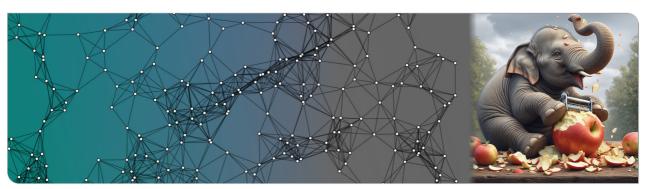


Probability and Computing – The Peeling Algorithm

Stefan Walzer, Maximilian Katzmann | WS 2023/2024



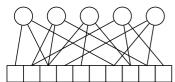
Content

- 1. Cuckoo hashing with more than two hash functions
- 2. The Peeling Algorithm
- 3. The Peeling Theorem

Content

- 1. Cuckoo hashing with more than two hash functions

Cuckoo Hashing with one table and k hash functions



$$n\in\mathbb{N}$$
 keys $m\in\mathbb{N}$ table size $lpha=rac{n}{m}$ load factor $h_1,\ldots,h_k\sim\mathcal{U}([m]^D)$ hash functions \hookrightarrow Could also use a separate table per hash function.

randomWalkInsert(x)

while $x \neq \bot$ do // TODO: limit sample $i \sim \mathcal{U}([k])$ $swap(x,T[h_i(x)])$

(some improvements possible)

Theorem (without proof)

For each $k \in \mathbb{N}$ there is a **threshold** c_k^* such that:

- if $\alpha < c_k^*$ all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.
- if $\alpha > c_k^*$ **not** all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.

$$c_2^* = \frac{1}{2}, \quad c_3^* \approx 0.92, \quad c_4^* \approx 0.98, \dots$$

Conjecture

If $\alpha < c_{\star}^*$ then the expected number of steps of successful insertions is $\mathcal{O}(1)$.

→ several proof attempts for random walk and other algorithms exist, with partial success

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

Static Hash Tables

Static Hash Table

construct(S): builds table T with key set S
lookup(x): checks if x is in T or not

→ no insertions or deletions after construction!

Constructing cuckoo hash tables:

- solved by Khosla 2013: "Balls into Bins Made Faster"
- matching algorithm resembling preflow push
- expected running time $\mathcal{O}(n)$, finds placement whenever one exists
- not in this lecture

Greedily constructing cuckoo hash tables

- Peeling algorithm: simple but sophisticated analysis
- interesting applications beyond hash tables (see "retrieval" in next lecture)

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

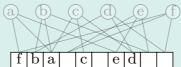
Content

- 2. The Peeling Algorithm

The Peeling Algorithm

constructByPeeling($S \subseteq D, h_1, h_2, h_3 \in [m]^D$)

```
T \leftarrow [\bot, \ldots, \bot] // empty table of size m
while \exists i \in [m] : \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\} do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow x
    S \leftarrow S \setminus \{x\}
if S = \emptyset then
    return T
else
    return NOT-PEELABLE
```



Exercise

- Success of constructByPeeling does not depend on choices for i made by while.
- constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

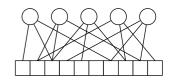
Peelability and the Cuckoo Graph

Cuckoo Graph and Peelability

The Cuckoo Graph is the bipartite graph

$$G_{S,h_1,h_2,h_3} = (S,[m],\{(x,h_i(x)) \mid x \in S, i \in [3]\})$$

- Call G_{S,h_1,h_2,h_3} **peelable** if constructByPeeling (S, h_1, h_2, h_3) succeeds.
- If $h_1, h_2, h_3 \sim \mathcal{U}([m]^D)$ then the distribution of G_{S,h_1,h_2,h_3} does not depend on S. We then simply write $G_{m,\alpha m}$.
 - \blacksquare m \square -nodes and $|\alpha m|$ - \square -nodes
 - think: α is constant and $m \to \infty$.



Peeling simplified (not computing placement)

while $\exists \Box$ -node of degree 1 do remove it and its incident ()

G is peelable if and only if this algorithm removes all O-nodes.

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

Content

Peeling Theorem

Peeling Threshold

Let
$$c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81$$
.

Theorem (today's goal)

Let $\alpha < c_3^{\Delta}$. Then $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$.

Remark: More is known.

