

Probability & Computing

Probabilistic Method

Complete Coloring

The Problem

■ Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)

■ A *k*-clique is a complete subgraph with *k* vertices

A coloring of the graph assigns each edge one of two colors: red or blue

■ In a graph with *n* vertices, does there *exist* a coloring with *no* monochromatic *k*-clique?

The Solution?

- Brute-force algorithm?
 - $n = 6 \Rightarrow 2^{n(n-1)} = 2^{30} = 1,073,741,824$ possible colorings
 - $k = 3 \Rightarrow {6 \choose 3} = 20$ triangles to check \Rightarrow 60 edges per coloring
 - What about n = 1000 and k = 20?
- Randomized algorithm?
 - How often shall we try before assuming that no coloring exists?

naive implementation: 20min no coloring exists

Randomized Coloring

Algorithm

- \blacksquare For each edge independently, choose one of the colors with probability 1/2
- Let X be the indicator variable with X = 1 if and only if the resulting coloring contains a monochromatic k-clique

- Let $H_1, ..., H_{\binom{n}{k}}$ be all the different k-cliques
- Let X_i be the indicator variable with $X_i = 1$ if and only if H_i is monochromatic
- What is $Pr[X_i = 1]$?
 - colored (we do not care which color it is, but...)
 - The $\binom{k}{2}$ -1 remaining edges need to get the same color

$$\Pr[X_i = 1] = \left(\frac{1}{2}\right)^{\binom{k}{2} - 1} = 2^{-\binom{k}{2} + 1}$$

What is
$$\Pr[X_i = 1]$$
?

Consider the first edge that gets colored (we do not care which color it is, but...)

The $\binom{k}{2} - 1$ remaining edges need to get the same color

What is $\Pr[X = 1]$?

union bound $\binom{n}{k}$

$$\Pr[X = 1] = \Pr\left[\exists_{i \in [\binom{n}{k}]} : X_i = 1\right] \leq \sum_{i=1}^{k} \Pr[X_i = 1]$$

$$= \binom{n}{k} 2^{-\binom{k}{2}+1} \leq \frac{n^k}{k!} 2^{-\frac{k(k-1)}{2}+1} = \frac{n^k}{k!} 2 \cdot 2^{-\frac{k^2-k}{2}} = \frac{n^k}{k!} 2 \cdot (2^{-\frac{k}{2}})^k \cdot 2^{\frac{k}{2}}$$

$$\leq \frac{1}{k!} 2\sqrt{2}^k \leq \frac{2\sqrt{2}^k}{e(\frac{k}{e})^k} = \frac{2}{e} \left(\frac{\sqrt{2}e}{k}\right)^k < 1$$

$$\Rightarrow \Pr[X=0] = 1 - \Pr[X=1] > 0$$

simplify by assuming
$$k \ge 2 \log(n)$$

$$\Rightarrow 2^{-\frac{k}{2}} < \frac{1}{n}$$

It may happen that the algorithm returns a coloring with the desired property! not very confident...

What did we just show?!

The Probability Space

- What is the sample space of the algorithm?
 - Each edge is red or blue with prob. 1/2
 - $\binom{n}{2}$ edges $\Rightarrow 2^{\binom{n}{2}}$ possible colorings
- Each occurs with equal probability $1/2^{\binom{n}{2}}$

Just Shown

- $X = 0 \Rightarrow$ coloring returned by algorithm contains *no* monochromatic *k*-clique
- $\Pr[X = 0] > 0$
- Consequence: At least one such coloring in the sample space! Unclear where. But we know deterministically that it exists!

Desired Coloring ?

No need to actually run the algorithm to find it!

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occurring from a random process. (pioneered by Paul Erdős)

Application: Cuts

Recap

- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set
- Question now: In a graph with m edges, does there exist a cut of weight at least m/2?

Random Process

■ Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occurring from a random process.

Positive Probability

- Consider edges $e_1, ..., e_m$ and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$

$$\Pr[X \ge \frac{m}{2}] = \Pr\left[\sum_{i=1}^{m} X_i \ge \frac{m}{2}\right] = ???$$

- Depends on the graph?
- The X_i are not even independent...

$$e_1$$
 e_2 $X_2 = X_3 = 1 \Rightarrow X_1 = 1$

Probabilistic Method: The Expectation Argument

Theorem: Let X be a random variable taking values in a set S. Then, $\Pr[X \geq \mathbb{E}[X]] > 0$ and $\Pr[X \leq \mathbb{E}[X]] > 0$.

