

Probability & Computing

Probabilistic Method

www.kit.edu

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

Karlsruhe Institute of Technology

Complete Coloring

The Problem

- Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)
- A *k*-clique is a complete subgraph with *k* vertices

Karlsruhe Institute of Technology

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

The Problem

Complete Coloring

• A *k*-clique is a complete subgraph with *k* vertices

3-cliques

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Complete Coloring

The Problem

- Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)
- A *k*-clique is a complete subgraph with *k* vertices

Complete Coloring

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Complete Coloring

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

colorings

Complete Coloring

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

Complete Coloring

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

Complete Coloring

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

Brute-force algorithm?

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings

Complete Coloring

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings
 - $k = 3 \Rightarrow {6 \choose 3} = 20$ triangles to check $\Rightarrow 60$ edges per coloring

• $k = 3 \Rightarrow \binom{6}{3} = 20$ triangles to check $\Rightarrow 60$ edges per coloring

- A k-clique is a complete subgraph with k vertices A coloring of the graph assigns each edge one of two colors: red or blue
 - In a graph with n vertices, does there exist a coloring with *no* monochromatic *k*-clique?

The Solution?

The Problem

Brute-force algorithm?

Complete Coloring

- $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings

The Problem

• Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings
 - $k = 3 \Rightarrow {6 \choose 3} = 20$ triangles to check $\Rightarrow 60$ edges per coloring
 - What about n = 1000 and k = 20?

naive implementation: 20min

no coloring exists

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings
 - $k = 3 \Rightarrow \binom{6}{3} = 20$ triangles to check $\Rightarrow 60$ edges per coloring
 - What about n = 1000 and k = 20?

Randomized algorithm?

naive implementation: 20min no coloring exists

The Problem

Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

- A *k*-clique is a complete subgraph with *k* vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings
 - $k = 3 \Rightarrow {6 \choose 3} = 20$ triangles to check $\Rightarrow 60$ edges per coloring
 - What about n = 1000 and k = 20?
- Randomized algorithm?
 - How often shall we try before assuming that no coloring exists?

naive implementation: 20min no coloring exists

Algorithm

• For each edge independently, choose one of the colors with probability 1/2

Algorithm

 \blacksquare For each edge independently, choose one of the colors with probability 1/2

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

Algorithm

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

Karlsruhe Institute of Technolog

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques

- \blacksquare For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic

Algorithm For each edge independently, choose one of the colors with probability 1/2

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Randomized Coloring

H_i

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored

Algorithm

3

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored (we do not care which color it is, but...)

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored (we do not care which color it is, but...)
 - The $\binom{k}{2} 1$ remaining edges need to get the same color

Randomized Coloring

Algorithm

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored (we do not care which color it is, but...)
 - The $\binom{k}{2} 1$ remaining edges need to get the same color

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-\frac{1}{2}}$$

Randomized Coloring

Algorithm

- For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored (we do not care which color it is, but...)
 - The $\binom{k}{2} 1$ remaining edges need to get the same color

$$\Pr[X_{i} = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

Algorithm

Randomized Coloring

- \blacksquare For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic

• What is $\Pr[X = 1]$?

- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets colored (we do not care which color it is, but...) $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right]$
 - The ^k₂ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

Randomized Coloring

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X_i = 1]$? Union bound $\binom{n}{k}$ Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [X_i]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...)
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $=\binom{n}{k}2^{-\binom{k}{2}+1}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{-\binom{k}{2}+1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $=\binom{n}{k}2^{-\binom{k}{2}+1} \leq \frac{n^{k}}{k!}2^{-\frac{k(k-1)}{2}+1}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum^{n} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{-\binom{k}{2}+1}$$

Randomized Coloring

Randomized Coloring

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{-\binom{k}{2}+1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

3

- Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{\nu!} 2 \cdot 2^{-\frac{k^{2}-k}{2}}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $-2^{-\binom{k}{2}+1}$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Randomized Coloring

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

Randomized Coloring

Randomized Coloring

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2^{-\frac{k^{2}-k}{2}}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$
- The $\binom{k}{2} 1$ remaining edges need to get the same color

 $=2^{-\binom{n}{2}+1}$

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - \frac{1}{2}}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot \frac{2^{-\frac{k^{2}-k}{2}}}{2} = \frac{n^{k}}{k!} 2 \cdot \left(2^{-\frac{k}{2}}\right)^{k} \cdot 2^{\frac{k}{2}}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $=\binom{n}{k}2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!}2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!}2\cdot2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!}2\cdot(2^{-\frac{k}{2}})^{k}\cdot2^{\frac{k}{2}}$
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_{i} = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$
 - The $\binom{k}{2} 1$ remaining edges need to get the same color

 $=2^{-\binom{n}{2}+1}$

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}}$$

Algorithm

Randomized Coloring

simplify by assuming $k > 2 \log(n)$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ simplify by assuming $k \ge 2$ lo $\Rightarrow 2^{-\frac{k}{2}}$ **COOPED** (we do not care which color it is, but...)
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$=2^{-\binom{k}{2}+1}$$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k > 2 \log(n)$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...)

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

• The $\binom{k}{2} - 1$ remaining edges need to get the same color $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

 $=2^{-\binom{k}{2}+1}$

Randomized Coloring

 $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ simplify by assuming $k \ge 2$ lo $2^{-\frac{k}{2}}$ simplify by assuming $k > 2 \log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ **COOPED** (we do not care which color it is, but...)

 $\leq \frac{1}{k!} 2\sqrt{2}^k$

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

• The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $-2^{-\binom{k}{2}+1}$

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1}$$

Randomized Coloring

Algorithm

simplify by assuming $k > 2 \log(n)$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ $\left| = \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}} \right|$ $\leq \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{2})^{k}}$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{2})^{k}}$ **COOPED** (we do not care which color it is, but...)
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $=2^{-\binom{k}{2}+1}$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k \ge 2\log(n)$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{\frac{k!}{2}} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$

 $\leq rac{1}{k!} 2\sqrt{2}^k \leq rac{2\sqrt{2}^k}{e(rac{k}{2})^k}$

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

• The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}}$$

 $-2^{-\binom{\kappa}{2}+1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k > 2 \log(n)$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ $\le \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{2})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^{k}$ simplify by assuming $k \ge 2 \log \frac{1}{2} + 2^{-\frac{k}{2}} < \frac{1}{2} + 2^{-\frac{k}{2}} <$ **COOPED** (we do not care which color it is, but...)

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

• The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $=2^{-1}1^{-1}$

121

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k \ge 2 \log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ $\le \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^{k}$ simplify by assuming $k \ge 2$ lo $\Rightarrow 2^{-\frac{k}{2}} \le 2^{-\frac{k}{2}} \le$ **COOPED** (we do not care which color it is, but...)

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

• The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2}} = 2^{-\binom{k}{2}+1}$$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k \ge 2 \log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ $\le \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^{k}$ simplify by assuming $k \ge 2$ lo $\Rightarrow 2^{-\frac{k}{2}} \le \frac{2\sqrt{2}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^{k}$ **COOPED** (we do not care which color it is, but...)
 - The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $=2^{-\binom{k}{2}+1}$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Randomized Coloring

Algorithm

3

simplify by assuming $k \geq 2\log(n)$ $\Rightarrow 2^{-rac{k}{2}} < rac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

- What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ $\le \frac{1}{k!} 2\sqrt{2}^{k} \le \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^{k} < 1$ simplify by assuming $k \ge 2$ low $\Rightarrow 2^{-\frac{k}{2}} \le 2^{-\frac{k$ **COOPED** (we do not care which color it is, but...)
- The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $-2^{-\binom{k}{2}+1}$

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

 $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

simplify by assuming $k \ge 2 \log(n)$ $\Rightarrow 2^{-rac{k}{2}} < rac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

 $\left| \leq \frac{1}{k!} 2\sqrt{2}^{k} \leq \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k} \right)^{k} < 1 \right|$

• What is $\Pr[X_i = 1]$?