- For " $\alpha < c_3^{\Delta}$ " we get "peelable" with probability $1 \mathcal{O}(1/m)$.
- For " $\alpha > c_3^{\Delta}$ " we get "not peelable" with probability $1 \mathcal{O}(1/m)$.
- Corresponding thresholds c_k^{Δ} for $k \geq 3$ hash functions are also known.

Exercise: What about k = 2?

Peeling does not reliably work for k = 2 for any $\alpha > 0$.

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem n**e**nnnooooooooooo

Peeling Theorem: Proof outline

Theorem (today's goal)

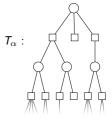
Let $\alpha < c_3^{\Delta}$. Then $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$.

Proof Idea

The random (possibly) infinite tree T_{α} can be peeled for $\alpha < c_3^{\Delta}$ and T_{α} is locally like $G_{m,\alpha m}$.

Steps

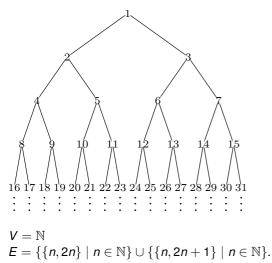
- What is an infinite tree in general?
- What is T_{α} in particular?
- What does peeling mean in this setting?
- What role does c_3^{Δ} play?
- What does it mean for T_{α} to be locally like $G_{m,\alpha m}$?
- What is the probability that a fixed key of $G_{m,\alpha m}$ is peeled?
- What is the probability that *all* keys of $G_{m,\alpha m}$ are peeled?



Cuckoo hashing with more than two hash functions

The Peeling Algorithm

What is an infinite tree in general?



Tree Definitions

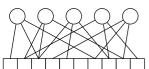
- connected and acyclic sensible and satisfied
- connected and |E| = |V| 1 Xnot sensible

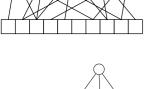
Cuckoo hashing with more than two hash functions

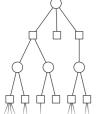
The Peeling Algorithm

The Peeling Theorem იიი●იооооооооооо

iii What is \mathcal{T}_lpha in particular?







Observations for the finite Graph $G_{m,\alpha m}$

- each \bigcirc has 3 \square as neighbours (rare exception: $h_1(x), h_2(x), h_3(x)$ not distinct)
- each \square has random number X of \bigcirc as neighbours with $X \sim Bin(3n, \frac{1}{m}) = Bin(3\lfloor \alpha m \rfloor, \frac{1}{m})$. In an exercise you'll show

$$\Pr[X = i] \stackrel{m \to \infty}{\longrightarrow} \Pr_{Y \sim Pois(3\alpha)}[Y = i].$$

Definition of the (possibly) infinite random tree T_{α}

- root is and has three □ as children
- each
 □ has random number of
 ○ children, sampled Pois(3α) (independently for each □).
- each non-root has two □ as children.

Remark: T_{α} is finite with positive probability > 0, e.g. when the first three $Pois(3\alpha)$ random variables come out as 0. But T_{α} is also infinite with positive probability.

Cuckoo hashing with more than two hash functions $\circ\circ\circ$

The Peeling Algorithm

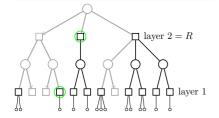
What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless □-node do remove it and its incident ()

 \hookrightarrow not well defined outcome on T_{\circ} !

 \hookrightarrow but well defined on T_{α}^{R} !



Peel only the first $R \in \mathbb{N}$ layers

- Let T_{α}^{R} be the first 2R + 1 levels of T_{α} .
- R layers of __-nodes, labeled bottom to top.
- Run peeling on T_{α}^{R} (later $R \to \infty$).
- \hookrightarrow Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace "□-node of degree 1" condition with stronger "childless □-node".
 - prevents peeling of __-nodes with one child and no parent
 - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
 - → one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

What does peeling mean in this setting? (2)

Observation

Let $q_R = \Pr[\text{root survives when peeling } T_{\alpha}^R]$. The values q_R are decreasing in R.

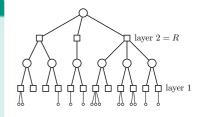
Peeling Algorithm

while ∃ childless □-node do remove it and its incident O

Proof.

