Probability \& Computing

Probabilistic Method

Complete Coloring

The Problem

- Let G be the complete graph on n vertices (every vertex is adjacent to every other vertex)
- A k-clique is a complete subgraph with k vertices
- A coloring of the graph assigns each edge one of two colors: red or blue
- In a graph with n vertices, does there exist a coloring with no monochromatic k-clique?

The Solution?

- Brute-force algorithm?
- $n=6 \Rightarrow 2^{n(n-1)}=2^{30}=1,073,741,824$ possible colorings naive implementation: 20min
- $k=3 \Rightarrow\binom{6}{3}=20$ triangles to check $\Rightarrow 60$ edges per coloring \int no coloring exists
- What about $n=1000$ and $k=20$?
- Randomized algorithm?
- How often shall we try before assuming that no coloring exists?

Randomized Coloring

Algorithm

- For each edge independently, choose one of the colors with probability $1 / 2$

Let X be the indicator variable with $X=1$ if and only if the resulting coloring contains a monochromatic k-clique

- Let $H_{1}, \ldots, H_{\binom{n}{k}}$ be all the different k-cliques

H_{i}
- Let X_{i} be the indicator variable with $X_{i}=1$ if and only if H_{i} is monochromatic
- What is $\operatorname{Pr}\left[X_{i}=1\right]$?
- What is $\operatorname{Pr}[X=1]$? union bound $\binom{n}{k}$
- Consider the first edge that gets $\operatorname{Pr}[X=1]=\operatorname{Pr}\left[\exists_{\left.\left.i \in\left[\begin{array}{l}n \\ k\end{array}\right)\right]: X_{i}=1\right] \stackrel{\downarrow}{\leq} \sum_{i=1}^{k} \operatorname{Pr}\left[X_{i}=1\right]}\right.$ colored (we do not care which color it is, but...)
- The $\binom{k}{2}-1$ remaining edges need to get the same color

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=1\right] & =\left(\frac{1}{2}\right)^{\binom{k}{2}-1} \\
& =2^{-\binom{k}{2}+1}
\end{aligned}
$$

$=\binom{n}{k} 2^{-\binom{k}{2}+1} \leq \frac{n^{k}}{k!} 2^{-\frac{k(k-1)}{2}+1}=\frac{n^{k}}{k!} 2 \cdot 2^{-\frac{k^{2}-k}{2}}=\frac{n^{k}}{k!} 2 \cdot\left(2^{-\frac{k}{2}}\right)^{k} \cdot 2^{\frac{k}{2}}$

$$
\leq \frac{1}{k!} 2 \sqrt{2}^{k} \leq \frac{2 \sqrt{2}{ }^{k}}{e\left(\frac{k}{e}\right)^{k}}=\underbrace{\frac{2}{e}} \underbrace{\left.\frac{\sqrt{2} e}{k}\right)^{k}<1} \quad \begin{aligned}
\text { simplify by assuming } k & \geq 2 \log (n) \\
\Rightarrow & 2^{-\frac{k}{2}} \leq \frac{1}{n}
\end{aligned} \quad \text { It may happen that the }
$$

What did we just show?!

The Probability Space

- What is the sample space of the algorithm?
- Each edge is red or blue with prob. $1 / 2$
- ($\binom{n}{2}$ edges $\Rightarrow 2\binom{n}{2}$ possible colorings
- Each occurs with equal probability $1 / 2\binom{n}{2}$ Just Shown
- $X=0 \Rightarrow$ coloring returned by algorithm contains no monochromatic k-clique
- $\operatorname{Pr}[X=0]>0$
- Consequence: At least one such coloring in
 the sample space! Unclear where. But we know deterministically that it exists!

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

Application: Cuts

Recap

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into V_{1}, V_{2} s.t. $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set

- Question now: In a graph with m edges, does there exist a cut of weight at least $m / 2$?

