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Complete Coloring

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)
The Problem
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colorings

In a graph with n vertices, does there exist a
coloring with no monochromatic k-clique?
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Brute-force algorithm?
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Complete Coloring

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)
The Problem

A k-clique is a complete subgraph with k vertices
A coloring of the graph assigns each edge one
of two colors: red or blue

colorings

In a graph with n vertices, does there exist a
coloring with no monochromatic k-clique?

k = 3

✓ ✓ ✓ ✗
The Solution?

Brute-force algorithm?
n = 6 ⇒ 2n(n−1) = 230 = 1;073;741;824 possible colorings
k = 3 ⇒

`
6
3

´
= 20 triangles to check ⇒ 60 edges per coloring

naive implementation: 20min

Randomized algorithm?
What about n = 1000 and k = 20?

How often shall we try before assuming that no coloring exists?

no coloring exists
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Let X be the indicator variable with X = 1 if and only if the resulting
coloring contains a monochromatic k-clique

X = 0
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coloring contains a monochromatic k-clique
Let H1; :::; H(nk)

be all the different k-cliques
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be all the different k-cliques

Let Xi be the indicator variable with Xi = 1 if and only if Hi is monochromatic
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be all the different k-cliques

Let Xi be the indicator variable with Xi = 1 if and only if Hi is monochromatic
What is Pr[Xi = 1]?
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It may happen that the
algorithm returns a coloring
with the desired property!
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It may happen that the
algorithm returns a coloring
with the desired property!

not very confident...
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Consequence: At least one such coloring in
the sample space!
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But we know deterministically that it exists!
No need to

actually run the
algorithm to find it!

Probabilistic Method: Show that something exists by proving that it has a positive
probability of occuring from a random process.

?

??

Unclear where.

(pioneered by Paul Erdős)
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Probabilistic Method: The Expectation Argument

Theorem: Let X be a random variable taking values in a set S. Then, Pr[X ≥ E[X]] > 0
and Pr[X ≤ E[X]] > 0.

There always exists at least one sample that yields X ≥ E[X] (X ≤ E[X])
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Application: Cuts – Second Try

Recap
G = (V; E) an unweighted, undirected, connected graph
Cut : partition of V into V1, V2 s.t. V1∩V2 = ∅ and V1∪V2 = V

Cut-set : set of edges with one endpoint in V1 and the other in V2
Weight : size of the cut-set
Question now: In a graph with m edges, does there exist a cut of weight at least m=2?

Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.

Random Process
Add each vertex to one of the two sets with equal prob. 1

2

V1
V2

Positive Probability
Consider edges e1; :::; em and let Xi be the
indicator that is 1 iff ei is in the cut-set
X =

Pm
i=1Xi is the weight of the cut

To show: Pr[X ≥ m
2 ] > 0
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Application: Dependent Independent Set

Theorem: Let G=(V; E) be a graph with max-degree ∆. For any partition V1 ∪ ::: ∪ Vt=V
such that |Vi |≥8∆, there exists an independent set containing one vertex from each Vi .
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≤ 1
k
· 1
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0, if both endpoints in the same Vi
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Pr[Ae1 |Ae2 ∩ Ae3 ] = 1 The probability of an event is affected by the outcomes of other events. Dependence...
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To be or not to be... independent

Independence

Definition: Event A is independent of an event B if Pr[A | B]=Pr[A]. (Pr[A ∩ B] = Pr[A] Pr[B])
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To be or not to be... independent

Independence

Definition: Event A is independent of an event B if Pr[A | B]=Pr[A].

Definition: Event A is independent of a set of events E if for all subsets
E ′ = {B1; B2; :::; Bk} ⊆ E we have Pr[A |

T
i∈[k] Bi ] = Pr[A].

(Pr[A ∩ B] = Pr[A] Pr[B])
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Example Graph

23

1Triangle, independently color each vertex red/blue with prob. 1
2

(Pr[A ∩ B] = Pr[A] Pr[B])
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1
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1
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1
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1
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1
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1
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1
8
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To be or not to be... independent

Independence

Definition: Event A is independent of an event B if Pr[A | B]=Pr[A].

Definition: Event A is independent of a set of events E if for all subsets
E ′ = {B1; B2; :::; Bk} ⊆ E we have Pr[A |

T
i∈[k] Bi ] = Pr[A].

Example Graph 1 2 3 A12 A13 A23Pr

23

1Triangle, independently color each vertex red/blue with prob. 1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

Let Ai j for i < j be the event that i and j have the same color

(Pr[A ∩ B] = Pr[A] Pr[B])
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1
8

1
8

1
8

1
8
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Lovász Local Lemma (LLL)

Theorem: Let E1; :::; En be events such that each Ei for i ∈ [n] is independent of all but at
most d > 0 of the other events. Let p = maxi∈[n] Pr[Ei ]. If 4dp ≤ 1, then Pr[

T
i∈[n] ¬Ei ] > 0.
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LLL – Proof of Claim

Notation: For S ⊆ [n] write
I(S) =

T
i∈S ¬Ei

Proof

Conditional Probability:
Pr[A∩B] = Pr[A |B] ·Pr[B]

Claim: For all Si ⊆ {1; :::; n} \ {i}, Pr[Ei | I(Si )] ≤ 2p.