Assume when peeling T_{α}^{R} the sequence $\vec{x} = (x_1, \dots, x_k)$ is a valid sequence of \square -node choices. Then \vec{x} is also valid when peeling T_{α}^{R+1} .

peeling T_{α}^{R} removes the root \Rightarrow peeling T_{α}^{R+1} removes the root root survives when peeling $T_{\alpha}^{R+1} \Rightarrow \text{peeling } T_{\alpha}^{R}$ removes the root $q_{R+1} < q_R$

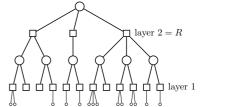


Cuckoo hashing with more than two hash functions

The Peeling Algorithm

What does peeling mean in this setting? (3)

Peeling T_{α}^{R} bottom up



Survival probabilities $p_i := \Pr[\Box \text{-node in layer } i \text{ is } not \text{ peeled}]$

$$p_1 = \Pr[\Box$$
-node has ≥ 1 child]

$$= \Pr_{Y \sim Pois(3\alpha)}[Y > 0] = 1 - e^{-3\alpha}.$$

$$p_i = \Pr[\text{layer } i \square \text{-node } v \text{ has } \ge 1 \text{ } surviving \text{ child}]$$

$$= \Pr_{X \sim Pois(3\alpha p_{i-1}^2)}[X > 0] = 1 - e^{-3\alpha p_{i-1}^2}.$$

$$Y := \text{number of (initial) children of } v$$

$$X := \text{ number of survivas if both its } \square$$

each child
$$\bigcirc$$
-node survives if both its \square -children from layer $i-1$ survive \rightsquigarrow probability p_{i-1}^2 .

$$\Rightarrow Y \sim Pois(3\alpha)$$
 and $X \sim Bin(Y, p_{i-1}^2)$.

$$\Rightarrow Y \sim Pois(3\alpha)$$
 and $X \sim Bin(Y, p_{i-1}^2)$.

$$\Rightarrow X \sim Pois(3\alpha p_{i-1}^2). \rightsquigarrow exercise!$$

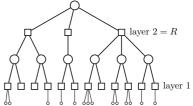
Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem nnnnnoō•00000000000

What does peeling mean in this setting? (3)

Peeling T_{α}^{R} bottom up



Survival probabilities $p_i := \Pr[\Box \text{-node in layer } i \text{ is } not \text{ peeled}]$

$$p_1 = \Pr[\square$$
-node has ≥ 1 child]

$$= \Pr_{Y \sim Pois(3\alpha)}[Y > 0] = 1 - e^{-3\alpha}.$$

$$p_i = \Pr[\text{layer } i \square \text{-node } v \text{ has } \ge 1 \text{ } surviving \text{ child}]$$

$$= \Pr_{X \sim Pois(3\alpha p_{i-1}^2)}[X > 0] = 1 - e^{-3\alpha p_{i-1}^2}$$

$$\square$$
-survival probabilities. With $p_0 := 1$ we have

$$p_i = \begin{cases} 1 & \text{if } i = 0 \\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \end{cases}$$

Moreover:
$$q_R := \Pr[\text{root survives}] = p_R^3$$
.

Cuckoo hashing with more than two hash functions

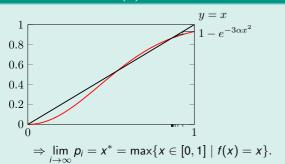
The Peeling Algorithm

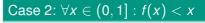
The Peeling Theorem nnnnnoō•00000000000

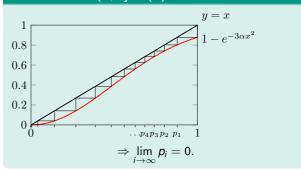
$\overline{\mathbf{W}}$ What role does $c_3^\Delta pprox 0.81$ play?

$$p_{i} = \begin{cases} 1 & \text{if } i = 0 \\ 1 - e^{-3\alpha p_{i-1}^{2}} & \text{if } i = 1, 2, \dots \\ \hookrightarrow \text{consider } f(x) = 1 - e^{-3\alpha x^{2}} \end{cases}$$

Case 1: $\exists x > 0 : f(x) = x$.







Cuckoo hashing with more than two hash functions

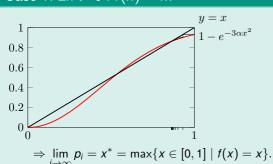
The Peeling Algorithm

What role does $c_3^{\Delta} \approx 0.81$ play?

$$p_i = \begin{cases} 1 & \text{if } i = 0\\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \end{cases}$$

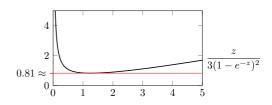
$$\Rightarrow \text{consider } f(x) = 1 - e^{-3\alpha x^2}$$

Case 1: $\exists x > 0 : f(x) = x$.



