if k is small but still $\Omega(n^3)$ in the worst case

Contraction-based

"A simple min-cut algorithm", Stoer & Wagner, JACM, 1997

"Max flows in O(nm) time, or better", Orlin, STOC'13

• Iteratively pick two vertices (in a smart way) and compare the min-cuts where they are / are not in the same part $\rightarrow O(mn + n^2 \log(n)) \rightarrow \Omega(n^3)$

Enter: The Power of Randomness!

A Simple(?) Randomized Algorithm

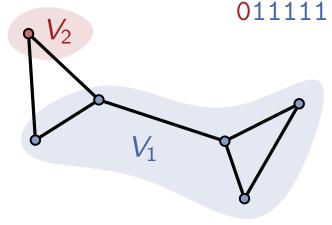
Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

- Number of possible assignments of n nodes to 2 parts¹
- Partitions with empty parts that do not represent cuts –
- Swapping parts does not yield a new partition -

Algorithm: Simple(?) Randomized Cut

- Simple idea: choose a cut at random among all possible cuts and return it. What do we mean? What distribution?
- Uniform distribution: We do not want to potentially favor non-minimum cuts
- Problem: How do we choose a cut uniformly at random?
 - Represent cut using bit-string
 - How can we choose a unfiorm random bit-string while avoiding 11...1 and 00...0? n random bits? → does not avoid 11...1 and 00...0 random number from {1,..., 2ⁿ - 2}? → exponential in input size rejection sampling? running time not deterministic (though probably what you'd do in practice)

 $(2^{n}-2)/2$



Excursion: Uniform Non-Identical Bit Strings

n = 41000

0100

0010

0001

1100

1010 1001

0110

0101

0011 1110

1101

1011 0111

[For educational purposes only!]

Goal: Choose uniformly at random from the length *n* bit-strings that are not 0ⁿ or 1ⁿ

 $n = \frac{n}{n} (n)$

Number of valid bit-strings:

$$2^{n}-2 = \left(\sum_{k=0}^{n} \binom{n}{k}\right) - 2 = \sum_{k=1}^{n-1} \binom{n}{k}$$

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} = 1$$

$$2^{n} =$$

• 2-step process: choose $k \stackrel{1}{\rightharpoondown} \& \stackrel{1}{\vdash}$ choose k 1s in n bits

unibs(n)

```
b := 00 \dots 0 // n \text{ zeros}
k := \operatorname{rand}(\{1, \dots, n-1\}) // \text{ number of } 1s -
P := \operatorname{randSet}(\{1, \dots, n\}, k) // \text{ positions of } 1s
b[P] = 1 // \text{ set } 1s \text{ in } b
\operatorname{return} b
```

How to sample k? uniform? $Pr[1000] = 1/3 \cdot 1/4 = 1/12$ $Pr[1100] = 1/3 \cdot 1/6 = 1/18$ $\neq 1/14$ $2^n - 2$ choose k with prob $\binom{n}{k}/(2^n - 2)$

Assumptions: We can sample ...

Reduce to uniform using Inverse Transform Sampling

How to sample P?

Excursion-Excursion: Reservoir Sampling

[For educational purposes only!]

• Goal: Choose a set of size k uniformly at random from the n elements.

Idea:

- initialize **reservoir** with first k elements
- replace reservoir elements at random

```
randSet(\{1, \ldots, n\}, k)

r := [1, \ldots, k] // reservoir

for i from k + 1 to n do

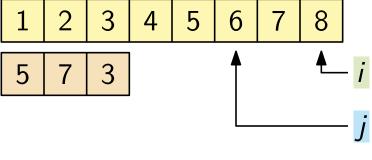
j := unif(\{1, \ldots, i\})

if j \le k then r[j] = i

return r
```

```
// O(k)
// O(n - k)
// O(1) -----
// O(1)
```

Assumptions: We can sample ... uniformly from {0, ..., O(n + m)} in O(1) time uniformly from [0, 1] in O(1) time Not possible in theory. Reasonable in practice.



Running time: O(n)

Excursion: Uniform Non-Homogeneous Bit Strings

[For educational purposes only!]

- **Goal**: Choose uniformly at random from the length *n* bit strings that are not 0ⁿ or 1ⁿ
- 2-step process:
 - choose k
 - choose k 1s in n bits

Assumptions: We can sample ...

