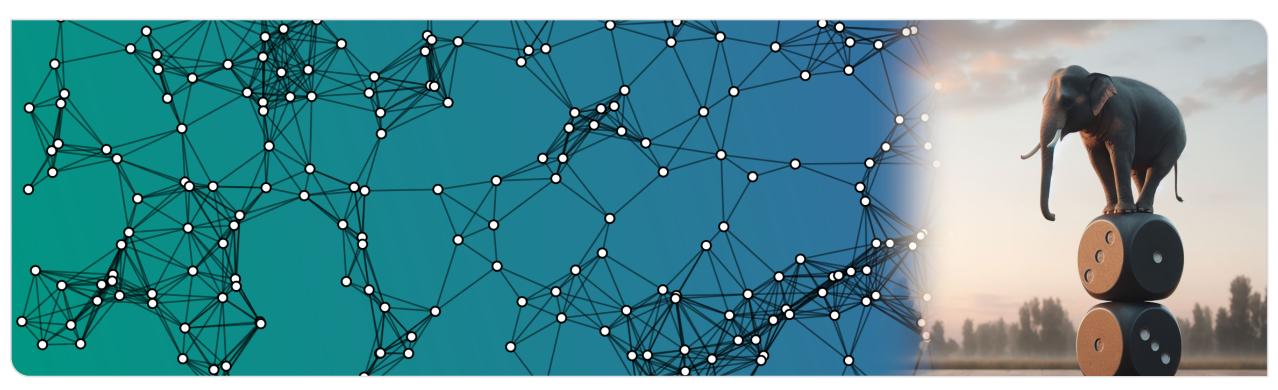


Probability & Computing

Overview & The Power of Randomness



Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

Idea

Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that ...

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that ...
 - Maybe we only *expect* the approach to be fast

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that ...
 - Maybe we only expect the approach to be fast
 - Maybe we only expect the approach to work correctly

Randomness facilitates the development of algorithms and data structures.

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."

"Randomized Algorithms", Motwani & Raghavan, 1995

Sometimes a randomized approach is the only solution!

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that ...
 - Maybe we only expect the approach to be fast
 - Maybe we only *expect* the approach to work correctly
- Goal: develop methods that fail only rarely

Useful when bridging the theory-practice gap regarding the performance of an appraoch

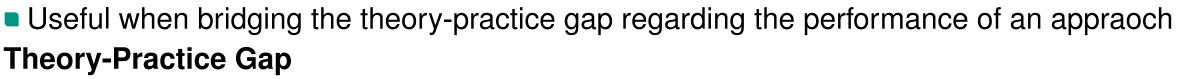
Useful when bridging the theory-practice gap regarding the performance of an appraoch
 Theory-Practice Gap

Algorithm performance often measured by worst-case running time (strong guarantee)

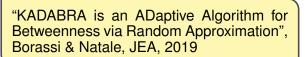
Useful when bridging the theory-practice gap regarding the performance of an appraoch
 Theory-Practice Gap

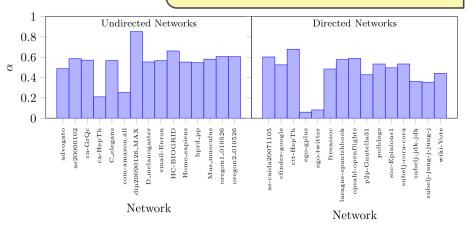
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected

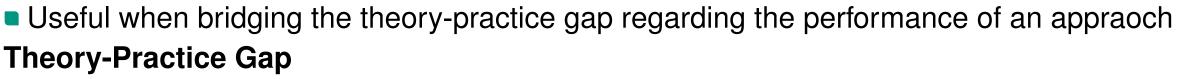
- Useful when bridging the theory-practice gap regarding the performance of an appraoch
 Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case



- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case
 - sublinear running time observed on many real-world networks



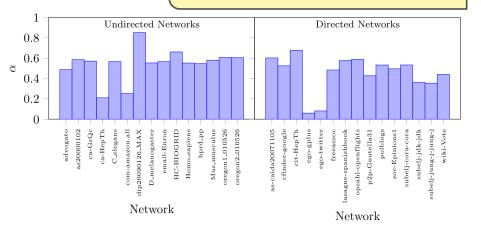


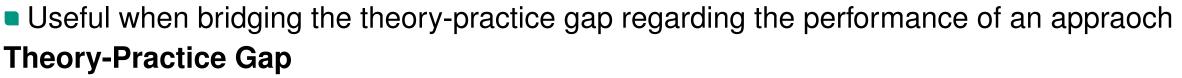


- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case
 - sublinear running time observed on many real-world networks