Algorithm

- Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{\frac{k!}{2}} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{\frac{k!}{2}} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{\frac{k!}{2}} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$
- The $\binom{k}{2} 1$ remaining edges need to get the same color

 $=2^{-\binom{k}{2}+1}$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k \ge 2\log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$

 $\left| \leq \frac{1}{k!} 2\sqrt{2}^k \leq \frac{2\sqrt{2}^k}{e(\frac{k}{e})^k} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k} \right)^k < 1 \right|$

- What is $\Pr[X_i = 1]$?
 - Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{\frac{k!}{2}} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$ **COOPED** (we do not care which color it is, but...)
 - The $\binom{k}{2}$ -1 remaining edges need to get the same color

 $=2^{-\binom{k}{2}+1}$

 $\Pr[X_i = 1] = (\frac{1}{2})^{\binom{k}{2} - 1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Randomized Coloring

Algorithm

simplify by assuming $k \ge 2 \log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $= \binom{n}{k} 2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!} 2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$

 $\leq \frac{1}{k!} 2\sqrt{2}^{k} \leq \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\underbrace{\frac{\sqrt{2}e}{k}}_{<1 < 1}^{k} < 1 \right)$

 $\Rightarrow \Pr[X = 0] = 1 - \Pr[X = 1] > 0$

• The $\binom{k}{2} - 1$ remaining edges need to get the same color

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

 $-2^{-\binom{k}{2}+1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

simplify by assuming $k \ge 2 \log(n)$ $\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{2}$

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?
 - What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $=\binom{n}{k}2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!}2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!}2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!}2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$

 $\leq \frac{1}{k!} 2\sqrt{2}^{k} \leq \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\underbrace{\frac{\sqrt{2}e}{k}}_{k} \right)^{k} < 1$

 $\Rightarrow \Pr[X = 0] = 1 - \Pr[X = 1] > 0$

• The $\binom{k}{2} - 1$ remaining edges need to get the same color

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

 $-2^{-\binom{k}{2}+1}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Randomized Coloring

Algorithm

simplify by assuming $k \ge 2\log(n)$

with the desired property!

It may happen that the algorithm returns a coloring

- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique
- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $\Pr[X_i = 1]$?

Algorithm

• What is $\Pr[X = 1]$? union bound $\binom{n}{k}$ • Consider the first edge that gets $\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i \in [\binom{n}{k}]} \Pr[X_i = 1]$ **COOPED** (we do not care which color it is, but...) $=\binom{n}{k}2^{-\binom{k}{2}+1} \le \frac{n^{k}}{k!}2^{-\frac{k(k-1)}{2}+1} = \frac{n^{k}}{k!}2 \cdot 2^{-\frac{k^{2}-k}{2}} = \frac{n^{k}}{k!}2 \cdot (2^{-\frac{k}{2}})^{k} \cdot 2^{\frac{k}{2}}$

 $\leq \frac{1}{k!} 2\sqrt{2}^{k} \leq \frac{2\sqrt{2}^{k}}{e(\frac{k}{e})^{k}} = \frac{2}{e} \left(\underbrace{\frac{\sqrt{2}e}{k}}_{1 \leq 1} \right)^{k} < 1$

 $\Rightarrow \Pr[X = 0] = 1 - \Pr[X = 1] > 0$

• The $\binom{k}{2} - 1$ remaining edges need to get the same color

$$\Pr[X_i=1] = \left(\frac{1}{2}\right)^{\binom{k}{2}-1}$$

 $-2^{-\binom{\kappa}{2}+1}$

tical Informatics, Algorithm Engineering & Scalable Algorithms

 H_i

simplify by assuming $k \ge 2\log(n)$

It may happen that the algorithm returns a coloring

with the desired property! not very confident...

The Probability Space

The Probability Space

• What is the sample space of the algorithm?

• Each edge is red or blue with prob. 1/2

The Probability Space

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

The Probability Space

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

The Probability Space

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

The Probability Space

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

The Probability Space

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings

• Each occurs with equal probability $1/2^{\binom{n}{2}}$

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space!

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space!

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space! Unclear where.

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space! Unclear where. But we know deterministically that it exists!

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space! Unclear where. But we know deterministically that it exists! algo algo

The Probability Space

• What is the sample space of the algorithm?

- Each edge is red or blue with prob. 1/2
- $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

Just Shown

- X = 0 ⇒ coloring returned by algorithm contains *no* monochromatic *k*-clique
- Pr[*X* = 0] > 0
- Consequence: At least one such coloring in the sample space! Unclear where. But we know deterministically that it exists! No need to actually run the algorithm to find it!

Recap

• G = (V, E) an unweighted, undirected, connected graph

Recap

• G = (V, E) an unweighted, undirected, connected graph

• Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set

Karlsruhe Institute of Technology

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

Karlsruhe Institute of Technology

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of *V* into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?
- Random Process
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of *V* into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of *V* into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Cuts

Recap

- G = (V, E) an unweighted, undirected, connected graph
- *Cut*: partition of *V* into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

5

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

5

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Recap

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set

Recap • G = (V, E) an unweighted, undirected, connected graph

Application: Cuts

- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

Recap

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

Recap • G = (V, E) an unweighted, undirected, connected graph

Application: Cuts

- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right]$$

exists by proving that it has a positive

probability of occuring from a random process.

G = (V, E) an unweighted, undirected

Application: Cuts

- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

d, connected graph

$$V_2 = \emptyset$$
 and $V_1 \cup V_2 = V$
int in V, and the other in V

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$$

Recap • G = (V, E) an unweighted, undirected, connected graph

- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$$

Depends on the graph?

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Recap • G = (V, E) an unweighted, undirected, connected graph

Application: Cuts

- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?
- Random Process
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$$

- Depends on the graph?
- The X_i are not even independent...

Recap $C = (V \in E)$ an unweighter

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

5

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

 $\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$

• The X_i are not even independent...

Depends on the graph?

Recap

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2? **Random Process**
- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$$

The
$$X_i$$
 are not even independent...
 $e_1 \xrightarrow{e_2}_{e_3} X_2 = X_3 = 1 \Rightarrow X_1 = 1$

exists by proving that it has a positive

Recap

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges $e_1, ..., e_m$ and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$r[X > \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i > \frac{m}{2}\right] = ???$$

The
$$X_i$$
 are not even independent...
 $e_1 \xrightarrow{e_2} X_2 = X_3 = 1 \Rightarrow X_1 = 1$

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
Recap

Application: Cuts

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there exist a cut of weight at least m/2? **Probabilistic Method**: Show that something

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges $e_1, ..., e_m$ and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\operatorname{Pr}[X > \frac{m}{2}] = \operatorname{Pr}\left[\sum_{i=1}^{m} X_i > \frac{m}{2}\right] = ???$$

The
$$X_i$$
 are not even independent...
 $e_1 \xrightarrow{e_2} X_2 = X_3 = 1 \Rightarrow X_1 = 1$

exists by proving that it has a positive

probability of occuring from a random process.

Theorem: Let X be a random variable taking values in a set S. Then, $Pr[X \ge \mathbb{E}[X]] > 0$ and $Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$) **Proof** ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$) **Proof** ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x] + \sum_{x \in S, x \ge \mathbb{E}[X]} x \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$) **Proof** ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x] + \sum_{x \in S, x \ge \mathbb{E}[X]} x \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x] + \sum_{x \in S, x \ge \mathbb{E}[X]} x \cdot \Pr[X = x] = 0$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x] + \sum_{x \in S, x \ge \mathbb{E}[X]} x \cdot \Pr[X = x] = 0$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x \in \mathbb{E}[X]} x \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$
$$< \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$
$$< \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$
$$= \mathbb{E}[X] \cdot \sum_{x \in S, x < \mathbb{E}[X]} \Pr[X = x]$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

- There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)
- **Proof** ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)
- Towards a contradiction assume $Pr[X \ge \mathbb{E}[X]] = 0$

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$
$$< \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$
$$= \mathbb{E}[X] \cdot \sum_{x \in S, x < \mathbb{E}[X]} \Pr[X = x]$$
$$< 1$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$

$$< \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$

$$= \mathbb{E}[X] \cdot \sum_{x \in S, x < \mathbb{E}[X]} \Pr[X = x]$$

$$\leq \mathbb{E}[X] \stackrel{\checkmark}{\leq} 1$$

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

• There always exists at least one sample that yields $X \ge \mathbb{E}[X]$ ($X \le \mathbb{E}[X]$)

Proof ($\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$

$$\neq \leq \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$

$$= \mathbb{E}[X] \cdot \sum_{x \in S, x < \mathbb{E}[X]} \Pr[X = x]$$

$$\leq \mathbb{E}[X]$$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Recap

7

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there exist a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

 $\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there exist a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$
$$= m \cdot \Pr[X_i = 1]$$

Probabilistic Method: Show that something

probability of occuring from a random process.