Random Process

- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Positive Probability

- Consider edges e_{1}, \ldots, e_{m} and let X_{i} be the indicator that is 1 iff e_{i} is in the cut-set
- $X=\sum_{i=1}^{m} X_{i}$ is the weight of the cut
- To show: $\operatorname{Pr}\left[X \geq \frac{m}{2}\right]>0$
$\operatorname{Pr}\left[X \geq \frac{m}{2}\right]=\operatorname{Pr}\left[\sum_{i=1}^{m} X_{i} \geq \frac{m}{2}\right]=? ? ?$
- Depends on the graph?
- The X_{i} are not even independent...

Probabilistic Method: The Expectation Argument

Theorem: Let X be a random variable taking values in a set S. Then, $\operatorname{Pr}[X \geq \mathbb{E}[X]]>0$ and $\operatorname{Pr}[X \leq \mathbb{E}[X]]>0$.

- There always exists at least one sample that yields $X \geq \mathbb{E}[X](X \leq \mathbb{E}[X])$

Proof $(\operatorname{Pr}[X \geq \mathbb{E}[X]]>0$, the other works analogous)

- Towards a contradiction assume $\operatorname{Pr}[X \geq \mathbb{E}[X]]=0$

$$
\begin{aligned}
\mathbb{E}[X]=\sum_{x \in S} x \cdot \operatorname{Pr}[X=x] & =\sum_{x \in S, x<\mathbb{E}[X]} x \cdot \operatorname{Pr}[X=x] \\
& \left\langle<\sum_{x \in S, x<\mathbb{E}[X]} \mathbb{E}[X] \cdot \operatorname{Pr}[X=x]\right. \\
& =\mathbb{E}[X] \cdot \sum_{x \in S, x<\mathbb{E}[X]} \operatorname{Pr}[X=x] \\
& \leq \mathbb{E}[X]
\end{aligned}
$$

Application: Cuts - Second Try

Recap

- $G=(V, E)$ an unweighted, undirected, connected graph
- Cut: partition of V into V_{1}, V_{2} s.t. $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$
- Cut-set: set of edges with one endpoint in V_{1} and the other in V_{2}
- Weight: size of the cut-set

- Question now: In a graph with m edges, does there exist a cut of weight at least $m / 2$?

Random Process

- Add each vertex to one of the two sets with equal prob. $\frac{1}{2}$

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

Positive Probability

Consider edges e_{1}, \ldots, e_{m} and let X_{i} be the $\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} \mathbb{E}\left[X_{i}\right]$ indicator that is 1 iff e_{i} is in the cut-set

- $X=\sum_{i=1}^{m} X_{i}$ is the weight of the cut
- To show: $\operatorname{Pr}\left[X \geq \frac{m}{2}\right]>0, \operatorname{Pr}[X \geq \mathbb{E}[X]]>0$

Application: Independent Sets

The Problem

- Two vertices in a graph are independent, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

$d=\frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \geq n / 2$ edges. Then $\alpha(G) \geq n^{2} /(4 m)$.

Proof

Random Process

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

- Let $d=2 m / n$ be the average degree of G
- Independently, delete each vertex with probability $1-\frac{1}{d}$
- Afterwards, for each remaining edge, delete one endpoint chosen uniformly at random
- Note that the remaining vertices form an independent set

Application: Independent Sets

The Problem

- Two vertices in a graph are independent, if they are not adjacent
- An independent set of a graph is a subgraph whose vertices are pairwise independent

$d=\frac{24}{9} \Rightarrow$ Survival rate: $\frac{3}{8}$
- Let $\alpha(G)$ denote the size of a largest independent set in G (in general, determining $\alpha(G)$ is NP-complete)

Theorem: Let G be a graph with n vertices and $m \geq n / 2$ edges. Then $\alpha(G) \geq n^{2} /(4 m)$.