- There always exists at least one sample that yields $X \geq \mathbb{E}[X]$ ($X \leq \mathbb{E}[X]$)
- **Proof** $(\Pr[X \ge \mathbb{E}[X]] > 0$, the other works analogous)
- Towards a contradiction assume $Pr[X \ge \mathbb{E}[X]] = 0$

$$\mathbb{E}[X] = \sum_{x \in S} x \cdot \Pr[X = x] = \sum_{x \in S, x < \mathbb{E}[X]} x \cdot \Pr[X = x]$$

$$\neq \sum_{x \in S, x < \mathbb{E}[X]} \mathbb{E}[X] \cdot \Pr[X = x]$$

$$= \mathbb{E}[X] \cdot \sum_{x \in S, x < \mathbb{E}[X]} \Pr[X = x]$$

$$\leq \mathbb{E}[X]$$

Application: Cuts – Second Try

Recap

- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into V_1 , V_2 s.t. $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$
- Cut-set: set of edges with one endpoint in V_1 and the other in V_2
- Weight: size of the cut-set

Random Process

■ Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occurring from a random process.

Positive Probability

- Consider edges $e_1, ..., e_m$ and let X_i be the indicator that is 1 iff e_i is in the cut-set
- $X = \sum_{i=1}^{m} X_i$ is the weight of the cut
- To show: $\Pr[X \ge \frac{m}{2}] > 0$ $\Pr[X \ge \mathbb{E}[X]] > 0$

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} \mathbb{E}[X_i]$$

$$= m \cdot \Pr[X_i = 1] = \frac{m}{2}$$

$$e_i \circ \bullet \bullet \bullet \bullet \bullet \bullet$$

$$\Pr \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

■ Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

Random Process

- Let d = 2m/n be the average degree of G
- lacktriangle Independently, delete each vertex with probability $1-rac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random
- Note that the remaining vertices form an independent set

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

Application: Independent Sets

The Problem

- Two vertices in a graph are *independent*, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

 $d = \frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$

Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let *G* be a graph with *n* vertices and $m \ge n/2$ edges. Then $\alpha(G) \ge n^2/(4m)$.

Proof

$$\mathbb{E}$$
-Argument: $\Pr[X \geq \mathbb{E}[X]] > 0$

Positive Probability

Random Process: d = 2m/n

Step 1: Delete v with prob. $1 - \frac{1}{d}$ Step 2: Delete one endpoint of each e **Probabilistic Method**: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

- $\blacksquare X_V$: number of *vertices* that survive the first step
- $\blacksquare X_E$: number of *edges* that survive the first step
- Step 2: each of the X_E edges removes ≤ 1 vertex
- Size of resulting independent set *S* is $\geq X_V X_E$
- $\Pr[|S| \ge n^2/(4m)] \ge \Pr[X_V X_E \ge n^2/(4m)] > 0$

- $\blacksquare \mathbb{E}[X_V] = n \cdot \frac{1}{d}$ (since each vertex survives with prob. $\frac{1}{d}$)
- Edge $\{u, v\}$ survives if both u, v do

$$\blacksquare \mathbb{E}[X_E] = m \cdot \frac{1}{d^2} = \frac{nd}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}$$

$$\mathbb{E}[X_V - X_E] = \mathbb{E}[X_V] - \mathbb{E}[X_E] = \frac{n}{d} - \frac{n}{2d}$$
$$= \frac{n}{2d} = \frac{n}{2(2m/n)} = \frac{n^2}{(4m)}$$

Application: Dependent Independent Set

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all i (otherwise remove vertices from too large V_i)
- Let *S* be the set obtained by independently choosing one vertex uniformly at random from each V_i

$$\Delta = 2 \Rightarrow 8\Delta = 16$$

Positive Probability

- To show: Pr["S independent"] > 0 (both endpoints in S)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\Pr[\text{``S independent''}] = \Pr[\bigcap_{e \in E} \neg A_e] \neq \prod_{e \in E} \Pr[\neg A_e] = \prod_{e \in E} (1 - \Pr[A_e]) \ge \prod_{e \in E} (1 - \frac{1}{k^2}) > 0 \checkmark$ The events are not independent!

$$\Pr[A_{e_1}] = \frac{1}{k^2}$$

 $\Pr[A_{e_1} | A_{e_2} \cap A_{e_3}] = 1$ The probability of an event is affected by the outcomes of other events. Dependence...

