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®» What about n = 1000 and k = 207
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= Consequence: At least one such coloring in No nesd t6
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Probabilistic Method: Show that something exists by proving that it has a positive
probability of occuring from a random process. (pioneered by Paul Erdds)
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Theorem: Let X be a random variable taking values in a set S. Then, Pr[X > E[X]] > 0
and Pr[X < E[X]] > 0.

® There always exists at least one sample that yields X > E[X] (X < E[X])

Probabilistic Method: The Expectation Argument
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Application: Cuts — Second Try A“(IT

Recap
® G = (V, E) an unweighted, undirected, connected graph
a Cut: partition of V into V4, Vs s.t. ViNV, = Band V4UV, = V Vi

m Cut-set: set of edges with one endpoint in V4 and the other in \, V2

m Weight: size of the cut-set

® Question now: In a graph with m edges, does there exist a cut of weight at least m/27?
Random Process Probabilistic Method: Show that something
= Add each vertex to one of the two sets with equal prob. § | S s o T e e 8 P rocess.
Positive Probability

m Consider edges ey, ..., e and let X; be the
indicator that is 1 iff e; is in the cut-set

m X =% Xisthe weight of the cut
= To show: Pr[X > 7] > 0
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—
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t

Proof tprobabilistic Method: Show that something 1
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- 7 Pr[Ae | = % P S Kk k>1
. GE Pr[Ae, |Ae, NJAS = 1 The probability of an event is affected by the outcomes of other events. Dependence...
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I & 000
i o ©00
i 000
1 & 000
1 & o000
I & 000
I & 000
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Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at
most d > 0 of the other events. Let p = max;¢y, Pr[E;]. If 4dp < 1, then Pr[) —E;] > 0.

Lovasz Local Lemma (LLL)

i€[n]

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Karlsruhe Institute of Technology

Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at
most d > 0 of the other events. Let p = max;cp, Pr[E/]. If 4dp < 1, then Pr[) —E;] > 0.

Lovasz Local Lemma (LLL)

i€[n]

m |f d = 0, everything is independent and we can just compute the probability as the product

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Karlsruhe Institute of Technology

Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at
most d > 0 of the other events. Let p = max;¢y, Pr[E;]. If 4dp < 1, then Pr[) —E;] > 0.

Lovasz Local Lemma (LLL)

i€[n]

m |f d = 0, everything is independent and we can just compute the probability as the product

m Foreach i € [n] let D; C [n] be the such that (Remove events defined by D 1o
E;is independent of {El, . E,,} \ (Uje{i}UD,- Ej), then |D(/)‘ < d. make E; independent of the rest.)

11 Maximilian Katzmann, Stefan Walzer — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms



Lovasz Local Lemma (LLL) A“(IT
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Proof

Pr[(;epq ~Eil
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Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at
most d > 0 of the other events. Let p = max;cp, Pr[E/]. If 4dp < 1, then Pr[) —E;] > 0.

Lovasz Local Lemma (LLL)

i€[n]

m |f d = 0, everything is independent and we can just compute the probability as the product

m Foreach i € [n] let D; C [n] be the such that (Remove events defined by D; to
E;is independent of {El, . E,,} \ (Uje{i}UD,- Ej), then |D(/)‘ < d. make E; independent of the rest.)
Proof Z([n]) “Chain Rule” Notation: For S C [n] write )
— . | | Z(5) = Njes E
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Z Hie[n](l o 2p)

m Since d > 0and 4dp < 1, we have 4p < 1 and thus 2p <1/2
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Lovasz Local Lemma (LLL) A“(IT

Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at

most d > 0 of the other events. Let p = max ¢y, Pr[E;]. If 4dp < 1, then Pr[ﬂ,e[n] —E;] > 0.

m |f d = 0, everything is independent and we can just compute the probability as the product

m Foreach i € [n] let D; C [n] be the such that (Remove events defined by D; to
E: is independent of {El, . En} \ (UJE{ 10D, ) then |D( )‘ < d. make E; independent of the rest.)