Average-Case Analysis

Distinguish practical instances from the worst case

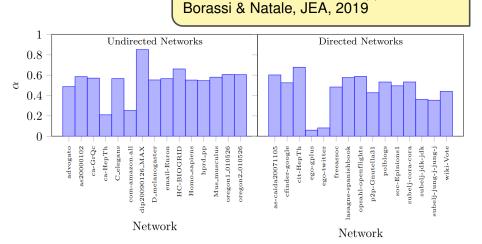




- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case
 - sublinear running time observed on many real-world networks

Average-Case Analysis

- Distinguish practical instances from the worst case
- Define probabilistic distributions (over possible inputs) that favor realistic instances



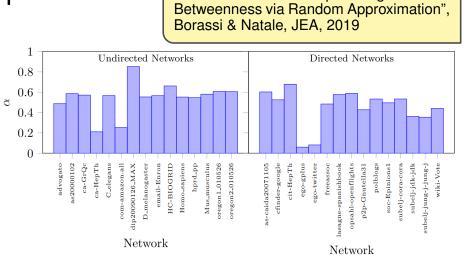
"KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation",

Useful when bridging the theory-practice gap regarding the performance of an appraoch
 Theory-Practice Gap

- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case
 - sublinear running time observed on many real-world networks

Average-Case Analysis

- Distinguish practical instances from the worst case
- Define probabilistic distributions (over possible inputs) that favor realistic instances
- Analyze performance assuming input is drawn from the distribution



"KADABRA is an ADaptive Algorithm for

Useful when bridging the theory-practice gap regarding the performance of an appraoch
 Theory-Practice Gap

0.8

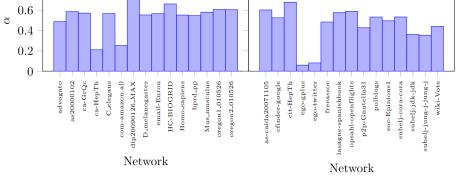
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
 - no asymptotic speed-up compared to standard BFS in the worst case
 - sublinear running time observed on many real-world networks

Average-Case Analysis

- Distinguish practical instances from the worst case
- Define probabilistic distributions (over possible inputs) that favor realistic instances
- Analyze performance assuming input is drawn from the distribution
- Expect good performance when hard instances are sufficiently unlikely

Undirected Networks

"KADABRA is an ADaptive Algorithm for



Overview

Randomized Algorithms & Data Structures

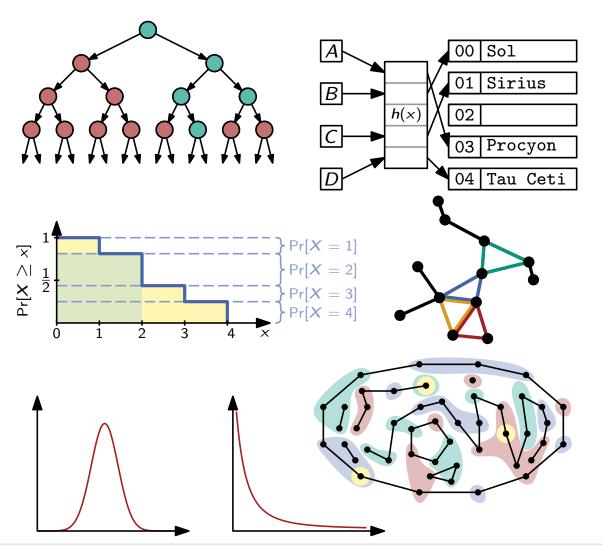
- Probability Amplification
- Streaming / Online-algorithms
- Hashing