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$
$$= m \cdot \Pr[X_i = 1]^?$$

Probabilistic Method: Show that something

probability of occuring from a random process.

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$
$$= m \cdot \Pr[X_i = 1]$$

e; o—o

Probabilistic Method: Show that something

probability of occuring from a random process.

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

Probabilistic Method: Show that something

probability of occuring from a random process.

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

 $\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$ $= m \cdot \Pr[X_i = 1]$ $\frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4}$ Pr

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges $e_1, ..., e_m$ and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$
$$= m \cdot \Pr[X_i = 1]$$
$$e_i \circ \bullet \circ \bullet \circ \bullet \circ \bullet$$
$$\Pr[X_i = 1]$$
$$\Pr[X_i = \frac{1}{4}, \frac{$$

 \mathbf{v} 1

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Pr

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

 $= m \cdot \Pr[X_i = 1]$

 $\frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} \qquad \frac{1}{4} = \frac{1}{2}$

 $\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set

• Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\left[\Pr[X \ge \mathbb{E}[X]] > 0\right]$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

$$\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$
$$= m \cdot \Pr[X_i = 1] = \frac{m}{2}$$
$$e_i \circ \bullet \circ \bullet \circ \circ \circ \circ \circ$$
$$\Pr[X_i = 1] = \frac{m}{2}$$
$$\frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} = \frac{1}{2}$$

Recap

- G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- *Cut-set*: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with *m* edges, does there *exist* a cut of weight at least m/2?

Random Process

• Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e₁, ..., e_m and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut

• To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

The Problem

Two vertices in a graph are *independent*, if they are not adjacent

The Problem

Two vertices in a graph are *independent*, if they are not adjacent

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

The Problem

8

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

• Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

The Problem

Application: Independent Sets

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

8

 $\alpha(G) = 4$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

$d = \frac{24}{9}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

 $d = \frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$

8 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

Two vertices in a graph are *independent*, if they are not adjacent

Application: Independent Sets

- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

The Problem

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

 \mathbf{O}

8 Maximilian Katzmann, Stefan Walzer – Probability & Compu

The Problem

Application: Independent Sets

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

• Let d = 2m/n be the average degree of G

• Independently, delete each vertex with probability $1 - \frac{1}{d}$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random

 $d = \frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a positive

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a positive

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- Independently, delete each vertex with probability $1 \frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random
- Note that the remaining vertices form an independent set

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Positive Probability

Random Process: d = 2m/nStep 1: Delete v with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each e

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Positive Probability

Random Process: d = 2m/nStep 1: Delete *v* with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each *e*

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

• X_V : number of vertices that survive the first step

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Positive Probability

Random Process: d = 2m/nStep 1: Delete *v* with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each *e*

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

- X_V : number of *vertices* that survive the first step
- X_E: number of edges that survive the first step

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Positive Probability

Random Process: d = 2m/nStep 1: Delete v with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each e

- X_V : number of *vertices* that survive the first step
- X_E: number of *edges* that survive the first step
- Step 2: each of the X_E edges removes ≤ 1 vertex

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Random Process: d = 2m/n

Proof

Positive Probability

Step 1: Delete v with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each e

- X_V : number of vertices that survive the first step
- X_E : number of *edges* that survive the first step
- Step 2: each of the X_E edges removes ≤ 1 vertex
- Size of resulting independent set S is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)]$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

E-Argument: $\Pr[X > \mathbb{E}[X]] > 0$ Positive Probability

Random Process: d = 2m/nStep 1: Delete v with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each e

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

 $d = \frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$

 \mathbf{O}

- X_V : number of *vertices* that survive the first step
- X_E: number of edges that survive the first step
- Step 2: each of the X_E edges removes ≤ 1 vertex
- Size of resulting independent set S is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)]$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$. Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. X_V : number of *vertices* that survive the first step $\mathbf{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) X_E: number of edges that survive the first step • Step 2: each of the X_E edges removes ≤ 1 vertex • Size of resulting independent set S is $\geq X_V - X_E$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

8 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $X_E :$ number of *edges* that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex • Size of resulting independent set S is $\geq X_V - X_E$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

8 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $X_E :$ number of *edges* that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\bullet \mathbb{E}[X_E] = m \cdot \frac{1}{d^2}$ • Size of resulting independent set S is $\geq X_V - X_E$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $X_E :$ number of *edges* that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = \mathbf{m} \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2}$ • Size of resulting independent set S is $\geq X_V - X_E$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

The Problem

Two vertices in a graph are *independent*, if they are not adjacent

- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $X_E :$ number of *edges* that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ • Size of resulting independent set S is $\geq X_V - X_E$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

8 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

 $\blacksquare \mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E]$

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof
Positive Probability $\mathbb{P}r[X \ge \mathbb{E}[X]] > 0$
Step 1: Delete v with prob. $1 - \frac{1}{d}$
Step 2: Delete one endpoint of each eProbabilistic Method: Show that something
exists by proving that it has a *positive*
probability of occuring from a random process. X_V : number of vertices that survive the first step
 X_E : number of edges that survive the first step $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $\mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$

- Size of resulting independent set S is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)]$

8 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

0

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X > \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) X_E: number of edges that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ • Size of resulting independent set S is $\geq X_V - X_E$ $\blacksquare \mathbb{E}[X_V - X_E] = \frac{\mathbb{E}[X_V] - \mathbb{E}[X_E]}{\mathbb{E}[X_V] - \mathbb{E}[X_E]}$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$

 $d = \frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$

8

Maximilian Katzmann, Stefan Walzer - Probability & Computing

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X > \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) X_E: number of edges that survive the first step • Edge $\{u, v\}$ survives if both u, v do

- Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$
- Size of resulting independent set S is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)]$

• $\mathbb{E}[X_V - X_E] = \frac{\mathbb{E}[X_V]}{\mathbb{E}[X_E]} = \frac{n}{d} - \frac{n}{2d}$

Maximilian Katzmann, Stefan Walzer - Probability & Computing 8

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) X_E: number of edges that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ • Size of resulting independent set S is $\geq X_V - X_E$ $\blacksquare \mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E] = \frac{n}{d} - \frac{n}{2d}$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$ $=\frac{11}{2d}$

Maximilian Katzmann, Stefan Walzer - Probability & Computing 8

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$ Random Process: d = 2m/n**Probabilistic Method**: Show that something Step 1: Delete v with prob. $1 - \frac{1}{d}$ exists by proving that it has a positive Positive Probability Step 2: Delete one endpoint of each e probability of occuring from a random process. • X_V : number of *vertices* that survive the first step • $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) X_E: number of edges that survive the first step • Edge $\{u, v\}$ survives if both u, v do • Step 2: each of the X_E edges removes ≤ 1 vertex $\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ • Size of resulting independent set S is $\geq X_V - X_E$ $\blacksquare \mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E] = \frac{n}{d} - \frac{n}{2d}$ • $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V - X_E \ge n^2/(4m)]$ $=\frac{n}{2d}=\frac{n}{2(2m/n)}$

• X_V : number of *vertices* that survive the first step

E-Argument: $\Pr[X > \mathbb{E}[X]] > 0$

- X_E: number of edges that survive the first step
- Step 2: each of the X_E edges removes ≤ 1 vertex $\mathbf{I} = \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ $\blacksquare \mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E] = \frac{n}{d} - \frac{n}{2d}$
- Size of resulting independent set S is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)]$

Application: Independent Sets

The Problem

Positive Probability

Proof

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and
$$m \ge n/2$$
 edges. Then $\alpha(G) \ge n^2/(4m)$.