Proof	\mathbb{E}-Argument: $\operatorname{Pr}[X \geq \mathbb{E}[X]]>0$	Random Process: $d=2 m / n$ Step 1: Delete v with prob. $1-\frac{1}{d}$ Step 2: Delete one endpoint of each e
Positive Probability		

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

- X_{V} : number of vertices that survive the first step - $\mathbb{E}\left[X_{V}\right]=n \cdot \frac{1}{d} \quad\left(\right.$ since each vertex survives with prob. $\left.\frac{1}{d}\right)$
- X_{E} : number of edges that survive the first step
- Step 2: each of the X_{E} edges removes ≤ 1 vertex
- Size of resulting independent set S is $\geq X_{V}-X_{E}$
- $\operatorname{Pr}\left[|S| \geq n^{2} /(4 m)\right] \geq \operatorname{Pr}\left[X_{V}-X_{E} \geq n^{2} /(4 m)\right]>0 \checkmark$
- Edge $\{u, v\}$ survives if both u, v do
- $\mathbb{E}\left[X_{E}\right]=m \cdot \frac{1}{d^{2}}=\frac{n d}{2} \cdot \frac{1}{d^{2}}=\frac{n}{2 d}$
- $\mathbb{E}\left[X_{V}-X_{E}\right]=\mathbb{E}\left[X_{V}\right]-\mathbb{E}\left[X_{E}\right]=\frac{n}{d}-\frac{n}{2 d}$
$=\frac{n}{2 d}=\frac{n}{2(2 m / n)}=n^{2} /(4 m)$

Application: Dependent Independent Set

Theorem: Let $G=(V, E)$ be a graph with max-degree Δ. For any partition $V_{1} \cup \ldots \cup V_{t}=V$ such that $\left|V_{i}\right| \geq 8 \Delta$, there exists an independent set containing one vertex from each V_{i}.

Proof

Random Process
Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.

- Assume $\left|V_{i}\right|=k=8 \Delta$ for all i (otherwise remove vertices from too large V_{i})
- Let S be the set obtained by independently choosing one vertex uniformly at random from each V_{i}

Positive Probability

- To show: $\operatorname{Pr}[$ " S independent"] >0 (both endpoints in S)
- S is independent iff no edge $e=\{u, v\}$ has $\overbrace{e \subseteq S}$, Let A_{e} be the event that $e \subseteq S$ $\operatorname{Pr}[{ }^{[} S$ independent"] $=\operatorname{Pr}\left[\bigcap_{e \in E} \neg A_{e}\right] \neq \prod_{e \in E} \operatorname{Pr}\left[\neg A_{e}\right]=\prod_{e \in E}(1-\underbrace{\operatorname{Pr}\left[A_{e}\right]}) \geq \prod_{e \in E}\left(1-\frac{1}{k^{2}}\right)>0 \checkmark$

$$
\operatorname{Pr}\left[A_{e_{1}}\right]=\frac{1}{k^{2}}
$$

The events are not independent!

$\operatorname{Pr}\left[A_{e_{1}} \mid A_{e_{2}} \cap A_{e_{3}}\right]=1 \quad$ The probability of an event is affected by the outcomes of other events. Dependence...

To be or not to be... independent
Independence
Definition: Event A is independent of an event B if $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A] . \quad(\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B])$
Definition: Event A is independent of a set of events \mathcal{E} if for all subsets $\mathcal{E}^{\prime}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\} \subseteq \mathcal{E}$ we have $\operatorname{Pr}\left[A \mid \bigcap_{i \in[k]} B_{i}\right]=\operatorname{Pr}[A]$.