• uniformly from $\{0, ..., O(n+m)\}$ in O(1) time

• uniformly from [0, 1] in O(1) time

Not possible in theory. Reasonable in practice.

unibs(n)

 $\begin{array}{ll} b \coloneqq 00 \dots 0 \ // \ n \ zeros & // \ O(n) \\ k \coloneqq rand(\{1, \dots, n-1\}) \ // \ number \ of \ 1s & // \ O(\log(n)) \ via \ Inverse \ Transform \ Sampling \\ P \coloneqq randSet(\{1, \dots, n\}, k) \ // \ positions \ of \ 1s & // \ O(n) \ via \ Reservoir \ Sampling \\ b[P] = 1 \ // \ set \ 1s \ in \ b & // \ O(k) \subseteq O(n) \\ return \ b \end{array}$

Under our assumptions, we can sample a length *n* bit string that is not 0^n or 1^n uniformly at random in time O(n).

Simple Randomized Cut

- Simple idea: choose a cut uniformly at random among all possible cuts and return it.
 Running time: O(n) much better than the Ω(n³) in the deterministic setting , but...
 Success probability
- $2^{n-1} 1$ cuts in a graph with *n* nodes
- How many min-cuts? \rightarrow pessimistic assumption: 1

Observation: On a graph with *n* nodes, **Simple Randomized Cut** runs in O(n) time and returns a minimum cut with probability at least $1/(2^{n-1}-1) \rightarrow \text{exponentially small}!$

Amplification

Repeat the algorithm to obtain t independent random cuts, return the smallest

 $\Pr[\text{``minimum found''}] \ge 1 - (1 - 1/(2^{n-1} - 1))^t \ge 1 - e^{-t/(2^{n-1} - 1)}$

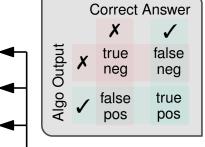
 $1 + x \leq e^x$ for $x \in \mathbb{R}$

- For $t = 2^{n-1} 1$ minimum found with constant probability $1 1/e \approx 0.63$
- For $t = (2^{n-1} 1) \cdot \log(n)$ minimum found with high probability 1 1/n

Probability Amplification

Definition: A **Monte Carlo Algorithm** is a randomized algorithm that terminates deterministically and whose output is correct only with a certain probability $p \in (0, 1)$.

- In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum best



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

After t (independent) runs return the ...

 $\Pr["success"] \ge 1 - (1 - p)^t \ge 1 - e^{-pt}$ (for two-sided errors it's a bit more complicated)

Error probability decreases exponentially in t

For Simple Randomized Cut we had to pay with exponentially large running time ...

majority

11 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut

Contraction Algorithm

 Motivation: distinguish 'non-essential' as well as essential edges } part of a min-cut & hope there are few essential ones

 $\mathbf{Karger}(G_0 = (V_0, E_0))$

- for i = 1 to n 2 do // O(n) $e := unif(E_{i-1})$ // O(1)
 - $G_i = G_{i-1}.contract(e) // O(n)$

return unique cut in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

non-essential UV X Success Probability essential **Observation**: A cut in G_i is a cut in G_0 . • Consider min-cut with cut set C and |C| = k• $\mathcal{E}_i = \mathcal{C} \text{ in } G_i$ " **Observation**: min-degree > k $\Pr[\mathcal{E}_1] = 1 - rac{k}{m}$ (holds for all G_i due to 1st observation) $\oint m = \frac{1}{2} \sum_{v \in V} \deg(v) \ge \frac{1}{2} \sum_{v \in V} k \ge \frac{1}{2} nk$ $\geq 1 - rac{k}{nk/2}$ $= 1 - \frac{2}{n}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

non-essential

UV

Success Probability
Success Probability
Success Probability
Success Probability
essential
Success Probability
essential
Observation: A cut in
$$G_i$$
 is a cut in G_0 .
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
Consider min-cut with cut set C and $|C| = k$
**Consider min-cut with cut set C and $|C| = k$
**Consider min-cut with cut set C and $|C| = k$
Consider min-cut wi****

Karger's Algorithm

Edge Contraction Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut

Contraction Alg Motivation: dis

as well as esse & hope there a

Karger($G_0 = (V_0)$

for i = 1 to n - 1 $e := \mathbf{unif}(E_{i-})$

 $G_{i} = G_{i-1}$.col

return unique

- Running time in
- Can be implem

X

Karger's Algorithm Amplified

Theorem: On a graph with *n* nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least 2/(n(n-1)).

$$\Pr["min-cut found"] \ge 1 - \exp\left(-\frac{2t}{n(n-1)}\right) = 1 - \frac{1}{n}$$

Success probability $\ge p$
Number of repetitions t
Amplified prob. $\ge 1 - e^{-pt}$

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time Simple Randomized Cut!