Proof I(J[Ln]) r “Chain Rule” ggée;tionhFor Sl:g [n] write )
g A\ . g — | lies 'Ei
PriMien Eil = Ticpm PrinEi [ (1 — 1])] = ——
] Conditional Probability:
— ey = PrIE | Z(1i = 1))]) PrANE] = Pr{A|B]-PrE
> ;E[n](l — 2p)
> i€[n] 1/2

m Since d > 0and 4dp < 1, we have 4p < 1 and thus 2p <1/2
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Theorem: Let £, ..., E,, be events such that each E; for i € [n] is independent of all but at

most d > 0 of the other events. Let p = max ¢y, Pr[E;]. If 4dp < 1, then Pr[ﬂ,e[n] —E;] > 0.

m |f d = 0, everything is independent and we can just compute the probability as the product

m Foreach i € [n] let D; C [n] be the such that (Remove events defined by D; to
E: is independent of {El, . En} \ (UJE{ 10D, ) then |D( )‘ < d. make E; independent of the rest.)

Proof Z([n]) “Chain Rule” Notation: For S C [n] write )
— . | | T(5) = Nies &
Priicrn ~Eil = Tigpm Pri=Ei | Z([7 = 1])] — —
Conditional Probability:
= TTicq (1 — PrlEr | Z([i — 1)) PANB] = PrA| B]-Pr{B
< remains to prove this!
> Tligim 1 /2 > 0 4

m Since d > 0and 4dp < 1, we have 4p < 1 and thus 2p <1/2
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LLL — Proof of Claim

Claim: Forall S; C {1, n}\ {i}, Pr{E; | Z(S))] < 2p.

Proof LLL: Events £, ..., E,
a P = maXc[n] PI’[E,’]
® E; independent of {Eq, ..., E,,}\Uje{,}UDl_ E;
with |D,'| <d
\I 4dp <1

Notation: For S C [n] write )
\I(S) = ﬂ;es —E;

Conditional Probability:
Pr[ANB] = Pr[A| B] - Pr[B]
\_
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Claim: Forall S; C {1, n}\ {i}, Pr{E; | Z(S))] < 2p.

Proof (via induction over the size s = |5;|) LLL: Events Ei, ., En
Start: s =0+ S; =0 = Pr[E; | Z(S;)] = Pr[E;]] < p < 2p /| ® p = maxigjs PrlEi]

] ® E; independent of {Eq, ..., E,,}\Uje{,}UDl_ E;
Step: s > 0 with |Dy| < d

W4dp <1
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Application: Dependent Independent Set (2nd Try)

Theorem: Let G=(V, E) be a graph with max-degree A. For any partition V; U...UV,=V
such that |V;| >8A, there exists an independent set containing one vertex from each V..

Random Process S)r(cl)sgzgl)fts g‘vér]c%lg?i?]tgitfroarﬁ 2?5134@/5 process.
® Assume |\/,‘ — k = 8\ for all / (otherwise remove vertices from too large V;)
m Obtain S by ind. choosing one vertex unif. at random from each V;
Positive Probability
= To show: Pr[“S independent”] > 0 (both endpoints in S)
® S is independent iff no edge e = {u, v} has fe_é?,

Let A. be the eventthate C S

Proof tprobabilistic Method: Show that something 1
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Expectation Argument @@@@ @

m Useful tool when applying probabilistic method
® Pr[X > E[X]] > 0and Pr[X < E[X]] > 0.
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Probabilistic Method
® Show that something exists deterministically, by showing

that it occurs with positive probability from a random process

= Reasoning: At least one object in the sample space has the @@‘@ @

desired property

Expectation Argument @@@@ @

m Useful tool when applying probabilistic method
® Pr[X > E[X]] > 0and Pr[X < E[X]] > 0.
Sample via Modification
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® Example Vertex Cover: remove vertices/edges at random \\o o \‘
Lovasz Local Lemma °

® Show that something exists by showing that all events that prevent its existence do not
occur, with positive probability

® Lemma works as long as there are not too many dependencies
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