Example

- Triangle, independently color each vertex red/blue with prob. $\frac{1}{2}$
- Let $A_{i j}$ for $i<j$ be the event that i and j have the same color
- $A=A_{12}, B=A_{23}$:
- $A=A_{12}, \mathcal{E}=\left\{A_{13}, A_{23}\right\}:$
$\operatorname{Pr}\left[A_{12}\right]=\frac{1}{2}$
$\operatorname{Pr}\left[A_{12} \mid A_{13} \cap A_{23}\right]$
$\operatorname{Pr}\left[A_{12} \mid A_{23}\right]=\frac{\operatorname{Pr}\left[A_{12} \cap A_{23}\right]}{\operatorname{Pr}\left[A_{23}\right]}=\frac{1 / 4}{1 / 2}=\frac{1}{2}$
$=\frac{\operatorname{Pr}\left[A_{12} \cap A_{13} \cap A_{23}\right]}{\operatorname{Pr}\left[A_{13} \cap A_{23}\right]}=\frac{1 / 4}{1 / 4}=1$
(same holds for all choices of A and B)
- All $A_{i j}$ are pairwise independent
- $A_{i j}$ not independent of the other events

Pr	Graph	1	2	3	A_{12}	A_{13}	A_{23}
$\frac{1}{8}$	0_{1}^{1}	0	0	0	\checkmark	\checkmark	\checkmark
$\frac{1}{8}$	-0	0	0	0	0	\checkmark	x

Lovász Local Lemma (LLL)

Theorem: Let E_{1}, \ldots, E_{n} be events such that each E_{i} for $i \in[n]$ is independent of all but at most $d>0$ of the other events. Let $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$. If $4 d p \leq 1$, then $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

- If $d=0$, everything is independent and we can just compute the probability as the product
- For each $i \in[n]$ let $D_{i} \subseteq[n]$ be the such that
E_{i} is independent of $\left\{\bar{E}_{1}, \ldots, E_{n}\right\} \backslash\left(\bigcup_{j \in\{i\} \cup D_{i}} E_{j}\right)$, then $|D(i)| \leq d$.

Lovász Local Lemma (LLL)

Theorem: Let E_{1}, \ldots, E_{n} be events such that each E_{i} for $i \in[n]$ is independent of all but at most $d>0$ of the other events. Let $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$. If $4 d p \leq 1$, then $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

- If $d=0$, everything is independent and we can just compute the probability as the product
- For each $i \in[n]$ let $D_{i} \subseteq[n]$ be the such that
E_{i} is independent of $\left\{\bar{E}_{1}, \ldots, E_{n}\right\} \backslash\left(\bigcup_{j \in\{i\} \cup D_{i}} E_{j}\right)$, then $|D(i)| \leq d$.
Proof $\underbrace{\mathcal{I}([n])} \quad$ "Chain Rule"

$$
\begin{aligned}
\operatorname{Pr}[\overbrace{i \in[n]} \neg E_{i}] & \stackrel{\prod_{i \in[n]} \operatorname{Pr}\left[\neg E_{i} \mid \mathcal{I}([i-1])\right]}{ } \\
& =\prod_{i \in[n]}(1-\underbrace{\operatorname{Pr}\left[E_{i} \mid \mathcal{I}([i-1])\right]}_{\text {Claim: }}) \\
& \geq \prod_{i \in[n]}(1-2 p) \\
& \geq \prod_{i \in[n]} 1 / 2
\end{aligned}
$$

(Remove events defined by D_{i} to make E_{i} independent of the rest.)

> Notation: For $S \subseteq[n]$ write $\mathcal{I}(S)=\bigcap_{i \in S} \neg E_{i}$

Conditional Probability: $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]$

- Since $d>0$ and $4 d p \leq 1$, we have $4 p \leq 1$ and thus $2 p \leq 1 / 2$

LLL - Proof of Claim

Claim: For all $S_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right] \leq 2 p$.

```
Proof (via induction over the size \(s=\left|S_{i}\right|\) ) \(\quad\) LLL: Events \(E_{1}, \ldots, E_{n}\)
Start: \(s=0 \rightarrow S_{i}=\emptyset \rightarrow \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\operatorname{Pr}\left[E_{i}\right] \leq p \leq 2 p \checkmark\)
Step: \(s>0\)
- Case 1: \(D_{i}^{\prime}=S_{i} \cap D_{i}=\emptyset\)
```

```
- \(p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]\)
```