Sidenote: Number of minimum cuts

• Let C_1, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm

■ Just seen:
$$\Pr[\mathcal{E}_{n-2}^i] \ge \frac{2}{n(n-1)}$$

 $1 \ge \Pr\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i\right] = \sum_{i \in [\ell]} \Pr[\mathcal{E}_{n-2}^i] \ge \frac{2 \cdot \ell}{n(n-1)}$

Observation: A graph on *n* nodes contains at most $\frac{n(n-1)}{2}$ minimum cuts.

More Amplification: Karger-Stein

Motivation

Probability that a min-cut survives i contractions

$$\Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \dots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \dots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)}$$

- With increasing number of steps the probability for a min-cut to survive decreases
- Idea: stop when a min-cut is still likely to exist and recurse

After
$$t = n - n/\sqrt{2} - 1$$
 steps we have

$$\Pr[\mathcal{E}_t] = \frac{(n - n + n/\sqrt{2} + 1)(n - n + n/\sqrt{2} + 1 - 1)}{n(n - 1)} = \frac{n^2/2 + n/\sqrt{2}}{n(n - 1)} = \frac{n(n/2 + 1/\sqrt{2})}{n(n - 1)} = \frac{1}{2} \cdot \frac{n + \sqrt{2}}{n(n - 1)} \ge \frac{1}{2}$$
Probability that no mistake made after t steps still large

KargerStein($G_0 = (V_0, E_0)$) if $|V_0| = 2$ then return unique cut for i = 1 to $t = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1$ do $e := unif(E_{i-1})$ $G_i = G_{i-1}.contract(e)$ $C_1 := KargerStein(G_t) // inde <math>C_2 := KargerStein(G_t) // runs$ return smaller of C_1, C_2

Karger-Stein: Running Time

Recursion

• After $t = n - n/\sqrt{2} - 1$ steps the number of nodes is $n/\sqrt{2} + 1$

$$T(n) = 2T\left(\frac{n}{\sqrt{2}} + 1\right) + O(n^2)$$

Recursion tree

• Layers: $\log_{\sqrt{2}}(n)$

Nodes on layer j: 2^j

Time on layer $j: O\left(\left(\frac{n}{\sqrt{2^j}}\right)^2\right)$

KargerStein($G_0 = (V_0, E_0)$)// O(1)if $|V_0| = 2$ then return unique cutfor i = 1 to $t = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1$ do// O(1) $e := unif(E_{i-1})$ // O(n) $G_i = G_{i-1}.contract(e)$ $C_1 := KargerStein(G_t)$ // pendent $C_2 := KargerStein(G_t)$ // runsreturn smaller of C_1, C_2

$$T(n) = \sum_{j=1}^{\log_{\sqrt{2}}(n)} 2^{j} \cdot O\left(\left(\frac{n}{\sqrt{2}^{j}}\right)^{2}\right) = O\left(n^{2} \cdot \sum_{j=1}^{\log_{\sqrt{2}}(n)} \frac{2^{j}}{2^{j}}\right) = O\left(n^{2} \log_{\sqrt{2}}(n)\right) = O\left(n^{2} \log_{\sqrt{2}}(n)\right)$$

Karger-Stein: Success Probability

• After $t = n - n/\sqrt{2} - 1$ steps we have $\Pr[\mathcal{E}_t] \ge 1/2$ (*t* was chosen to achieve exactly that)

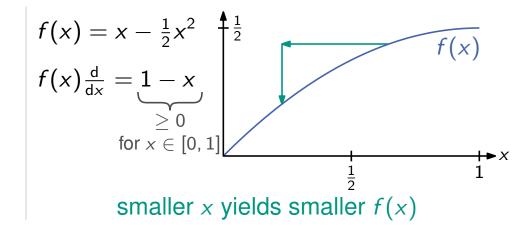
Recursion tree

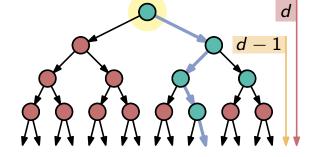
- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_d : there exists a successful path of length d starting at the root $\Pr[\mathcal{P}_0] \ge 1/2$

$$\Pr[\mathcal{P}_{d}] = \Pr[\mathcal{P}_{0}] \cdot \left(1 - (1 - \Pr[\mathcal{P}_{d-1}])^{2}\right) \ge \frac{1}{2} \cdot \left(1 - (1 - \Pr[\mathcal{P}_{d-1}])^{2}\right) = \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^{2}$$