To be or not to be... independent

Independence

Definition: Event A is independent of an event B if $Pr[A \mid B] = Pr[A]$. $(Pr[A \cap B] = Pr[A]Pr[B])$

Definition: Event A is **independent of a set of events** \mathcal{E} if for all subsets $\mathcal{E}' = \{B_1, B_2, ..., B_k\} \subseteq \mathcal{E}$ we have $\Pr[A \mid \bigcap_{i \in [k]} B_i] = \Pr[A]$.

Example

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let A_{ij} for i < j be the event that i and j have the same color

■
$$A = A_{12}, B = A_{23}$$
:
$$\Pr[A_{12}] = \frac{1}{2}$$

$$\Pr[A_{12} \mid A_{23}] = \frac{\Pr[A_{12} \cap A_{23}]}{\Pr[A_{23}]} = \frac{1/4}{1/2} = \frac{1}{2}$$

$$(same holds for all choices of A and B)
$$A = A_{12}, \mathcal{E} = \{A_{13}, A_{23}\}$$
:
$$\Pr[A_{12} \mid A_{13} \cap A_{23}] = \frac{1/4}{1/4} = 1$$$$

■ All *A_{ii}* are *pairwise* independent

$$A = A_{12}, \mathcal{E} = \{A_{13}, A_{23}\}:$$

$$Pr[A_{12} \mid A_{13} \cap A_{23}]$$

$$= \frac{Pr[A_{12} \cap A_{13} \cap A_{23}]}{Pr[A_{13} \cap A_{23}]} = \frac{1/4}{1/4} = 1$$

 \blacksquare A_{ii} not independent of the other events

Pr	Graph	1	2	3	A_{12}	A_{13}	A_{23}
<u>1</u> 8	$3 \stackrel{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{$	0	0	0	✓	√	√
<u>1</u> 8		0	0	0	/	X	X
<u>1</u> 8		0	0	0	X	/	X
<u>1</u> 8		0	0	0	X	X	/
<u>1</u> 8		0	0	0	X	X	/
<u>1</u> 8		0	0	0	X	/	X
<u>1</u> 8		0	0	0	✓	X	X
<u>1</u> 8	2	0	0	0	✓	✓	✓

Lovász Local Lemma (LLL)

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d=0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

$$\begin{array}{c} \text{Proof} \quad \mathcal{I}([n]) \\ \text{Pr}[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{``Chain Rule''}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])] \\ = \Pr[\neg E_n \cap (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ = \Pr[\neg E_n \mid (\neg E_{n-1} \cap \neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[\neg E_{n-1} \mid (\neg E_{n-2} \cap \ldots \cap \neg E_1)] \cdot \Pr[(\neg E_{n-2} \cap \ldots \cap \neg E_1)] \\ \mathcal{I}([n-1]) \\ \end{array}$$

Conditional Probability:
$$Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B]$$

Lovász Local Lemma (LLL)

Theorem: Let $E_1, ..., E_n$ be events such that each E_i for $i \in [n]$ is independent of all but at most d > 0 of the other events. Let $p = \max_{i \in [n]} \Pr[E_i]$. If $4dp \le 1$, then $\Pr[\bigcap_{i \in [n]} \neg E_i] > 0$.

- If d=0, everything is independent and we can just compute the probability as the product
- For each $i \in [n]$ let $D_i \subseteq [n]$ be the such that E_i is independent of $\{E_1, ..., E_n\} \setminus (\bigcup_{j \in \{i\} \cup D_i} E_j)$, then $|D(i)| \leq d$.

(Remove events defined by D_i to make E_i independent of the rest.)

Proof
$$\mathcal{I}([n])$$
 "Chain Rule"
$$\Pr[\bigcap_{i \in [n]} \neg E_i] \stackrel{\text{"Chain Rule"}}{=} \prod_{i \in [n]} \Pr[\neg E_i \mid \mathcal{I}([i-1])]$$

$$= \prod_{i \in [n]} (1 - \Pr[E_i \mid \mathcal{I}([i-1])])$$

$$\geq \prod_{i \in [n]} (1 - 2p)$$

$$\geq \prod_{i \in [n]} 1/2$$

Notation: For $S \subseteq [n]$ write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B]$