- $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
with $\left|D_{i}\right| \leq d$
with $\left|D_{i}\right| \leq d$
- $4 d p \leq 1$

```
- \(4 d p \leq 1\)
```

- E_{i} is independent of $\left\{E_{j} \mid j \in S_{i}\right\} \rightarrow \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\operatorname{Pr}\left[E_{i}\right] \leq p \leq 2 p$ Notation: For $S \subseteq[n]$ write
- Case 2: $D_{i}^{\prime}=S_{i} \cap D_{i} \neq \emptyset$

```
                                    \mathcal{I}(S)=\mp@subsup{\bigcap}{i\inS}{\prime}\neg\mp@subsup{\overline{E}}{i}{}
\[
\begin{aligned}
& \mathcal{I}\left(S_{i}\right)=\bigcap_{j \in S_{i}} \neg E_{j} \\
& S_{i}=\left(S_{i} \backslash D_{i}^{\prime}\right) \cup D_{i}^{\prime} \quad \rightarrow=\bigcap_{j \in S_{i} \backslash D_{i}^{\prime} \backslash E_{j} \cap \bigcap_{j \in D_{i}^{\prime}} \neg E_{j}} \\
& =\mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right) \cap \mathcal{I}\left(D_{i}^{\prime}\right) \\
& \text { Conditional Probability } \\
& \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B] \\
& \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(S_{i}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(S_{i}\right)\right]}=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(D_{i}^{\prime}\right) \cap \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(S_{i}\right)\right]}=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(D_{i}^{\prime}\right) \cap \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\left.\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right)\right) \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}\left[\begin{array}{l}
\begin{array}{l}
\text { Conditional } \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A|B| B] \operatorname{Pr}[B]
\end{array} \\
\operatorname{Pr}[B]
\end{array}\right.
\end{aligned}
\]

\section*{LLL - Proof of Claim}

Claim: For all \(S_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right] \leq 2 p\).

- \(E_{i}\) is independent of \(\left\{E_{j} \mid j \in S_{i}\right\} \rightarrow \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\operatorname{Pr}\left[E_{i}\right] \leq p \leq 2 p \underset{\substack{\text { Notation: For } S \subseteq[n] \text { write } \\ \mathcal{I}(S)=\cap}}{ }\)
- Case 2: \(D_{i}^{\prime}=S_{i} \cap D_{i} \neq \emptyset\)
\(\mathcal{I}(S)=\bigcap_{i \in S} \neg \bar{E}_{i}\)
\[
\begin{aligned}
& \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(S_{i}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(S_{i}\right)\right]}=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(D_{i}^{\prime}\right) \cap \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(S_{i}\right)\right]}=\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(D_{i}^{\prime}\right) \cap \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \cap \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]} \\
& =\frac{\operatorname{Pr}\left[E_{i} \cap \mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right] \cdot \operatorname{Pr}\left[\mathcal{T}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right] \cdot \operatorname{Pr}\left[\mathcal{T}\left(S_{i}^{\prime} \backslash D_{i}^{\prime}\right)\right]} \leq \frac{\operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]} \\