Claim $\Pr[\mathcal{P}_d] \geq \frac{1}{d+2}$ (proof via induction)

Base case d = 0: Pr[\$\mathcal{P}_0\$] \ge 1/2, Assumption: Pr[\$\mathcal{P}_{d-1}\$] \ge \frac{1}{d+1}\$
Step: Pr[\$\mathcal{P}_d\$] \ge Pr[\$\mathcal{P}_{d-1}\$] - \frac{1}{2} Pr[\$\mathcal{P}_{d-1}\$]^2\$
\frac{1}{d+1} - \frac{1}{2} (\frac{1}{d+1})^2\$





Karger-Stein: Success Probability

• After $t = n - n/\sqrt{2} - 1$ steps we have $\Pr[\mathcal{E}_t] \ge 1/2$ (*t* was chosen to achieve exactly that)

Recursion tree

- A node is a successful node if it still contains a min-cut of the original graph
- A path is a successful path if it contains only successful nodes
- \mathcal{P}_d : there exists a successful path of length *d* starting at the root $\Pr[\mathcal{P}_0] \ge 1/2$

$$\Pr[\mathcal{P}_d] = \Pr[\mathcal{P}_0] \cdot \left(1 - (1 - \Pr[\mathcal{P}_{d-1}])^2\right) \ge \frac{1}{2} \cdot \left(1 - (1 - \Pr[\mathcal{P}_{d-1}])^2\right) = \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2$$

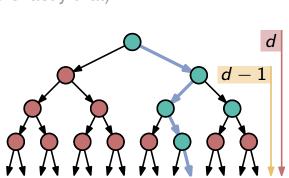
Claim $\Pr[\mathcal{P}_d] \geq \frac{1}{d+2}$ (proof via induction)

Base case
$$d=0$$
: $\Pr[\mathcal{P}_0] \geq 1/2$, Assumption: $\Pr[\mathcal{P}_{d-1}] \geq rac{1}{d+1}$

Step:
$$\Pr[\mathcal{P}_d] \ge \Pr[\mathcal{P}_{d-1}] - \frac{1}{2} \Pr[\mathcal{P}_{d-1}]^2$$

$$\ge \frac{1}{d+1} - \frac{1}{(2d+2)(d+1)}$$
for $d \ge 0$

$$\ge \frac{1}{d+1} - \frac{1}{(d+2)(d+1)}$$



Karger-Stein Amplified

Theorem: On a graph with *n* nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Reminder: Karger $\rightarrow 1/O(n^2)$ in $O(n^2)$ time

Amplification
$$\Pr["min-cut found"] \ge 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$$
 $\int e^{-pt}$ $\int e^{-pt}$ $\int e^{-pt}$ $\int e^{-pt}$

Corollary: On a graph with *n* nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.

- Compared to $O(n^4 \log(n))$ for Karger
- Compared to $\Omega(n^3)$ for deterministic approaches

Conclusion

Cuts

- Fundamental graph problem
- Many deterministic flow-based algorithms
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

- Simple randomized cut via reservoir sampling
- Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large

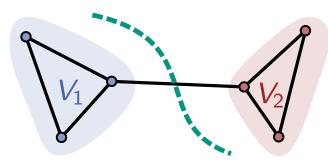
Outlook

"Minimum cuts in near-linear time", Karger, J.Acm. '00

"Faster algorithms for edge connectivity via random 2-out contractions", Ghaffari & Nowicki & Thorup, SODA'20

Success w.h.p. in time $O(m \log^3(n))$

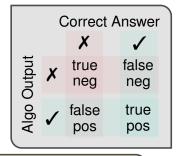
Success w.h.p. in time $O(m \log(n))$ and $O(m + n \log^3(n))$



Assumptions: We can sample ...

- uniformly from $\{0, ..., O(n+m)\}$ in O(1) time
- uniformly from [0, 1] in O(1) time

Not possible in theory. Reasonable in practice.



Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