■ Since d > 0 and $4dp \le 1$, we have $4p \le 1$ and thus $2p \le 1/2$

LLL – Proof of Claim

Claim: For all
$$S_i \subseteq \{1, ..., n\} \setminus \{i\}$$
, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$)

Start:
$$s = 0 \rightarrow S_i = \emptyset \rightarrow Pr[E_i \mid \mathcal{I}(S_i)] = Pr[E_i] \leq p \leq 2p \checkmark$$

Step: *s* > 0

- Case 1: $D'_i = S_i \cap D_i = \emptyset$
 - E_i is independent of $\{E_i \mid j \in S_i\} \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p$ Notation: For $S \subseteq [n]$ write
- Case 2: $D'_i = S_i \cap D_i \neq \emptyset$

$$\Pr[E_i \mid \mathcal{I}(S_i)] = \frac{\Pr[E_i \cap \mathcal{I}(S_i)]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D_i') \cap \mathcal{I}(S_i \setminus D_i')]}{\Pr[\mathcal{I}(S_i)]} = \frac{\Pr[E_i \cap \mathcal{I}(D_i') \cap \mathcal{I}(S_i \setminus D_i')]}{\Pr[\mathcal{I}(D_i') \cap \mathcal{I}(S_i \setminus D_i')]}$$

$$\mathcal{I}(S_i) = \bigcap_{j \in S_i} \neg E_j$$

$$\Rightarrow = \bigcap_{j \in S_i \setminus D'_i} \neg E_j \cap \bigcap_{j \in D'_i} \neg E_j$$

$$= \mathcal{I}(S_i \setminus D'_i) \cap \mathcal{I}(D'_i)$$

LLL: Events
$$E_1, ..., E_n$$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{i \in \{i\} \cup D_i} E_i$ with $|D_i| < d$
- -4dp < 1

Notation: For
$$S \subseteq [n]$$
 write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B]$

LLL – Proof of Claim

Claim: For all
$$S_i \subseteq \{1, ..., n\} \setminus \{i\}$$
, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$)

Start:
$$s = 0 \rightarrow S_i = \emptyset \rightarrow Pr[E_i \mid \mathcal{I}(S_i)] = Pr[E_i] \leq p \leq 2p \checkmark$$

Step: *s* > 0

- Case 1: $D'_i = S_i \cap D_i = \emptyset$
 - E_i is independent of $\{E_j \mid j \in S_i\} \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p$
- Case 2: $D'_i = S_i \cap D_i \neq \emptyset$

$$\Pr[E_{i} \mid \mathcal{I}(S_{i})] = \frac{\Pr[E_{i} \cap \mathcal{I}(S_{i})]}{\Pr[\mathcal{I}(S_{i})]} = \frac{\Pr[E_{i} \cap \mathcal{I}(D'_{i}) \cap \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(S_{i})]} = \frac{\Pr[E_{i} \cap \mathcal{I}(D'_{i}) \cap \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \cap \mathcal{I}(S_{i} \setminus D'_{i})]} = \frac{\Pr[E_{i} \cap \mathcal{I}(D'_{i}) \cap \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \leq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \leq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \leq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{i})]}{\Pr[\mathcal{I}(D'_{i}) \mid \mathcal{I}(S_{i} \setminus D'_{i})]} \geq \frac{\Pr[E_{i} \mid \mathcal{I}(S_{i} \setminus D'_{$$

LLL: Events $E_1, ..., E_n$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| < d$
- \blacksquare 4 $dp \le 1$

Notation: For
$$S \subseteq [n]$$
 write $\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B]$

$$\Pr[A \cap B] \leq \Pr[A]$$

Removing the D'_i makes E_i independent of the remaining events.

LLL – Proof of Claim

Claim: For all
$$S_i \subseteq \{1, ..., n\} \setminus \{i\}$$
, $\Pr[E_i \mid \mathcal{I}(S_i)] \leq 2p$.