& \left.=\frac{\operatorname{Pr}\left[E_{i}\right]}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]} \leq \frac{p}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}\right\} \text { remains to show } \geq \frac{1}{2} \\
& \text { Conditional Probability } \\
& \operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B] \\
& \operatorname{Pr}[A \cap B] \leq \operatorname{Pr}[A] \\
& \text { Removing the } D_{i}^{\prime} \text { makes } \\
& E_{i} \text { independent of the } \\
& \text { remaining events. }
\end{aligned}
\]

\section*{LLL - Proof of Claim}

Claim: For all \(S_{i} \subseteq\{1, \ldots, n\} \backslash\{i\}, \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right] \leq 2 p\).

- \(E_{i}\) is independent of \(\left\{E_{j} \mid j \in S_{i}\right\} \rightarrow \operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right]=\operatorname{Pr}\left[E_{i}\right] \leq p \leq 2 p \underset{\substack{\text { Notation: For } S \subseteq[n] \text { write } \\ \mathcal{I}(S)=\bigcap_{i \in s} \neg \bar{E}_{i}}}{\substack{\text {. } \\ \hline}}\)
- Case 2: \(D_{i}^{\prime}=S_{i} \cap D_{i} \neq \emptyset\)
\[
\left.\operatorname{Pr}\left[E_{i} \mid \mathcal{I}\left(S_{i}\right)\right] \leq \frac{p}{\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]}\right\} \text { remains to show } \geq \frac{1}{2}
\]

Conditional Probability:
\[
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]
\]
\[
\operatorname{Pr}[A \cap B] \leq \operatorname{Pr}[A]
\]
\[
=1-\operatorname{Pr}\left[\bigcup_{j \in D_{i}^{\prime}} E_{j} \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]
\]
\[
\left|D_{i}^{\prime}\right| \leq\left|D_{i}\right| \geq \geq 1-\sum_{j \in D_{i}^{\prime}} 2 p \geq 1-d \cdot 2 p \geq \frac{1}{2}
\]
\[
\operatorname{Pr}\left[\mathcal{I}\left(D_{i}^{\prime}\right) \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]=\operatorname{Pr}\left[\bigcap_{j \in D_{i}^{\prime}} \neg E_{j} \mid \mathcal{I}\left(S_{i} \backslash D_{i}^{\prime}\right)\right]
\]

\section*{Application: Dependent Independent Set (2nd Try)}

Theorem: Let \(G=(V, E)\) be a graph with max-degree \(\Delta\). For any partition \(V_{1} \cup \ldots \cup V_{t}=V\) such that \(\left|V_{i}\right| \geq 8 \Delta\), there exists an independent set containing one vertex from each \(V_{i}\).

\section*{Proof}

Random Process
Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
- Assume \(\left|V_{i}\right|=k=8 \Delta\) for all \(i\) (otherwise remove vertices from too large \(V_{i}\) )
- Obtain \(S\) by ind. choosing one vertex unif. at random from each \(V_{i}\)


\section*{Positive Probability}
- To show: \(\operatorname{Pr}[\) " \(S\) independent"] \(>0\)
(both endpoints in S)
- \(S\) is independent ff no edge \(e=\{u, v\}\) has \(\overbrace{e \subseteq S}\), Let \(A_{e}\) be the event that \(e \subseteq S\)
\(\operatorname{Pr}\left[" S\right.\) independent"] \(=\operatorname{Pr}\left[\bigcap_{e \in E} \neg A_{e}\right]\)
```