LLL: Events E1; :::; En

p = maxi∈[n] Pr[Ei ]

Ei independent of {E1; :::; En}\
S

j∈{i}∪Di
Ej

with |Di | ≤ d

4dp ≤ 1
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Application: Dependent Independent Set (2nd Try)

Proof
Random Process

Assume |Vi | = k = 8∆ for all i (otherwise remove vertices from too large Vi )

Obtain S by ind. choosing one vertex unif. at random from each Vi
Positive Probability

Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.

To show: Pr[“S independent”] > 0

S is independent iff no edge e = {u; v} has e ⊆ S,
Let Ae be the event that e ⊆ S

(both endpoints in S)

Theorem: Let G=(V; E) be a graph with max-degree ∆. For any partition V1 ∪ ::: ∪ Vt=V
such that |Vi |≥8∆, there exists an independent set containing one vertex from each Vi .



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Application: Dependent Independent Set (2nd Try)

Proof
Random Process

Assume |Vi | = k = 8∆ for all i (otherwise remove vertices from too large Vi )

Obtain S by ind. choosing one vertex unif. at random from each Vi
Positive Probability

Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.

To show: Pr[“S independent”] > 0

S is independent iff no edge e = {u; v} has e ⊆ S,
Let Ae be the event that e ⊆ S

(both endpoints in S)

Pr[“S independent”] = Pr[
T

e∈E ¬Ae ]

Theorem: Let G=(V; E) be a graph with max-degree ∆. For any partition V1 ∪ ::: ∪ Vt=V
such that |Vi |≥8∆, there exists an independent set containing one vertex from each Vi .



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Application: Dependent Independent Set (2nd Try)

Proof
Random Process

Assume |Vi | = k = 8∆ for all i (otherwise remove vertices from too large Vi )

Obtain S by ind. choosing one vertex unif. at random from each Vi
Positive Probability

Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.

To show: Pr[“S independent”] > 0

S is independent iff no edge e = {u; v} has e ⊆ S,
Let Ae be the event that e ⊆ S

(both endpoints in S)

Pr[“S independent”] = Pr[
T

e∈E ¬Ae ]

Theorem: Let G=(V; E) be a graph with max-degree ∆. For any partition V1 ∪ ::: ∪ Vt=V
such that |Vi |≥8∆, there exists an independent set containing one vertex from each Vi .

LLL: Events E1; :::; En

p = maxi∈[n] Pr[Ei ]

Ei independent of {E1; :::; En}\
S

j∈{i}∪Di
Ej

with |Di | ≤ d

4dp ≤ 1

Then, P r [
T

i∈[n] ¬Ei ] > 0.
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Theorem: Let m = mini∈[k]{|Si |}. Then, there exists a valid choice if any path in Si shares
edges with at most ‘ ≤ m=(8k) paths in Sj for i ̸= j .
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Probabilistic Method: Show that something
exists by proving that it has a positive
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Positive Probability

Let Ei j be the event that Pi and Pj share an edge

Theorem: Let m = mini∈[k]{|Si |}. Then, there exists a valid choice if any path in Si shares
edges with at most ‘ ≤ m=(8k) paths in Sj for i ̸= j .
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Removing Di j is discarding all events that

could tell us something about whether Pi and
Pj can intersect

Theorem: Let m = mini∈[k]{|Si |}. Then, there exists a valid choice if any path in Si shares
edges with at most ‘ ≤ m=(8k) paths in Sj for i ̸= j .

LLL: Events E1; :::; En

p = maxi∈[n] Pr[Ei ]

Ei independent of {E1; :::; En}\
S

j∈{i}∪Di
Ej

with |Di | ≤ d

4dp ≤ 1

Then, P r [
T

i∈[n] ¬Ei ] > 0.



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Application: Independent Paths

Given a network and k vertex pairs that want to communicate k = 3

Each i ∈ [k] has a set Si of candidate communication paths
Does there exist a choice of paths (one Pi from each Si ) that are
pairwise edge-disjoint? (NP-complete to decide)

Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.

Proof
Random Process : Ind., unif. at random choose Pi from Si
Positive Probability

Let Ei j be the event that Pi and Pj share an edge
Pr[
T

i<j ¬Ei j ]> 0
?

Pr[Ei j ]≤ ‘
m
=: p

Di j = {Est | {s; t} ∩ {i ; j} ≠ ∅}
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that it occurs with positive probability from a random process
Reasoning: At least one object in the sample space has the
desired property
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Conclusion

Probabilistic Method
Show that something exists deterministically, by showing
that it occurs with positive probability from a random process
Reasoning: At least one object in the sample space has the
desired property

Expectation Argument

Pr[X ≥ E[X]] > 0 and Pr[X ≤ E[X]] > 0.
Useful tool when applying probabilistic method

Sample via Modification

Lovász Local Lemma
Show that something exists by showing that all events that prevent its existence do not
occur, with positive probability
Lemma works as long as there are not too many dependencies

Example Vertex Cover: remove vertices/edges at random