Proof (via induction over the size $s = |S_i|$)

Start:
$$s = 0 \rightarrow S_i = \emptyset \rightarrow Pr[E_i \mid \mathcal{I}(S_i)] = Pr[E_i] \leq p \leq 2p \checkmark$$

Step: s > 0

- Case 1: $D'_i = S_i \cap D_i = \emptyset$
 - E_i is independent of $\{E_i \mid j \in S_i\} \rightarrow \Pr[E_i \mid \mathcal{I}(S_i)] = \Pr[E_i] \leq p \leq 2p$ Notation: For $S \subseteq [n]$ write
- Case 2: $D'_i = S_i \cap D_i \neq \emptyset$

$$\Pr[E_i \mid \mathcal{I}(S_i)] \leq \frac{p}{\Pr[\mathcal{I}(D_i') \mid \mathcal{I}(S_i \setminus D_i')]}$$
 remains to show $\geq \frac{1}{2}$

$$\Pr[\mathcal{I}(D_i') \mid \mathcal{I}(S_i \setminus D_i')] = \Pr[\bigcap_{j \in D_i'} \neg E_j \mid \mathcal{I}(S_i \setminus D_i')]$$

$$=1-\Pr[\bigcup_{j\in D_i'}E_j\mid \mathcal{I}(S_i\setminus D_i')] \underset{\Rightarrow|S_i\setminus D_i'|< s \text{ and we can apply induction hypothesis}}{-} \subseteq S_i, \text{ since } S_i\cap D_i'\neq\emptyset \text{ } \Pr[\neg A\cap \neg B]=\Pr[\neg (A\cup B)] \underset{\Rightarrow|S_i\setminus D_i'|< s \text{ and we can apply induction hypothesis}}{-} \subseteq S_i, \text{ since } S_i\cap D_i'\neq\emptyset \text{ } \Pr[\neg A\cap \neg B]=\Pr[\neg (A\cup B)]$$

 $|D_i'| \le |D_i|$ $\ge 1 - \sum_{j \in D_i'} 2p \ge 1 - d \cdot 2p \ge \frac{1}{2}$

LLL: Events $E_1, ..., E_n$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{i \in \{i\} \cup D_i} E_i$ with $|D_i| < d$
- -4dp < 1

$\mathcal{I}(S) = \bigcap_{i \in S} \neg E_i$

Conditional Probability: $Pr[A \cap B] = Pr[A \mid B] \cdot Pr[B]$

$$\Pr[A \cap B] \leq \Pr[A]$$

$$\Pr[\neg A \cap \neg B] = \Pr[\neg (A \cup B)]$$

Application: Dependent Independent Set (2nd Try)

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occurring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all i (otherwise remove vertices from too large V_i)
- lacktriangle Obtain S by ind. choosing one vertex unif. at random from each V_i

Positive Probability

 $\Pr[A_e] \leq \frac{1}{k^2} =: p$

- To show: Pr["S independent"] > 0 (both endpoints in *S*)
- S is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_i$ $\Pr["S \text{ independent"}] = \Pr[\bigcap_{e \in E} \neg \overline{A_e}]$

This is like isolating
$$V_i, V_j$$
 from the remainder of the graph. No matter the outcome of A_f for $f \in E \setminus D_e$, the probability for a node in V_i or V_j to be chosen remains the same $\Rightarrow A_e$ is independent of all events but D_e

 $D_{\underline{e}} = \{A_{e'} \mid e' \cap (V_i \cup V_i) \neq \emptyset\}$

 \blacksquare E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$

LLL: Events $E_1, ..., E_n$

Then, $Pr[\bigcap_{i\in[n]}\neg E_i] > 0$.

with $|D_i| < d$

-4dp < 1

Application: Dependent Independent Set (2nd Try)

Theorem: Let G = (V, E) be a graph with max-degree Δ . For any partition $V_1 \cup ... \cup V_t = V$ such that $|V_i| \ge 8\Delta$, there exists an independent set containing one vertex from each V_i .

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

- Assume $|V_i| = k = 8\Delta$ for all i (otherwise remove vertices from too large V_i)
- Obtain S by ind. choosing one vertex unif. at random from each V_i

Positive Probability

- To show: Pr["S independent"] > 0 (both endpoints in S)
- *S* is independent iff no edge $e = \{u, v\}$ has $e \subseteq S$, Let A_e be the event that $e \subseteq S$ $\bigvee_i \bigvee_j$ $\bigvee_i S$ independent"] = $\Pr[\bigcap_{e \in E} \neg A_e] > 0$ \checkmark $\Pr[A_e] \leq \frac{1}{k^2} =: p$

$$D_e = \{A_{e'} \mid e' \cap (V_i \cup V_j) \neq \emptyset\} \rightarrow |D_e| \leq k\Delta + k\Delta \leq 2k\Delta =: d$$

LLL: Events $E_1, ..., E_n$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$
- \blacksquare 4 $dp \leq 1$

Then, $Pr[\bigcap_{i\in[n]} \neg E_i] > 0$.

$$4dp = 4 \cdot 2k\Delta \cdot \frac{1}{k^2}$$
$$= \frac{8\Delta}{k} = 1$$

Application: Independent Paths

- Given a network and k vertex pairs that want to communicate
- Each $i \in [k]$ has a set S_i of candidate communication paths
- lacktriangle Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{ |S_i| \}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \leq m/(8k)$ paths in S_i for $i \neq j$.