LLL: Events E_{1}, \ldots, E_{n}

- $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
with $\left|D_{i}\right| \leq d$
- $4 d p \leq 1$
Then, $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

```
\[
\begin{array}{ll}
\operatorname{Pr}\left[A_{e}\right] \leq \frac{1}{k^{2}}=: p & \begin{array}{l}
\text { This is like isolating } V_{i}, V_{j} \text { from the remainder of the graph } \\
D_{e}=\left\{A_{e^{\prime}} \mid e^{\prime} \cap\left(V_{i} \cup V_{j}\right) \neq \emptyset\right\}
\end{array} \begin{array}{l}
\text { No matter the outcome of } A_{f} \text { for } f \in E \in D_{e} \text {, the probability for anode in } V_{\text {o }} \text { o } V_{j} \text { to } \\
\text { be chosen remains the same } \Rightarrow A_{e} \text { is independent of all events but } D_{e}
\end{array}
\end{array}
\]

\section*{Application: Dependent Independent Set (2nd Try)}

Theorem: Let \(G=(V, E)\) be a graph with max-degree \(\Delta\). For any partition \(V_{1} \cup \ldots \cup V_{t}=V\) such that \(\left|V_{i}\right| \geq 8 \Delta\), there exists an independent set containing one vertex from each \(V_{i}\).

\section*{Proof}

Random Process

> Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
- Assume \(\left|V_{i}\right|=k=8 \Delta\) for all \(i\) (otherwise remove vertices from too large \(V_{i}\) )
- Obtain \(S\) by ind. choosing one vertex unif. at random from each \(V_{i}\)


Positive Probability
- To show: \(\operatorname{Pr}[\) " \(S\) independent"] \(>0\)
(both endpoints in S)
- \(S\) is independent iff no edge \(e=\{u, v\}\) has \(\overparen{e \subseteq S}\), Let \(A_{e}\) be the event that \(e \subseteq S \quad \stackrel{\downarrow}{ } \stackrel{\rightharpoonup}{l}_{i}\)
\(\operatorname{Pr}\left[" S\right.\) independent"] \(=\operatorname{Pr}\left[\bigcap_{e \in E} \neg A_{e}\right]>0 \checkmark\)
\[
\begin{aligned}
& \operatorname{Pr}\left[A_{e}\right] \leq \frac{1}{k^{2}}=: p \\
& D_{e}=\left\{A_{e^{\prime}} \mid e^{\prime} \cap\left(V_{i} \cup V_{j}\right) \neq \emptyset\right\} \rightarrow\left|D_{e}\right| \leq k \Delta+\dot{k} \Delta \leq 2 k \Delta=: d
\end{aligned}
\]
\[
\begin{aligned}
4 d p & =4 \cdot 2 k \Delta \cdot \frac{1}{k^{2}} \\
& =\frac{8 \Delta}{k}=1
\end{aligned}
\]

\section*{Application: Independent Paths}
- Given a network and \(k\) vertex pairs that want to communicate
- Each \(i \in[k]\) has a set \(S_{i}\) of candidate communication paths
- Does there exist a choice of paths (one \(P_{i}\) from each \(S_{i}\) ) that are pairwise edge-disjoint? (NP-complete to decide)


Theorem: Let \(m=\min _{i \in[k]}\left\{\left|S_{i}\right|\right\}\). Then, there exists a valid choice if any path in \(S_{i}\) shares edges with at most \(\ell \leq m /(8 k)\) paths in \(S_{j}\) for \(i \neq j\).

\section*{Proof}

Random Process: Ind., unif. at random choose \(P_{i}\) from \(S_{i}\) Positive Probability
- Let \(E_{i j}\) be the event that \(P_{i}\) and \(P_{j}\) share an edge \(\operatorname{Pr}\left[\bigcap_{i<j} \neg E_{i j}\right]>0 \quad E_{i j}\) independent of every other
\[
\operatorname{Pr}\left[E_{i j}\right] \leq \frac{\ell}{m}=: p
\] event but not of all others
- If \(E_{i 1}, \ldots, E_{i \ell}\) occur, then \(\operatorname{Pr}\left[E_{i j}\right]=0\) for \(j>\ell\)

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
```