Case
$$1 \Leftrightarrow \exists x > 0 : x = 1 - e^{-3\alpha x^2}$$

 $\Leftrightarrow \exists x > 0 : x^2 = (1 - e^{-3\alpha x^2})^2$
 $\Leftrightarrow \exists z > 0 : \frac{z}{3\alpha} = (1 - e^{-z})^2 / z = 3\alpha x^2$
 $\Leftrightarrow \exists z > 0 : \alpha = \frac{z}{3(1 - e^{-z})^2}$
 $\Leftrightarrow \alpha \ge \min_{z>0} \frac{z}{3(1 - e^{-z})^2} =: c_3^{\Delta} \approx 0.81$



Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem nnnnnoōo•0000000000

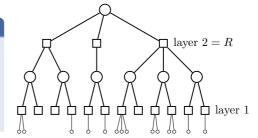
Interim Conclusion: What we learned about peeling T_{α}

Lemma

For $\alpha < c_3^{\Delta} \approx 0.81$ we have

$$\lim_{i\to\infty} p_i = 0.$$

"Root rarely survives for large R."



Cuckoo hashing with more than two hash functions

The Peeling Algorithm

v What does it mean for T_{α} to be locally like $G_{m,\alpha m}$?

Neighbourhoods in T_{α} and G

Let $R \in \mathbb{N}$. We consider

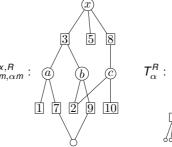
- T_{α}^{R} as before and
- for any fixed $x \in S$ the subgraph $G_{m,\alpha m}^{x,R}$ of $G_{m,\alpha m}$ induced by all nodes with distance at most 2R from x.

Lemma

For any $R \in \mathbb{N}$, the **distribution** of $G_{m,\alpha m}^{x,R}$ converges the distribution of T_{α}^{R} , i.e.

$$\forall T: \lim_{m \to \infty} \Pr[G_{m,\alpha m}^{x,R} = T] = \Pr[T_{\alpha}^{R} = T].$$

 $G_{m,\alpha m}$:



The Peeling Algorithm

The Peeling Theorem nnnnnoōooo•oooooo

Cuckoo hashing with more than two hash functions

$lue{\mathbf{V}}$ Distribution of \mathcal{T}_{α}^R

e.g. for y = (2, 0, 1, 4, 2, 1, 0, 3, 2):

Lemma

Let T_y be a possible outcome of T_α^R given by a finite sequence $y=(y_1,\ldots,y_k)\in\mathbb{N}_0^k$ specifying the number of children of \square -nodes in level order. Then

$$\Pr[T_{\alpha}^{R} = T_{y}] = \prod_{i=1}^{k} \Pr_{Y \sim Pois(3\alpha)}[Y = y_{i}].$$

$$T_y =$$

Cuckoo hashing with more than two hash functions $\circ\circ\circ$

The Peeling Algorithm

ightharpoonup No cycles in $G_{m \alpha m}^{\chi,H}$

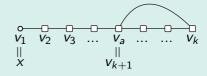
Lemma

Assume $R = \mathcal{O}(1)$. The probability that $G_{m,\alpha m}^{x,R}$ contains a cycle is $\mathcal{O}(1/m)$.

Proof.

If $G_{m,\alpha,m}^{x,R}$ contains a cycle then we have

- **a** sequence $(v_1 = x, v_2, \dots, v_k, v_{k+1} = v_a)$ of nodes with $a \in [k]$
- of length k < 4R (consider BFS tree for x and additional edge in it)
- for each $i \in \{1, ..., k\}$ an index $j_i \in \{1, 2, 3\}$ of the hash function connecting v_i and v_{i+1} . (If a = k - 1 then $j_k \neq j_{k-1}$.)