Random Process:
$$d = 2m/n$$

Step 1: Delete v with prob. $1 - \frac{1}{d}$
Step 2: Delete one endpoint of each eProbabilistic Method: Show that something
exists by proving that it has a *positive*
probability of occuring from a random process.vive the first step
ve the first step $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$)
 $\mathbb{E}[dge \{u, v\}$ survives if both u, v do

Probabilistic Mathad: Show that comothing

 $=\frac{n}{2d}=\frac{n}{2(2m/n)}=\frac{n^2}{(4m)}$

Positive Pr X_V : num

 \mathbb{E} -Argument: $\Pr[X \ge \mathbb{E}[X]] > 0$

- *X_E*: num
- Step 2: e
- Size of re
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)] > 0 \checkmark$

Probabilistic Method: Show that something

 $=\frac{n}{2d}=\frac{n}{2(2m/n)}=\frac{n^2}{(4m)}$

Application: Independent Sets

The Problem

Proof

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and
$$m \ge n/2$$
 edges. Then $\alpha(G) \ge n^2/(4m)$.

|| Random Process: d = 2m/n

Step 1: Delete v with prob.
$$1 - \frac{1}{d}$$

Step 2: Delete one endpoint of each eexists by proving that it has a *positive*
probability of occuring from a random process.ber of vertices that survive the first step
ber of edges that survive the first step
each of the X_E edges removes ≤ 1 vertex
esulting independent set S is $\geq X_V - X_E$ $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$) $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ $\mathbb{E}[X_V] = n \cdot \frac{1}{d}$ $\mathbb{E}[X_V] = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$ $\mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E] = \frac{n}{d} - \frac{n}{2d}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

 $\Delta=2 \ \Rightarrow 8\Delta=16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- **Probabilistic Method**: Show that something exists by proving that it has a *positive* probability of occuring from a random process.
- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

 $\Delta=2 \ \Rightarrow 8\Delta=16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

 $\Delta=2 \ \Rightarrow 8\Delta=16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

 $\Delta=2 \ \Rightarrow 8\Delta=16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

• To show: $\Pr["S independent"] > 0$

 $\Delta=2 \ \Rightarrow 8\Delta=16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e]$

$$\Delta = 2 \Rightarrow 8\Delta = 16$$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] = \prod_{e \in E} \Pr[\neg A_e]$

$$\Delta = 2 \Rightarrow 8\Delta = 16$$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ Pr["*S* independent"] = Pr[$\bigcap_{e \in E} \neg A_e$] = $\prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e])$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

• To show: $\Pr["S independent"] > 0$

(both endpoints in *S*)

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ Pr["*S* independent"] = Pr[$\bigcap_{e \in E} \neg A_e$] = $\prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \frac{\Pr[A_e]}{\Pr[A_e]})$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

To show: Pr["*S* independent"] > 0

(both endpoints in *S*)

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] = \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \frac{\Pr[A_e]}{\Pr[A_e]})$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

• To show: $\Pr["S independent"] > 0$

(both endpoints in *S*)

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ Pr["*S* independent"] = Pr[$\bigcap_{e \in E} \neg A_e$] = $\prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e])$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: $\Pr["S independent"] > 0$
- (both endpoints in *S*)

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ Pr["*S* independent"] = Pr[$\bigcap_{e \in E} \neg A_e$] = $\prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e])$

$$\Delta = 2 \Rightarrow 8\Delta = 16$$

if both endpoints in the same V_i

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ Pr["*S* independent"] = Pr[$\bigcap_{e \in E} \neg A_e$] = $\prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2})$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e] = \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0$ $\leq \frac{1}{k} \cdot \frac{1}{k}$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] = \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$

 $\Delta = 2 \implies 8\Delta = 16$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

• To show:
$$Pr["S independent"] > 0$$
 (both endpoints in S)

• *S* is independent iff no edge
$$e = \{u, v\}$$
 has $e \subseteq S$, Let A_e be the event that $e \subseteq S$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$
The events are not independent!

cvents are not mu

$$\Delta = 2 \Rightarrow 8\Delta = 16$$

k > 1

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!


```
\Delta = 2 \implies 8\Delta = 16
```


Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let *S* be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

The events are not independent!

 $\cdot \quad \Pr[A_{e_1}] = \frac{1}{k^2}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let *S* be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: Pr["*S* independent"] > 0 (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

The events are not independent!

 $\Delta = 2 \implies 8\Delta = 16$

 $\Pr[A_{e_1}|A_{e_2} \cap A_{e_3}]$

 $\cdot \quad \Pr[A_{e_1}] = \frac{1}{k^2}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: Pr["*S* independent"] > 0 (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

The events are not independent!

 $\Delta = 2 \implies 8\Delta = 16$

 $\Pr[A_{e_1} | A_{e_2} \cap A_{e_3}]$

 $\Pr[A_{e_1}] = \frac{1}{k^2}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let *S* be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: Pr["*S* independent"] > 0 (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

The events are not independent!

 $\Delta = 2 \implies 8\Delta = 16$

 $\Pr[A_{e_1}] = \frac{1}{k^2}$

 $\Pr[A_{e_1} | A_{e_2} \cap A_{e_2}]$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Let *S* be the set obtained by independently choosing one vertex uniformly at random from each V_i

Positive Probability

- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

 $\Pr[A_{e_1} | A_{e_2} \cap A_{e_3}] = 1$ The probability of an event is affected by the outcomes of other events. Dependence...

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

 $\Delta = 2 \implies 8\Delta = 16$

 $\Pr[A_{e_1}] = \frac{1}{k^2}$

To be or not to be... independent

Independence

Definition: Event *A* is **independent of an event** *B* if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A]Pr[B]$)

To be or not to be... independent

Independence

Definition: Event *A* is **independent of an event** *B* if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A] Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

To be or not to be... independent

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

• Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$

Graph 30-02

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

• Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$

Graph

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

• Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$

Graph

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

• Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$

Graph

Definition: Event *A* is **independent of an event** *B* if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A] Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

• Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color • $A = A_{12}$, $B = A_{23}$:

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: $Pr[A_{12}]$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A]Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

• $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$ $Pr[A_{12} \mid A_{23}]$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

10

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

•
$$A = A_{12}, B = A_{23}$$
:
 $Pr[A_{12}] = \frac{1}{2}$
 $Pr[A_{12} \mid A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]}$

Pr	Graph	1	2	3	<i>A</i> ₁₂	<i>A</i> ₁₃	A ₂₃
$\frac{1}{8}$	3 0 1	0	0	0	<	✓	✓
$\frac{1}{8}$		0	0	0	\checkmark	X	X
$\frac{1}{8}$		0	0	0	X	\checkmark	X
$\frac{1}{8}$		0	0	0	X	X	\checkmark
$\frac{1}{8}$	Å	0	0	0	X	X	\checkmark
$\frac{1}{8}$	Å	0	0	0	X	✓	X
$\frac{1}{8}$		0	0	0	✓	×	×
$\frac{1}{8}$	<u>Å</u>	0	0	0	√	 Image: A start of the start of	 Image: A start of the start of

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

•
$$A = A_{12}, B = A_{23}$$
:
 $Pr[A_{12}] = \frac{1}{2}$
 $Pr[A_{12} \mid A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]}$

Pr	Graph	1	2	3	A_{12}	A_{12}	A22
		-	2	<u> </u>	<i>/ 12</i>	, 12	<i>1</i> 23
8	30-02	0	0	0	\checkmark		\checkmark
$\frac{1}{8}$		0	0	0	\checkmark	X	X
$\frac{1}{8}$		0	0	0	×	\checkmark	X
$\frac{1}{8}$	~	0	0	0	×	×	✓
$\frac{1}{8}$	\sim	0	0	0	×	X	✓
$\frac{1}{8}$	$\overset{\bullet}{\sim}$	0	0	0	X	✓	×
$\frac{1}{8}$		0	0	0	✓	X	X
$\frac{1}{8}$	00	0	0	0	 Image: A start of the start of	✓	<

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

•
$$A = A_{12}, B = A_{23}$$
:
 $\Pr[A_{12}] = \frac{1}{2}$
 $\Pr[A_{12} \mid A_{23}] = \frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2}$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

•
$$A = A_{12}, B = A_{23}$$
:
 $Pr[A_{12}] = \frac{1}{2}$
 $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$

Pr	Graph	1	2	3	<i>A</i> ₁₂	<i>A</i> ₁₃	A ₂₃
$\frac{1}{8}$	30-02	0	0	0	1	<	1
$\frac{1}{8}$	~	0	0	0	✓	X	×
$\frac{1}{8}$		0	0	0	×	\checkmark	×
$\frac{1}{8}$	Å	0	0	0	X	X	\checkmark
$\frac{1}{8}$	00	0	0	0	X	X	\checkmark
$\frac{1}{8}$	\sim	0	0	0	X	✓	X
$\frac{1}{8}$		0	0	0	✓	X	X
$\frac{1}{8}$	00	0	0	0	√	\checkmark	<