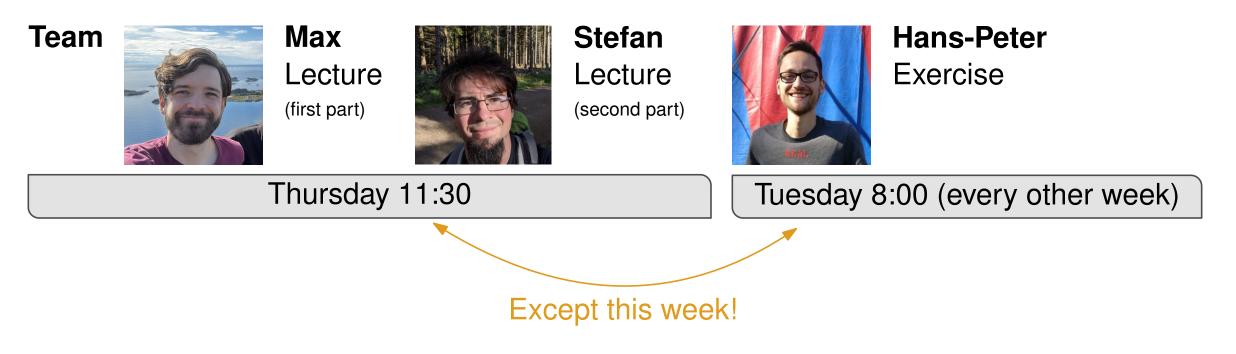
Average-Case Analysis

- Random Graphs
- Algorithm Analysis

Toolbox

- Probabilistic Method
- Yao's Principle
- Coupling
- Dealing with stochastic dependencies
- Concentration bounds





Stefan

Lecture

(second part)

Thursday 11:30

Hans-Peter Exercise

Tuesday 8:00 (every other week)

Website scale.iti.kit.edu/teaching/2023ws/randalg

Questions? Ilias, Discord, Matrix?

Karlsruhe Institute of Technology

Organization

Team

Stefan Lecture (second part)

Hans-Peter Exercise

Thursday 11:30

Assumed Background

- Algorithms and data structures
- Probability theory

Tuesday 8:00 (every other week)

Website scale.iti.kit.edu/teaching/2023ws/randalg

Questions? Ilias, Discord, Matrix?

Team

Thursday 11:30

Assumed Background

- Algorithms and data structures
- Probability theory

Lecture (second part)

Stefan

Hans-Peter Exercise

Tuesday 8:00 (every other week)

Website scale.iti.kit.edu/teaching/2023ws/randalg

Questions? Ilias, Discord, Matrix?

Sheets

Every week, hand in on the Thursday before the next exercise

Karlsruhe Institute of Technology

Organization

Team

Stefan Lecture (second part)

Hans-Peter Exercise

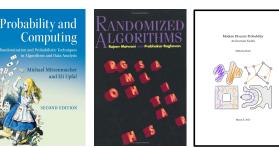
Thursday 11:30

Assumed Background

- Algorithms and data structures
- Probability theory

Material

- Slides
- Previous script
- Probability and Computing
- Randomized Algorithms
- Modern Discrete Probability



Tuesday 8:00 (every other week)

Website scale.iti.kit.edu/teaching/2023ws/randalg

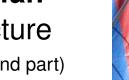
Questions? Ilias, Discord, Matrix?

Sheets

Every week, hand in on the Thursday before the next exercise

Team

Stefan Lecture (second part)



Hans-Peter Exercise

Thursday 11:30

Assumed Background

- Algorithms and data structures
- Probability theory

Material

- Slides
- Previous script
- Probability and Computing
- Randomized Algorithms
- Modern Discrete Probability

Tuesday 8:00 (every other week)

Website scale.iti.kit.edu/teaching/2023ws/randalg

Questions? Ilias, Discord, Matrix?

Sheets

Every week, hand in on the Thursday before the next exercise

Exam

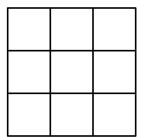
- Oral
- Requirment: sheets handed in regularly

Tic-Tac-Toe

- Players take turns placing \bigcirc and \times in 3 \times 3 grid
- First to get three in a line wins

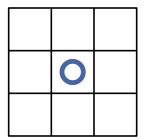
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



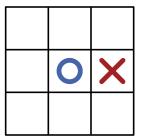
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



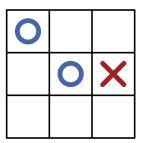
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



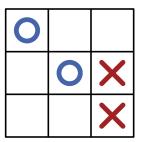
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



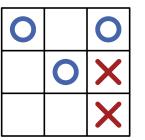
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



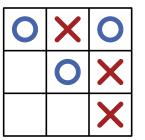
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



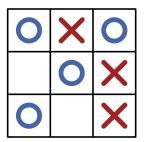
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



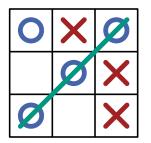
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid



Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

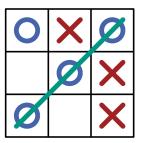


Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?