 $\Pr[\exists \mathsf{cycle in} \ G^{\mathsf{x},R}_{mom}] \leq \Pr[\exists 2 \leq k \leq 4R : \exists v_2, \dots, v_k : \exists a \in [k] : \exists j_1, \dots, j_k \in [3] : \forall i \in [k] : h_{j_i} \ \mathsf{connects} \ v_i \ \mathsf{to} \ v_{j+1}]$

$$\leq \sum_{k=2}^{4R} \sum_{v_2, \dots, v_k} \sum_{a=1}^k \sum_{j_1, \dots, j_k} \prod_{i=1}^k \Pr[h_{j_i} \text{ connects } v_i \text{ to } v_{i+1}] \leq \sum_{k=2}^{4R} (\max\{m, n\})^{k-1} \cdot k \cdot 3^k \left(\frac{1}{m}\right)^k = \frac{1}{m} \sum_{k=2}^{4R} k \cdot 3^k = \mathcal{O}(1/m). \quad \Box$$

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem nnnnnoōooooo•ooooo

\mathbf{V} Distribution of $G_{m,\alpha m}^{x,H}$

Lemma

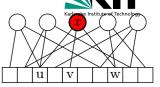
Let T_y be a possible outcome of T_{α}^R as before. Then

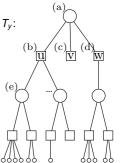
$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{\mathsf{x},\mathsf{R}}_{m,\alpha m}=T_{\mathsf{y}}]\overset{m\to\infty}{\longrightarrow}\prod_{i=1}^{\kappa}\mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[\mathsf{Y}=\mathsf{y}_i].$$

The following things have to "go right" for $G_{m,\alpha m}^{x,R} = T_v$.

a $h_1(x), h_2(x), h_3(x)$ pairwise distinct: probability $\stackrel{m \to \infty}{\longrightarrow} 1$ → non-distinct would give cycle of length 2. Unlikely by lemma.

Note: $3|\alpha m| - 3$ remaining hash values $\sim \mathcal{U}([m])$.





Cuckoo hashing with more than two hash functions

The Peeling Algorithm

\mathbf{V} Distribution of $G_{m,\alpha,m}^{X,R}$

Lemma

Let T_v be a possible outcome of T_α^R as before. Then

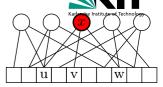
$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{\mathsf{x},\mathsf{R}}_{m,\alpha m}=T_{\mathsf{y}}]\overset{m\to\infty}{\longrightarrow}\prod_{i=1}^{\mathsf{n}}\mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[\mathsf{Y}=\mathsf{y}_i].$$

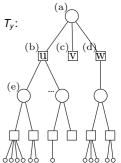
Exactly $y_1 = 2$ of the remaining hash values are u.

$$\hookrightarrow \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Bin}(3 \mid \alpha m \mid -3, \frac{1}{m})}[\mathsf{Y} = 2] \overset{m \to \infty}{\longrightarrow} \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Pois}(3\alpha)}[\mathsf{Y} = 2]. \to \mathsf{exercise}$$

Moreover: The two hash values must belong to 2 distinct keys. Probability $\stackrel{m\to\infty}{\longrightarrow}$ 1. \hookrightarrow non-distinct would give cycle of length 2.

Note: The $3|\alpha m| - 5$ remaining hash values are $\sim \mathcal{U}([m] \setminus \{u\})$. \rightarrow exercise





Cuckoo hashing with more than two hash functions

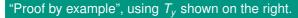
The Peeling Algorithm

\mathbf{V} Distribution of $G_{m,\alpha,m}^{X,R}$

Lemma

Let T_v be a possible outcome of T_α^R as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{\mathsf{x},\mathsf{R}}_{m,\alpha m}=T_{\mathsf{y}}]\overset{m\to\infty}{\longrightarrow}\prod_{i=1}^{\kappa}\mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[\mathsf{Y}=\mathsf{y}_i].$$



None of the remaining hash values are v.

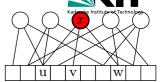
$$\hookrightarrow \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Bin}(3\lfloor \alpha m \rfloor - 5, \frac{1}{m-1})}[\mathsf{Y} = \mathsf{0}] \overset{m \to \infty}{\longrightarrow} \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Pois}(3\alpha)}[\mathsf{Y} = \mathsf{0}].$$

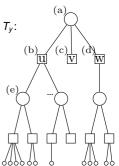
Note: The $3|\alpha m| - 5$ remaining hash values are $\sim \mathcal{U}([m] \setminus \{u, v\})$.

One of the remaining hash values is w.

$$\hookrightarrow \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Bin}(3\lfloor \alpha m \rfloor - 5, \frac{1}{m-2})}[\mathsf{Y} = 1] \overset{m \to \infty}{\longrightarrow} \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Pois}(3\alpha)}[\mathsf{Y} = 1].$$

. . .