LLL: Events E_{1}, \ldots, E_{n}

- $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
with $\left|D_{i}\right| \leq d$
- $4 d p \leq 1$
Then, $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

```

\section*{Application: Independent Paths}
- Given a network and \(k\) vertex pairs that want to communicate
- Each \(i \in[k]\) has a set \(S_{i}\) of candidate communication paths
- Does there exist a choice of paths (one \(P_{i}\) from each \(S_{i}\) ) that are pairwise edge-disjoint? (NP-complete to decide)


Theorem: Let \(m=\min _{i \in[k]}\left\{\left|S_{i}\right|\right\}\). Then, there exists a valid choice if any path in \(S_{i}\) shares edges with at most \(\ell \leq m /(8 k)\) paths in \(S_{j}\) for \(i \neq j\).

\section*{Proof}

Random Process : Ind., unif. at random choose \(P_{i}\) from \(S_{i}\) Positive Probability
- Let \(E_{i j}\) be the event that \(P_{i}\) and \(P_{j}\) share an edge
\[
\begin{array}{l|l}
\operatorname{Pr}\left[\bigcap_{i<j} \neg E_{i j}\right] \stackrel{?}{>} 0 & D_{i j}=\left\{E_{s t} \mid\{s, t\} \cap\{i, j\} \neq \emptyset\right\} \\
\operatorname{Pr}\left[E_{i j}\right] \leq \frac{\ell}{m}=: p & \begin{array}{c}
\text { Removing } D_{i j} \text { is discarding all events that } \\
\text { could tell us something about whether } P_{i} \text { and } \\
P_{j} \text { can intersect }
\end{array}
\end{array}
\]

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
```

LLL: Events E_{1}, \ldots, E_{n}

- $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
with $\left|D_{i}\right| \leq d$
- $4 d p \leq 1$
Then, $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

```

\section*{Application: Independent Paths}
- Given a network and \(k\) vertex pairs that want to communicate
- Each \(i \in[k]\) has a set \(S_{i}\) of candidate communication paths
- Does there exist a choice of paths (one \(P_{i}\) from each \(S_{i}\) ) that are pairwise edge-disjoint? (NP-complete to decide)


Theorem: Let \(m=\min _{i \in[k]}\left\{\left|S_{i}\right|\right\}\). Then, there exists a valid choice if any path in \(S_{i}\) shares edges with at most \(\ell \leq m /(8 k)\) paths in \(S_{j}\) for \(i \neq j\).

\section*{Proof}

Random Process: Ind., unif. at random choose \(P_{i}\) from \(S_{i}\) Positive Probability
- Let \(E_{i j}\) be the event that \(P_{i}\) and \(P_{j}\) share an edge
\[
\begin{aligned}
& \operatorname{Pr}\left[\bigcap_{i<j} \neg E_{i j}\right]>0^{\checkmark} D_{i j}=\left\{E_{s t} \mid\{s, t\} \cap\{i, j\} \neq \emptyset\right\} \\
& \operatorname{Pr}\left[E_{i j}\right] \leq \frac{\ell}{m}=: p \quad\left|D_{i j}\right|=(k-1)+(k-1)-1<2 k=: d \\
& 4 d p=4 \cdot 2 k \cdot \frac{\ell}{m}=\ell \cdot \frac{8 k}{m} \leq 1
\end{aligned}
\]

Probabilistic Method: Show that something exists by proving that it has a positive probability of occuring from a random process.
```

LLL: Events E_{1}, \ldots, E_{n}

- $p=\max _{i \in[n]} \operatorname{Pr}\left[E_{i}\right]$
- E_{i} independent of $\left\{E_{1}, \ldots, E_{n}\right\} \backslash \bigcup_{j \in\{i\} \cup D_{i}} E_{j}$
with $\left|D_{i}\right| \leq d$
- $4 d p \leq 1$
Then, $\operatorname{Pr}\left[\bigcap_{i \in[n]} \neg E_{i}\right]>0$.

```

\section*{Conclusion}

\section*{Probabilistic Method}
- Show that something exists deterministically, by showing that it occurs with positive probability from a random process
- Reasoning: At least one object in the sample space has the desired property

\section*{Expectation Argument}
- Useful tool when applying probabilistic method

- \(\operatorname{Pr}[X \geq \mathbb{E}[X]]>0\) and \(\operatorname{Pr}[X \leq \mathbb{E}[X]]>0\).

\section*{Sample via Modification}
- Example Vertex Cover: remove vertices/edges at random

\section*{Lovász Local Lemma}

- Show that something exists by showing that all events that prevent its existence do not occur, with positive probability
- Lemma works as long as there are not too many dependencies```