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

• $A = A_{12}, B = A_{23}$: $\Pr[A_{12}] = \frac{1}{2}$ $\Pr[A_{12} \mid A_{23}] = \frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of *A* and *B*)

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

• $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$ $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of *A* and *B*) • All A_{ii} are *pairwise* independent

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: $\Pr[A_{12}] = \frac{1}{2}$ $\Pr[A_{12} \mid A_{23}] = \frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of *A* and *B*)
 All A_{ii} are *pairwise* independent

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: • $Pr[A_{12}] = \frac{1}{2}$ • $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of *A* and *B*) • All A_{ij} are *pairwise* independent

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: $\Pr[A_{12}] = \frac{1}{2}$ $\Pr[A_{12} \mid A_{23}] = \frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of *A* and *B*)
 All A_{ii} are *pairwise* independent

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. (Pr[A \cap B] = Pr[A] Pr[B])

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$ $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of A and B)
 All A_{ii} are pairwise independent
 $A = A_{12}, \mathcal{E} = \{A_{13}, A_{23}\}$: $Pr[A_{12} | A_{13} \cap A_{23}]$ $= \frac{Pr[A_{12} \cap A_{13} \cap A_{23}]}{Pr[A_{13} \cap A_{23}]}$

Independence

Definition: Event *A* is **independent of an event** *B* if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A] Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

10

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that *i* and *j* have the same color
- $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$ $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of A and B)
 All A_{ii} are pairwise independent
 $A = A_{12}, \mathcal{E} = \{A_{13}, A_{23}\}$: $Pr[A_{12} | A_{13} \cap A_{23}]$ $= \frac{Pr[A_{12} \cap A_{13} \cap A_{23}]}{Pr[A_{13} \cap A_{23}]}$

Independence

Definition: Event *A* is **independent of an event** *B* if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A] Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that *i* and *j* have the same color
- $A = A_{12}, B = A_{23}$: $Pr[A_{12}] = \frac{1}{2}$ $Pr[A_{12} | A_{23}] = \frac{Pr[A_{12} \cap A_{23}]}{Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of A and B)
 All A_{ii} are pairwise independent
 $A = A_{12}, \mathcal{E} = \{A_{13}, A_{23}\}$: $Pr[A_{12} | A_{13} \cap A_{23}]$ $= \frac{Pr[A_{12} \cap A_{13} \cap A_{23}]}{Pr[A_{13} \cap A_{23}]}$

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A]Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- A = A₁₂, B = A₂₃: Pr[A₁₂] = ¹/₂ Pr[A₁₂ | A₂₃] = <sup>Pr[A₁₂ ∩ A₂₃]/_{Pr[A₂₃]} = ^{1/4}/_{1/2} = ¹/₂ (same holds for all choices of A and B)
 All A_{ii} are pairwise independent
 A = A₁₂, E = {A₁₃, A₂₃}: Pr[A₁₂, A₁₃ ∩ A₂₃] = ^{Pr[A₁₃ ∩ A₂₃]}/_{Pr[A₁₃ ∩ A₂₃]} = ^{1/4}/_{1/4} = 1
 </sup>

Independence

Definition: Event A is **independent of an event** B if Pr[A | B] = Pr[A]. ($Pr[A \cap B] = Pr[A]Pr[B]$)

Definition: Event *A* is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color
- A = A₁₂, B = A₂₃: Pr[A₁₂] = ¹/₂
 Pr[A₁₂ | A₂₃] = $\frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$ (same holds for all choices of A and B)
 All A_{ij} are *pairwise* independent
 A = A₁₂, E = {A₁₃, A₂₃}: Pr[A₁₂ | A₁₃ \cap A₂₃] = $\frac{\Pr[A_{12} \cap A_{13} \cap A_{23}]}{\Pr[A_{13} \cap A_{23}]} = \frac{1/4}{1/4} = 1$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

• If d = 0, everything is independent and we can just compute the probability as the product

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Proof

 $\Pr[\bigcap_{i\in[n]}\neg E_i]$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d. (Remove events defined by D_i to make E_i independent of the rest.)

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Proof $\mathcal{I}([n])$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁,..., E_n} \ (U_{i∈{i}}, E_i), then |D(i)| ≤ d. (Remove events defined by D_i to make E_i independent of the rest.)

Proof
$$\mathcal{I}([n])$$

$$\underbrace{\Pr[\bigcap_{i \in [n]} \neg E_i]}_{= \Pr[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap ... \cap \neg E_1)]}$$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product • For each $i \in [n]$ let $D_i \in [n]$ be the such that
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

Proof
$$\mathcal{I}([n])$$

$$\underbrace{\Pr[\bigcap_{i \in [n]} \neg E_i]}_{= \Pr[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap ... \cap \neg E_1)]}$$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $\Pr[A \cap B] = \Pr[A | B] \cdot \Pr[B]$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

Notation: For
$$S \subseteq [n]$$
 write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $\Pr[A \cap B] = \Pr[A \mid B] \cdot \Pr[B]$

 $= \Pr\left[\neg E_n \cap \left(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1\right)\right]$ $= \Pr\left[\neg E_n \mid \left(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1\right)\right] \cdot \Pr\left[\left(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1\right)\right]$

Proof

 $\mathcal{I}([n])$

 $\Pr[\bigcap_{i\in[n]}\neg E_i]$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $\Pr[A \cap B] = \Pr[A \mid B] \cdot \Pr[B]$

 $\underbrace{\Pr\left[\bigcap_{i\in[n]}\neg E_{i}\right]}_{=\Pr\left[\neg E_{n}\cap\left(\neg E_{n-1}\cap\neg E_{n-2}\cap\ldots\cap\neg E_{1}\right)\right]}_{=\Pr\left[\neg E_{n}\mid\left(\neg E_{n-1}\cap\neg E_{n-2}\cap\ldots\cap\neg E_{1}\right)\right]\cdot\Pr\left[\left(\neg E_{n-1}\cap\neg E_{n-2}\cap\ldots\cap\neg E_{1}\right)\right]}$

Proof

 $\mathcal{I}([n])$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $\Pr[A \cap B] = \Pr[A \mid B] \cdot \Pr[B]$

 $= \Pr[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)]$ $= \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)]$ $= \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)]$

 $= \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \Pr[\neg E_{n-1} \mid (\neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-2} \cap \dots \cap \neg E_1)]$

Proof

 $\mathcal{I}([n])$

 $\Pr[\bigcap_{i\in[n]}\neg E_i]$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

$$\begin{array}{l} \operatorname{Proof} \quad \mathcal{I}([n]) \\ \underset{i \in [n]}{\operatorname{Pr}[\bigcap_{i \in [n]} \neg E_i]} \\ = \operatorname{Pr}[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \operatorname{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \operatorname{Pr}[(\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \operatorname{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \operatorname{Pr}[\neg E_{n-1} \mid (\neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \operatorname{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \operatorname{Pr}[\neg E_{n-1} \mid (\neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \operatorname{Pr}[(\neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ \\ \end{array} \right]$$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

$$\begin{array}{l} \text{Proof} \quad \mathcal{I}([n]) \\ \begin{array}{l} \Pr[\bigcap_{i \in [n]} \neg E_i] \\ = \Pr[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[\neg E_{n-1} \mid (\neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[\neg E_{n-1} \mid (\neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ \end{array}$$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d = 0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$. (Remove events defined by D_i to make E_i independent of the rest.)

$$\begin{array}{c} \mathsf{Proof} \quad \mathcal{I}([n]) \\ \mathsf{Pr}[\bigcap_{i \in [n]} \neg E_i] \quad \stackrel{\text{``Chain Rule''}}{=} \quad \prod_{i \in [n]} \mathsf{Pr}[\neg E_i \mid \mathcal{I}([i-1])] \\ \quad = \mathsf{Pr}[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \\ \quad = \mathsf{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \mathsf{Pr}[(\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \\ \quad = \mathsf{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \mathsf{Pr}[\neg E_{n-1} \mid (\neg E_{n-2} \cap \dots \cap \neg E_1)] \\ \quad = \mathsf{Pr}[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \dots \cap \neg E_1)] \cdot \mathsf{Pr}[\neg E_{n-1} \mid (\neg E_{n-2} \cap \dots \cap \neg E_1)] \\ \quad \mathcal{I}([n-1]) \quad \qquad \mathcal{I}([n-2]) \end{array}$$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Proof $\mathcal{I}([n])$ $\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{"Chain Rule"}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Theorem: Let E_1, \ldots, E_n be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

• If d = 0, everything is independent and we can just compute the probability as the product • For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

Proof $\mathcal{I}([n])$ $\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{"Chain Rule"}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$ $= \prod_{i \in [n]} (1 - \Pr[E_i \mid \mathcal{I}([i-1])])$

(Remove events defined by D_i to make E_i independent of the rest.)