Proof

Random Process: Ind., unif. at random choose P_i from S_i Positive Probability

Let E_{ij} be the event that P_i and P_j share an edge

$$\Pr\left[\bigcap_{i < j} \neg E_{ij}\right] \stackrel{?}{>} 0$$

$$\Pr\left[E_{ij}\right] \leq \frac{\ell}{m} =: p$$

- $\Pr[\bigcap_{i < j} \neg E_{ij}] \stackrel{?}{>} 0 \mid \blacksquare E_{ij} \text{ independent of every other}$ event but not of all others
 - If $E_{i1}, ..., E_{i\ell}$ occur, then $Pr[E_{ii}] = 0$ for $j > \ell$

Probabilistic Method: Show that something exists by proving that it has a positive probability of occurring from a random process.

LLL: Events $E_1, ..., E_n$

- lacksquare E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{i \in \{i\} \cup D_i} E_i$ with $|D_i| < d$
- -4dp < 1

Then, $Pr[\bigcap_{i\in[n]} \neg E_i] > 0$.

Application: Independent Paths

- Given a network and k vertex pairs that want to communicate
- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_i for $i \ne j$.

Proof

Random Process: Ind., unif. at random choose P_i from S_i Positive Probability

Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < i} \neg E_{ij}] \stackrel{?}{>} 0 \mid D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$

$$\Pr[E_{ij}] \leq \frac{\ell}{m} =: p$$

Removing D_{ij} is discarding all events that could tell us something about whether P_i and P_i can intersect

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events $E_1, ..., E_n$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$
- \blacksquare 4 $dp \leq 1$

Then, $Pr[\bigcap_{i\in[n]}\neg E_i]>0$.

Application: Independent Paths

- Given a network and k vertex pairs that want to communicate
- Each $i \in [k]$ has a set S_i of candidate communication paths
- Does there exist a choice of paths (one P_i from each S_i) that are pairwise edge-disjoint? (NP-complete to decide)

Theorem: Let $m = \min_{i \in [k]} \{|S_i|\}$. Then, there exists a valid choice if any path in S_i shares edges with at most $\ell \le m/(8k)$ paths in S_i for $i \ne j$.

Proof

Random Process: Ind., unif. at random choose P_i from S_i Positive Probability

Let E_{ij} be the event that P_i and P_j share an edge $\Pr[\bigcap_{i < j} \neg E_{ij}] > 0$ $D_{ij} = \{E_{st} \mid \{s, t\} \cap \{i, j\} \neq \emptyset\}$ $\Pr[E_{ij}] \leq \frac{\ell}{m} =: p$ $|D_{ij}| = (k-1) + (k-1) - 1 < 2k =: d$

Probabilistic Method: Show that something exists by proving that it has a *positive* probability of occuring from a random process.

LLL: Events $E_1, ..., E_n$

- E_i independent of $\{E_1, ..., E_n\} \setminus \bigcup_{j \in \{i\} \cup D_i} E_j$ with $|D_i| \le d$
- \blacksquare 4 $dp \leq 1$

Then, $Pr[\bigcap_{i\in[n]} \neg E_i] > 0$.

 $4dp = 4 \cdot 2k \cdot \frac{\ell}{m} = \ell \cdot \frac{8k}{m} < 1$

Conclusion

Probabilistic Method

- Show that something exists deterministically, by showing that it occurs with positive probability from a random process
- Reasoning: At least one object in the sample space has the desired property

- Useful tool when applying probabilistic method
- lacksquare $\Pr[X \geq \mathbb{E}[X]] > 0$ and $\Pr[X \leq \mathbb{E}[X]] > 0$.

Example Vertex Cover: remove vertices/edges at random

Lovász Local Lemma

- Show that something exists by showing that all events that prevent its existence do not occur, with positive probability
- Lemma works as long as there are not too many dependencies