Cuckoo hashing with more than two hash functions

The Peeling Algorithm

\mathbf{V} Distribution of $G_{m,\alpha,m}^{X,R}$

Lemma

Let T_y be a possible outcome of T_{α}^R as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{\mathsf{x},\mathsf{R}}_{m,\alpha m}=T_{\mathsf{y}}]\overset{m\to\infty}{\longrightarrow}\prod_{i=1}^{\mathsf{K}}\mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[\mathsf{Y}=\mathsf{y}_i].$$

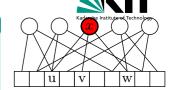
Proof sketch in general (some details ommitted)

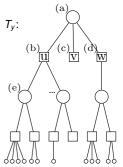
■ General case at *i*-th \square -node. Want: probability that $G_{m,\alpha}^{x,R}$ continues to match T_v . Note: T_{V} is fixed, so i and the number c_{i} of previously revealed hash values is bounded.

$$\mathsf{Pr}_{\mathsf{Y} \sim \mathit{Bin}(3 \lfloor \alpha m \rfloor - c_i, \frac{1}{m - i + 1})}[\mathsf{Y} = y_i] \overset{m \to \infty}{\longrightarrow} \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Pois}(3\alpha)}[\mathsf{Y} = y_i].$$

Moreover, those y_i hash values must belong to distinct fresh keys. Probability $\stackrel{m\to\infty}{\longrightarrow}$ 1 \hookrightarrow otherwise we'd have a cycle.

• General case for \bigcirc -node. The two children must be fresh: probability $\stackrel{m\to\infty}{\longrightarrow}$ 1 \hookrightarrow otherwise there would be a cycle.





Cuckoo hashing with more than two hash functions

The Peeling Algorithm

Probability that a specific key survives peeling

Lemma

Let $\alpha < c_3^{\Delta}$. Let x be any \bigcirc -node in $G_{m,\alpha m}$ as before (chosen before sampling the hash functions). Let

$$\mu_m := \mathsf{Pr}_{h_1,h_2,h_3 \sim \mathcal{U}([m]^{\mathbb{D}})}[x \text{ is removed when peeling } G_{m,\alpha m}].$$

Then
$$\lim_{m\to\infty}\mu_m=1$$
.

$\mathbf{vi} \ \mu_m := \Pr[x \text{ is removed when peeling } G_{m,\alpha m}] \overset{m \to \infty}{\longrightarrow} 1$

Let $\delta > 0$ be arbitrary. We will show $\lim_{m \to \infty} \mu_m \ge 1 - 2\delta$.

Let
$$R \in \mathbb{N}$$
 be such that $q_R < \delta$.

$$\mathcal{Y}^R := \{ \text{all possibilities for } T_{\alpha}^R \}$$

$$\mathcal{Y}_{peel}^{R} := \{ T \in \mathcal{Y}^{R} \mid \text{ peeling } T \text{ removes the root} \}$$

Let
$$\mathcal{Y}_{\mathrm{fin}}^{R} \subseteq \mathcal{Y}^{R}$$
 be a *finite* set such that $\Pr[\mathcal{T}_{\alpha}^{R} \notin \mathcal{Y}_{\mathrm{fin}}^{R}] \leq \delta$

$$\lim_{m o \infty} \mu_m \geq \lim_{m o \infty} \Pr[G^{x,R}_{m,\alpha m} \in \mathcal{Y}^R_{\mathsf{peel}}]$$

$$\geq \lim_{m o \infty} \Pr[extit{G}_{m, lpha m}^{ exttt{x}, extit{R}} \in \mathcal{Y}_{ exttt{peel}}^{ extit{R}} \cap \mathcal{Y}_{ ext{fin}}^{ extit{R}}]$$

$$= \lim_{m \to \infty} \sum_{T \in \mathcal{Y}_{\mathsf{peel}}^R \cap \mathcal{Y}_{\mathsf{fin}}^R} \mathsf{Pr}[G_{m,\alpha m}^{\mathsf{x},R} = T]$$

$$=\sum_{T\in\mathcal{Y}_{\mathrm{nod}}^{R}\cap\mathcal{Y}_{\mathrm{fin}}^{R}} \mathsf{lim}_{m o\infty} \mathsf{Pr}[G_{m,\alpha m}^{x,R}=T]$$

$$=\sum_{T\in\mathcal{Y}_{\text{pool}}^R\cap\mathcal{Y}_{\text{fin}}^R}\Pr[T_{\alpha}^R=T]$$