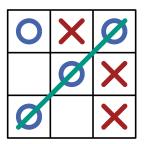
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

- Each node is a board configuration
- A parent-child relation represents a valid move



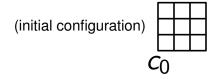
Tic-Tac-Toe

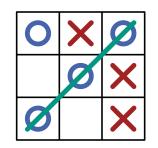
• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

- Each node is a board configuration
- A parent-child relation represents a valid move





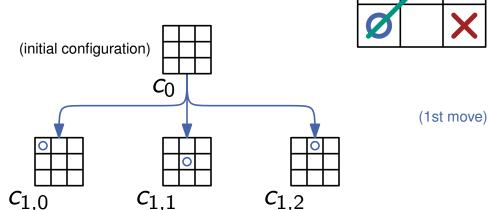
Tic-Tac-Toe

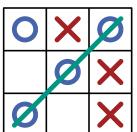
• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

- Each node is a board configuration
- A parent-child relation represents a valid move





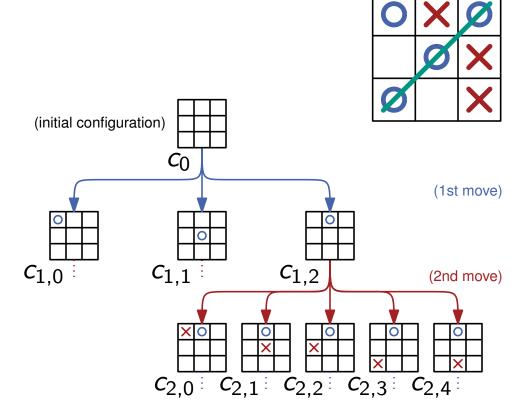
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

- Each node is a board configuration
- A parent-child relation represents a valid move



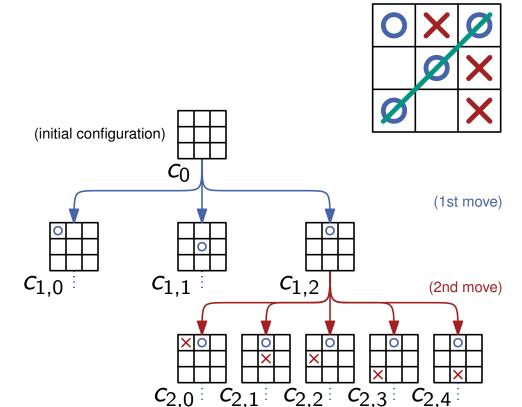
Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.
 What label do we put on the root?



Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

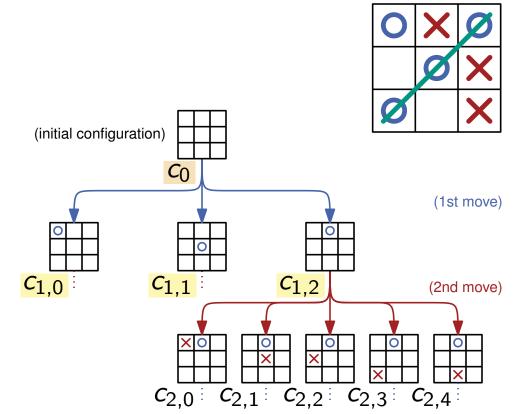
Can Player 2 win the game?

Tree of Moves

6

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.
 What label do we put on the root?

•
$$c_0 = 1$$
 if there exists no i such that $c_{1,i} = 0$



Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

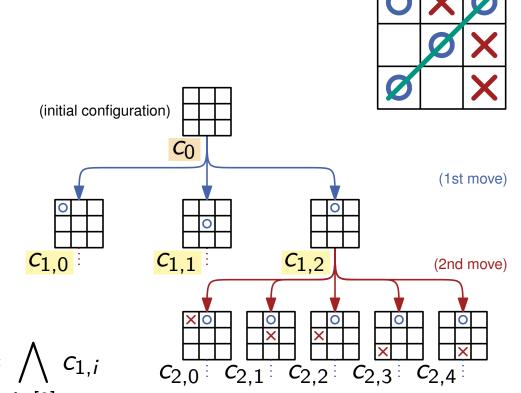
First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.
 What label do we put on the root?