Notation: For $S \subseteq [n]$ write	te
$\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$	

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d.

 $\begin{array}{c} \mathbf{Proof} \quad \mathcal{I}([n]) \\ \Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{``Chain Rule''}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])] \\ = \prod_{i \in [n]} (1 - \Pr[E_i \mid \mathcal{I}([i-1])]) \\ \hline \mathbf{Claim:} \leq 2p \end{array}$

Notation: For $S \subset [r]$] write
$\mathcal{I}(S) = \bigcap_{i \in S} \neg \overline{E_i}$	-

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{j∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Notation: For $T(S) = O$	$S \subseteq [n]$	write

Theorem: Let E_1, \ldots, E_n be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

• If d = 0, everything is independent and we can just compute the probability as the product • For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{i \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

Proof $\mathcal{I}([n])$ $\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{"Chain Rule"}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$ $=\prod_{i\in[n]}(1-\Pr[E_i\mid\mathcal{I}([i-1])])$ Claim: $\leq 2p$ $\geq \prod_{i \in [n]} (1-2p)$

(Remove events defined by D_i to make E_i independent of the rest.)

> Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $\Pr[A \cap B] = \Pr[A \mid B] \cdot \Pr[B]$

• Since d > 0 and $4dp \le 1$, we have $4p \le 1$ and thus $2p \le 1/2$

Notation: For $S \subseteq [n]$ write

Conditional Probability: $Pr[A \cap B] = Pr[A | B] \cdot Pr[B]$

 $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{i∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Proof
$$\mathcal{I}([n])$$

 $\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{``Chain Rule''}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$
 $= \prod_{i \in [n]} (1 - \Pr[E_i \mid \mathcal{I}([i-1])])$
 $Claim: \leq 2p$
 $\geq \prod_{i \in [n]} (1 - 2p)$
 $\geq \prod_{i \in [n]} 1/2$
Since $d > 0$ and $4dp \leq 1$, we have $4p \leq 1$ and thus $2p \leq 1/2$

 $p \leq 1/2$

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

 If d = 0, everything is independent and we can just compute the probability as the product
 For each i ∈ [n] let D_i ⊆ [n] be the such that E_i is independent of {E₁, ..., E_n} \ (U_{i∈{i}∪D_i} E_j), then |D(i)| ≤ d.

Proof
$$\mathcal{I}([n])$$

 $\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{"Chain Rule"}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$
 $= \prod_{i \in [n]} (1 - \Pr[E_i \mid \mathcal{I}([i-1])])$
Claim: $\leq 2p$ ← remains to prove this!
 $\geq \prod_{i \in [n]} (1 - 2p)$
 $\geq \prod_{i \in [n]} 1/2 > 0 \checkmark$
Since $d > 0$ and $4dp \leq 1$, we have $4p \leq 1$ and thus $2p \leq 1/2$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof

LLL: Events
$$E_1, ..., E_n$$

• $p = \max_{i \in [n]} \Pr[E_i]$
• E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
• $4dp \le 1$

Notation: For
$$S \subseteq [n]$$
 write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$)

LLL: Events
$$E_1, ..., E_n$$

• $p = \max_{i \in [n]} \Pr[E_i]$
• E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
• $4dp \le 1$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$) Start: s = 0

LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$ $4dp \le 1$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \rightarrow S_i = \emptyset$

LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$ $4dp \le 1$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \rightarrow S_i = \emptyset \rightarrow \Pr[E_i | \mathcal{I}(S_i)] = \Pr[E_i]$

LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$ $4dp \le 1$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$. Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \rightarrow S_i = \emptyset \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark$ LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \leq d$ $4dp \leq 1$ Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$ Conditional Probability: $\Pr[A \cap B] = \Pr[A|B] \cdot \Pr[B]$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \rightarrow S_i = \emptyset \rightarrow \Pr[E_i | \mathcal{I}(S_i)] = \Pr[E_i] \le p \le 2p \checkmark$ LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$

•
$$4dp \leq 1$$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$. Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark$ Step: s > 0Case 1: $D'_i = S_i \cap D_i = \emptyset$ LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \leq d$ $4dp \leq 1$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Claim: For all $S_i \subseteq \{1, ..., n\} \setminus \{i\}$, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$. Proof (via induction over the size $s = |S_i|$) Start: $s = 0 \rightarrow S_i = \emptyset \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p$ Step: s > 0• Case 1: $D'_i = S_i \cap D_i = \emptyset$ • E_i is independent of $\{E_j \mid j \in S_i\} \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p$ Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$ Conditional Probability: $\Pr[A \cap B] = \Pr[A \mid B] \cdot \Pr[B]$

$$\begin{array}{l} \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \textbf{LLL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \texttt{with } |D_i| \leq d \\ \bullet dap \leq 1 \\ \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet Case 2: D'_i = S_i \cap D_i \neq \emptyset \\ \Pr[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} \\ \end{array}$$

$$\begin{array}{l} \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \textbf{LLL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet p = \max_{i \in [n]} \Pr[E_i \mid \mathcal{I}(S_i)] \\ \bullet p = \max_{i \in [n]} \Pr[E_i \mid \mathcal{I}(S_i)] \\ \bullet p = \max_{i \in [n]} \Pr[\mathcal{I}(S_i)] \\ \bullet$$

$$\begin{array}{l} \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \textbf{Step: } s > 0 \\ \textbf{Step: } s > 0 \\ \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \textbf{Step: } E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \textbf{Step: } E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \textbf{Step: } Case 2: D'_i = S_i \cap D_i \neq \emptyset \\ \textbf{Step: } Pr[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} \\ \textbf{T}(S_i) = \bigcap_{i \in S_i} \neg E_i \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{LLI: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n \} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \bullet Case 1: D'_i = S_i \cap D_i = \emptyset \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet \text{ Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{LLL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i \in S_j\} \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet \text{ Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \bullet \text{ Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(S_i \setminus D'_i)]} \\ = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) |\mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) |\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \begin{array}{l} \textbf{LL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet \text{ Case } 2: D'_i = S_i \cap D_i \neq \emptyset \\ \bullet \text{ Case } 2: D'_i = S_i \cap D_i \neq \emptyset \\ \Pr[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)]} \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{LLI: Events } E_1..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n \} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \hline \textbf{Step: } s > 0 \\ \bullet \text{ Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet \text{ Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D_i) \cap \mathcal{I}(S_i \setminus D'_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Conditional Probability:} \\ \hline \textbf{Pr}[E_i \cap \mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{S}_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{Pr}[\mathcal{I}(S_i \setminus D'_i)] \cdot \Pr[\mathcal$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{LL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n \} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \hline \textbf{Step: } s > 0 \\ \bullet \text{ Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \bullet \text{ Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \bullet \text{ Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]}{\Pr[\mathcal{I}(D'_i) \cap \mathcal{I}(S_i \setminus D'_i)]} \\ \hline \begin{array}{c} \textbf{Pr}[E_i \cap \mathcal{I}(D'_i) | \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) | \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) | \mathcal{I}(S_i \setminus D'_i)] \\ \hline \end{array} \right. \\ \hline \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{Stap: } s > 0 \\ \hline \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \hline \textbf{E}_i \text{ is independent of } \{E_j \mid j \in S_i\} \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \hline \textbf{Mattion: For } S \subseteq [n] \text{ write } \\ \hline \textbf{Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] \leq \frac{p}{\Pr[\mathcal{I}(D'_i)|\mathcal{I}(S_i \setminus D'_i)]} \text{ remains to show } \geq \frac{1}{2} \\ \hline \textbf{Conditional Probability: } \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B] \cdot \Pr[B] \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B|B] \cdot \Pr[B] \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B|B] \cdot \Pr[B] \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B|B] \cdot \Pr[A \cap B] \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B|B] \cdot \Pr[A \cap B] \\ \hline \textbf{Pr}[A \cap B] = \Pr[A|B|B| \cdot \Pr[A \cap B] \\ \hline \textbf{Pr}[A \cap B] \\ \hline \textbf{Pr}[A$$