$$=\Pr[\textit{T}_{\alpha}^{\textit{R}} \in \mathcal{Y}_{\text{peel}}^{\textit{R}} \cap \mathcal{Y}_{\text{fin}}^{\textit{R}}] = 1 - \Pr[\textit{T}_{\alpha}^{\textit{R}} \notin \mathcal{Y}_{\text{peel}}^{\textit{R}} \cap \mathcal{Y}_{\text{fin}}^{\textit{R}}]$$

$$= 1 - \Pr[T_{\alpha}^{R} \notin \mathcal{Y}_{\text{peel}}^{R} \lor T_{\alpha}^{R} \notin \mathcal{Y}_{\text{fin}}^{R}]$$

$$\geq 1 - \Pr[T_{\alpha}^R \notin \mathcal{Y}_{\mathsf{peel}}^R] - \Pr[T_{\alpha}^R \notin \mathcal{Y}_{\mathsf{fin}}^R] \geq 1 - 2\delta.$$

possible because
$$\lim_{R\to\infty}q_R=0$$

note:
$$\Pr[T_{\alpha}^R \notin \mathcal{Y}_{\text{peel}}^R] = q_R \leq \delta$$
. uses that \mathcal{Y}^R is countable and $\sum_{T \in \mathcal{Y}_R} \Pr[T_{\alpha}^R = T] = 1$.

peeling only in *R*-neighbourhood of *x* is "weaker"

finite sums commute with limit

previous lemmas

De Morgan's laws: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

union bound: $Pr[E_1 \vee E_2] \leq Pr[E_1] + Pr[E_2]$

Cuckoo hashing with more than two hash functions

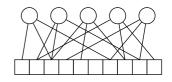
The Peeling Algorithm

Will Proof of the Peeling Theorem

Theorem

Let $\alpha < c_3^{\Delta}$. Then

$$Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1).$$



Proof

Let $n = |\alpha m|$ and $0 \le s \le n$ the number of \bigcirc nodes surviving peeling.

last lemma: each \bigcirc survives with probability o(1).

linearity of expectation $\mathbb{E}[s] = n \cdot o(1) = o(n)$.

Exercise: $\Pr[s \in \{1, \dots, \delta n\}] = \mathcal{O}(1/m)$ if $\delta > 0$ is a small enough constant.

Markov: $\Pr[s > \delta n] \leq \frac{\mathbb{E}[s]}{\delta n} = \frac{o(n)}{\delta n} = o(1).$

 $\Pr[s > 0] = \Pr[s \in \{1, ..., \delta n\}] + \Pr[s > \delta n] = \mathcal{O}(1/m) + o(1) = o(1).$ finally:

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

Conclusion

Peeling Process

- greedy algorithm for placing keys in cuckoo table
- works up to a load factor of $c_3^{\Delta} \approx 0.81$

We saw glimpses of important techniques

- Local interactions in large graphs. Also used in statistical physics.
- Galton-Watson Processes / Trees. Random processes related to T_{α} .
- Local weak convergence. How the finite graph $G_{m,\alpha m}$ is locally like T_{α} .

But wait, there's more!

- Further applications of peeling
 - retrieval data structures (next lecture)
 - perfect hash functions (next lecture)

- set sketches
- linear error correcting codes

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem nnnnnoōooooooooo

Anhang: Mögliche Prüfungsfragen I

- Cuckoo Hashing und der Schälalgorithmus
 - (Wie) kann man Cuckoo Hashing mit mehr als 2 Hashfunktionen aufziehen?
 - Welcher Vorteil ergibt sich im Vergleich zu 2 Hashfunktionen?
 - Wie funktioniert der Schälalgorithmus zur Platzierung von Schlüsseln in einer Cuckoo Hashtabelle?
 - Schälen lässt sich als einfacher Prozess auf Graphen auffassen. Wie?
 - Was besagt das Hauptresultat, das wir zum Schälprozess bewiesen haben?
- Beweis des Schälsatzes. Mir ist klar, dass der Beweis äußerst kompliziert ist.
 - Im Beweis haben zwei Graphen eine Rolle gespielt ein endlicher und ein (potentiell) unendlicher. Wie waren diese Graphen definiert?
 - Welcher Zusammenhang besteht zwischen der Verteilung der Knotengrade in T_{α} und $G_{m,\alpha m}$?