 $\Pr[A \cap B] \leq \Pr[A]$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \twoheadrightarrow S_i = \emptyset \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{LL: Events } E_1, ..., E_n \\ \bullet p = \max_{i \in [n]} \Pr[E_i] \\ \bullet E_i \text{ independent of } \{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j \\ \hline \textbf{Step: } s > 0 \\ \hline \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \bullet E_i \text{ is independent of } \{E_j \mid j \in S_i\} \twoheadrightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \\ \hline \textbf{Mataion: For } S \subseteq [n] \text{ write } \\ \hline \textbf{Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[\mathcal{I}(D'_i)] \leq \frac{p}{\Pr[\mathcal{I}(D'_i)]\mathcal{I}(S_i \setminus D'_i)]} \text{ premains to show } \geq \frac{1}{2} \\ \Pr[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] = \Pr[\bigcap_{j \in D'_i} \neg E_j \mid \mathcal{I}(S_i \setminus D'_i)] \end{array}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{Start: } s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{Start: } s > 0 \\ \hline \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \hline \textbf{Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[\mathcal{I}(S_i)] \leq \frac{p}{\Pr[\mathcal{I}(D'_i)|\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] = \Pr[\bigcap_{j \in D'_i} \neg E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ = 1 - \Pr[\bigcup_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{(via union bound)} \geq 1 - \sum_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{D'_i} \leq D_i \leq D_i \leq 1 - \sum_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{D'_i} \leq D_i \leq D_i \leq D_i \leq 1 - \sum_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{D'_i} \leq D_i \leq D_i \leq D_i \leq D_i \leq 2p \end{cases}$$

$$\begin{array}{l} \hline \textbf{Claim: For all } S_i \subseteq \{1, ..., n\} \setminus \{i\}, \Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p. \\ \hline \textbf{Proof (via induction over the size } s = |S_i|) \\ Start: s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{Start: } s = 0 \Rightarrow S_i = \emptyset \Rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p \checkmark \\ \hline \textbf{Start: } s > 0 \\ \hline \textbf{Case 1: } D'_i = S_i \cap D_i = \emptyset \\ \hline \textbf{Case 2: } D'_i = S_i \cap D_i \neq \emptyset \\ \hline \textbf{Pr}[E_i \mid \mathcal{I}(S_i)] \leq \frac{p}{\Pr[\mathcal{I}(D'_i)|\mathcal{I}(S_i \setminus D'_i)]} \\ \hline \textbf{Pr}[\mathcal{I}(D'_i) \mid \mathcal{I}(S_i \setminus D'_i)] = \Pr[\bigcap_{j \in D'_i} \neg E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ = 1 - \Pr[\bigcup_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{(via union bound)} \geq 1 - \sum_{j \in D'_i} \Pr[E_j \mid \mathcal{I}(S_i \setminus D'_i)] \\ \hline \textbf{D'_i} \leq D_i \leq D_i \leq 1 \\ \hline \textbf{D'_i} \leq D_i \leq 2p \\ \hline \textbf{D'_i} = \mathbf{D'_i} \\ \hline \textbf{D'_i} \\ \hline \textbf{D'_i} = \mathbf{D'_i} \\ \hline \textbf{D'_i} \\ \hline \textbf{D'_i} = \mathbf{D'_i} \\ \hline \textbf{D'_i} \\ \hline \textbf{D'_i}$$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
- To show: $\Pr["S independent"] > 0$ (both endpoints in *S*)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
- To show: $\Pr["S independent"] > 0$ (both endpoints in *S*)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in F} \neg A_e]$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a positive

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events

• To show:
$$\Pr["S independent"] > 0$$
 (both endpoints in S)

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e]$ LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$ $4dp \le 1$ Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0.$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a positive

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events
- To show: $\Pr["S independent"] > 0$ (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e]$ $\Pr[A_e] \leq \frac{1}{k^2} =: p$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
- To show: Pr["*S* independent"] > 0 (both endpoints in *S*)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$. Let A_e be the event that $e \subseteq S$ $\Pr["S independent"] = \Pr[\bigcap_{e \in F} \neg A_e]$ $\Pr[A_e] \leq \frac{1}{k^2} =: p$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

13

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain *S* by ind. choosing one vertex unif. at random from each V_i *Positive Probability*

To show: Pr["S independent"] > 0 (both endpoints in S)
S is independent iff no edge
$$e = \{u, v\}$$
 has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
Pr["S independent"] = Pr[$\bigcap_{e \in E} \neg A_e$]
Pr[A_e] $\leq \frac{1}{k^2} =: p$

Maximilian Katzmann, Stefan Walzer - Probability & Computing

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability

• To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
• S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \le \frac{1}{k^2} \rightleftharpoons p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_i) \neq \emptyset\}$

LLL: Events E_1, \ldots, E_n $\blacksquare p = \max_{i \in [n]} \Pr[E_i]$ • E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{i \in \{i\} \cup D_i} E_j$ with $|D_i| \leq d$ ■ 4*dp* < 1 Then, $Pr[\bigcap_{i\in[n]} \neg E_i] > 0.$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
- To show: $\Pr["S independent"] > 0$ (both endpoints in *S*) • S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_i$ $\Pr["S independent"] = \Pr[\bigcap_{e \in F} \neg A_e]$ $\Pr[A_e] \leq \frac{1}{k^2} \eqqcolon p$ $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\}$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

This is like isolating V_i , V_j from the remainder of the graph

```
Probabilistic Method: Show that something
exists by proving that it has a positive
probability of occuring from a random process.
```


Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

 $\Pr[A_e] \leq \frac{1}{k^2} =: p$

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events A

• To show:
$$Pr["S independent"] > 0$$
 (both endpoints in S)

• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$ $\Pr["S independent"] = \Pr[\bigcap_{e \in E} \neg A_e]$

Probabilistic Method: Show that something

exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

This is like isolating V_i , V_j from the remainder of the graph No matter the outcome of A_f for $f \in E \setminus D_e$, the probability for a node in V_i or V_j to be chosen remains the same $\Rightarrow A_e$ is independent of all events but D_e

 $D_{e} = \{A_{e'} \mid e' \cap (V_i \cup V_i) \neq \emptyset\}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability

• To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in *S*)
• *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \le \frac{1}{k^2} =: p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_i) \neq \emptyset\} \rightarrow |D_e| < k\Delta + k\Delta$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events

To show: Pr["S independent"] > 0 (both endpoints in S)
S is independent iff no edge
$$e = \{u, v\}$$
 has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
Pr["S independent"] = Pr[$\bigcap_{e \in E} \neg A_e$]
Pr[A_e] $\leq \frac{1}{k^2} \rightleftharpoons p$ $|V_i| = |V_j|$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events

To show: Pr["S independent"] > 0 (both endpoints in S)
S is independent iff no edge
$$e = \{u, v\}$$
 has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
Pr["S independent"] = Pr[$\bigcap_{e \in E} \neg A_e$]
Pr[A_e] $\leq \frac{1}{k^2} \rightleftharpoons p$ $|V_i| |V_j|$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

13

Random Process

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability

To show: Pr["S independent"] > 0 (both endpoints in S)
S is independent iff no edge e = {u, v} has e ⊆ S,
Let A_e be the event that e ⊆ S
$$V_i V_j$$
Pr["S independent"] = Pr[$\bigcap_{e \in E} \neg A_e$]
Pr[A_e] ≤ $\frac{1}{k^2} =: p$ $|V_i| |V_j|$
D_e = {A_{e'} | e' ∩ (V_i ∪ V_j) ≠ Ø} → |D_e| ≤ $\frac{k\Delta}{k\Delta} + \frac{k\Delta}{k\Delta} \le 2k\Delta =: d$

Maximilian Katzmann, Stefan Walzer - Probability & Computing

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain *S* by ind. choosing one vertex unif. at random from each V_i *Positive Probability*

• To show:
$$\Pr["S \text{ independent}"] > 0$$
 (both endpoints in S)
• S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent}"] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \leq \frac{1}{k^2} =: p$ $|V_i| |V_j|$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $Pr[A_e] \leq L_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability
 LLL: Events B

To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \leq \frac{1}{k^2} = p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta = d$
 $Pr[A_e] \leq 2k\Delta = d$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.
 $4dp = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Proof

- Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i *Positive Probability*

• To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
• S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \leq \frac{1}{k^2} =: p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
• $p = \max_{i \in [n]} \Pr[E_i]$
• $E_i \text{ independent of } \{E_1, \dots, E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \leq d$
• $4dp \leq 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0.$
4 $dp = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$
 $= \frac{8\Delta}{k}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

exists by proving that it has a *positive*

Proof

Random Process

probability of occuring from a random process. • Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)

• Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability LLL: Events F1..... Fn

To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \leq \frac{1}{k^2} =: p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $pr[A_e] \leq 2k\Delta =: d$
 $Pr[A_e] = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $Pr[A_e] = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $Pr[A_e] = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $Pr[A_e] = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $Pr[A_e] = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\}$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

exists by proving that it has a *positive*

Proof

Random Process

probability of occuring from a random process. • Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)

• Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability LLL: Events F1..... Fn

• To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
• S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e]$
 $\Pr[A_e] \leq \frac{1}{k^2} =: p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
• $p = \max_{i \in [n]} \Pr[E_i]$
• $E_i \text{ independent of } \{E_1, \dots, E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \leq d$
• $4dp \leq 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0.$
4 $dp = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$
 $= \frac{8\Delta}{k} = 1$

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Probabilistic Method: Show that something

exists by proving that it has a *positive*

Proof

- probability of occuring from a random process. • Assume $|V_i| = k = 8\Delta$ for all *i* (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i Positive Probability **LLL**: Events E_1, \ldots, E_n

To show:
$$\Pr["S \text{ independent"}] > 0$$
 (both endpoints in S)
S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$,
Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$
 $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg A_e] > 0 \checkmark$
 $\Pr[A_e] \leq \frac{1}{k^2} =: p$
 $D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$
 $p = \max_{i \in [n]} \Pr[E_i]$
 $P = \max_{i \in [n]} \Pr[E_i]$
 $E_i \text{ independent of } \{E_1, \dots, E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
 $W_i \mid |D_i| \leq d$
 $A_{dp} \leq 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.
 $A_{dp} = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$
 $P = \max_{i \in [n]} \Pr[E_i]$
 $A_{dp} \leq 1$
 $A_{dp} = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$
 $A_{e} \mid V_i \mid |V_i|$
 $A_{e} \mid V_i \mid V_i \mid V_i$
 $A_{e} \mid V_i \mid$

Karlsruhe Institute of Technolo

• Given a network and *k* vertex pairs that want to communicate

Given a network and *k* vertex pairs that want to communicate
 Each *i* ∈ [*k*] has a set S_i of candidate communication paths

Given a network and *k* vertex pairs that want to communicate
 Each *i* ∈ [*k*] has a set S_i of candidate communication paths

Given a network and *k* vertex pairs that want to communicate
 Each *i* ∈ [*k*] has a set S_i of candidate communication paths

Given a network and *k* vertex pairs that want to communicate
 Each *i* ∈ [*k*] has a set S_i of candidate communication paths

- Given a network and k vertex pairs that want to communicate
- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

- Given a network and k vertex pairs that want to communicate
- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \leq m/(8k)$ paths in S_j for $i \neq j$.

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \leq m/(8k)$ paths in S_j for $i \neq j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_i for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

k = 3

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$

Given a network and k vertex pairs that want to communicate

• Each $i \in [k]$ has a set S_i of candidate communication paths

Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$ $\Pr[E_{ij}] \leq \frac{\ell}{m}$ Whatever the choice of P_i , there are $\geq m$ choices for P_j , **Probabilistic Method**: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

k = 3

LLL: Events
$$E_1, ..., E_n$$

p = max_{i \in [n]} Pr[E_i]
E_i independent of { $E_1, ..., E_n$ }\ $\bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
4 $dp \le 1$
Then, $Pr[\bigcap_{i \in [n]} \neg E_i] > 0.$

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

k = 3

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p$

LLL: Events
$$E_1, ..., E_n$$

p = max_{i∈[n]} Pr[E_i]
E_i independent of { $E_1, ..., E_n$ }\ $\bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
4 $dp \le 1$
Then, $Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

• Each $i \in [k]$ has a set S_i of candidate communication paths

Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p$ • Let E_i and P_j share an edge E_{ij} independent of every other event but not of *all* others

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0$ $\Pr[E_{ij}] \le \frac{\ell}{m} \eqqcolon p$ • $\lim_{k \to \infty} E_{ij}$ independent of every other event but not of *all* others • $\lim_{k \to \infty} E_{i1}, \dots, E_{i\ell}$ occur, then $\Pr[E_{ij}] = 0$ for $j > \ell$ **Probabilistic Method**: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

k = 3

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} \eqqcolon p$ Removing D_{ij} is discarding all events that could tell us something about whether P_i and P_i can intersect

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1$ **Probabilistic Method**: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1$ E_{i1}, \dots, E_{ik}

 P_i may intersect any of the other k-1 paths

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \mid |D_{ij}| = (k-1) + (k-1) - 1$ E_{j1}, \dots, E_{jk}

 P_i may intersect any of the other k-1 paths

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0.$

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1$ $(counted E_{ij} twice)$

LLL: Events
$$E_1, ..., E_n$$

• $p = \max_{i \in [n]} \Pr[E_i]$
• E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
• $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$

LLL: Events
$$E_1, ..., E_n$$

• $p = \max_{i \in [n]} \Pr[E_i]$
• E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
• $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

k = 3

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$

4*d p*

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

if any path in S, cha

k = 3

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \quad |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$ $4dp = 4 \cdot 2k \cdot \frac{\ell}{m}$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \mid |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$ $4dp = 4 \cdot 2k \cdot \frac{\ell}{m} = \ell \cdot \frac{8k}{m}$

LLL: Events $E_1, ..., E_n$ $p = \max_{i \in [n]} \Pr[E_i]$ E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$ $4dp \le 1$ Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Probabilistic Method: Show that something

probability of occuring from a random process.

exists by proving that it has a *positive*

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \leq m/(8k)$ paths in S_j for $i \neq j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \mid |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$ $4dp = 4 \cdot 2k \cdot \frac{\ell}{m} = \ell \cdot \frac{8k}{m}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \leq m/(8k)$ paths in S_j for $i \neq j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p \mid |D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$ $4dp = 4 \cdot 2k \cdot \frac{\ell}{m} = \ell \cdot \frac{8k}{m} \leq 1$

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Given a network and k vertex pairs that want to communicate

- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_j for $i \ne j$.

Proof

Random Process : Ind., unif. at random choose P_i from S_i Positive Probability

• Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] > 0$ $D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p$ $|D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$ $4dp = 4 \cdot 2k \cdot \frac{\ell}{m} = \ell \cdot \frac{8k}{m} \leq 1$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

k = 3

LLL: Events
$$E_1, ..., E_n$$

 $p = \max_{i \in [n]} \Pr[E_i]$
 E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$
with $|D_i| \le d$
 $4dp \le 1$
Then, $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Conclusion

Probabilistic Method

- Show that something exists *deterministically*, by showing that it occurs with positive probability from a random process
- Reasoning: At least one object in the sample space has the desired property

Show that something exists *deterministically*, by showing that it occurs with positive probability from a random process

Probabilistic Method

Reasoning: At least one object in the sample space has the desired property

Expectation Argument

• Useful tool when applying probabilistic method • $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

Conclusion

15 Maximilian Katzmann, Stefan Walzer – Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Conclusion

Probabilistic Method

- Show that something exists *deterministically*, by showing that it occurs with positive probability from a random process
- Reasoning: At least one object in the sample space has the desired property

Expectation Argument

Useful tool when applying probabilistic method $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

Sample via Modification

Example Vertex Cover: remove vertices/edges at random

Conclusion

Probabilistic Method

- Show that something exists *deterministically*, by showing that it occurs with positive probability from a random process
- Reasoning: At least one object in the sample space has the desired property

Expectation Argument

Useful tool when applying probabilistic method $\Pr[X \ge \mathbb{E}[X]] > 0$ and $\Pr[X \le \mathbb{E}[X]] > 0$.

Sample via Modification

Example Vertex Cover: remove vertices/edges at random

Lovász Local Lemma

- Show that something exists by showing that all events that prevent its existence do not occur, with positive probability
- Lemma works as long as there are not too many dependencies