•
$$c_0 = 1$$
 if there exists *no i* such that $c_{1,i} = 0$ $c_0 = \bigwedge_{i \in [2]} c_0 = 1$ or equivalently, if for *all i* we have $c_{1,i} = 1$



Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

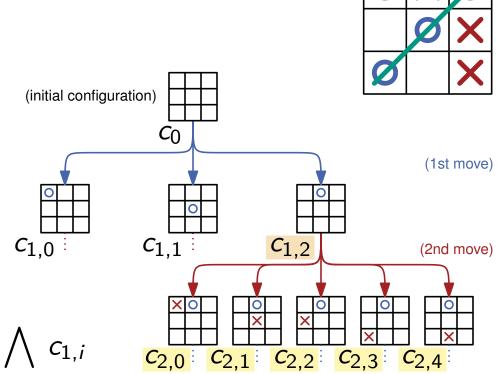
Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.
 What label do we put on the root?

•
$$c_0 = 1$$
 if there exists *no i* such that $c_{1,i} = 0$ $c_0 = \bigwedge_{i \in [2]}$ or equivalently, if for *all i* we have $c_{1,i} = 1$

• $c_{1,2} = 1$ if there exists an *i* such that $c_{2,i} = 1$



Tic-Tac-Toe

• Players take turns placing \bigcirc and \times in 3 \times 3 grid

First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

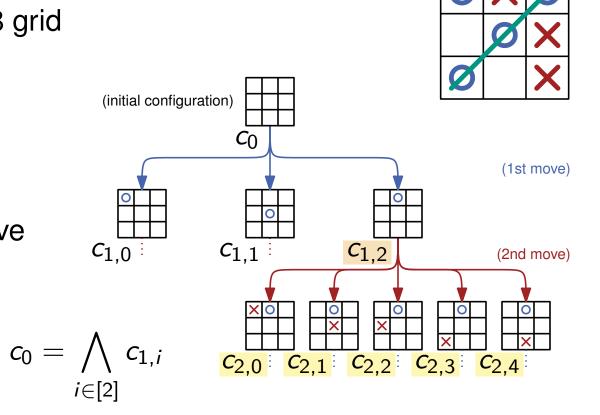
Each node is a board configuration

A parent-child relation represents a valid move

Label a config 1 if Player 2 can win, 0 o.w. What label do we put on the root?

• $c_0 = 1$ if there exists *no i* such that $c_{1,i} = 0$ or equivalently, if for all i we have $c_{1,i} = 1$

 $c_0 = \bigvee c_{2,i}$ • $c_{1,2} = 1$ if there exists an *i* such that $c_{2,i} = 1$



Structure

 \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves

 \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves

The root is a leaf

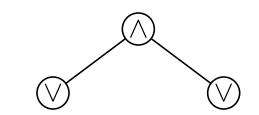
Structure

 \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves

 \blacksquare The root is a leaf or an $\wedge\text{-node}$

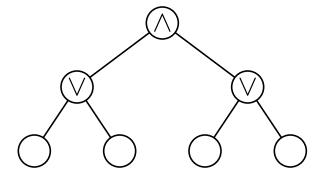
Structure

- \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land \text{-nodes}$ have only $\lor \text{-nodes}$ as children



Structure

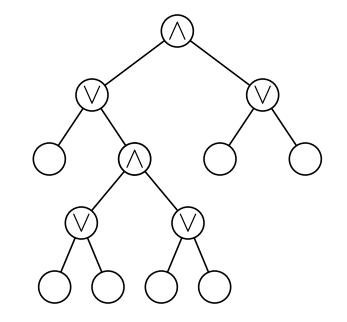
- \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes}, and leaves$
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land \text{-nodes}$ have only $\lor \text{-nodes}$ as children
- V-nodes have only AND/OR-trees as children



AND/OR-Trees

Structure

- \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land \text{-nodes}$ have only $\lor \text{-nodes}$ as children
- V-nodes have only AND/OR-trees as children



AND/OR-Trees

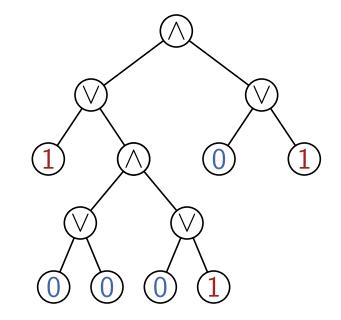
Structure

 \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves

- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land -nodes$ have only $\lor -nodes$ as children
- V-nodes have only AND/OR-trees as children

Evaluation

Leaves contain boolean values

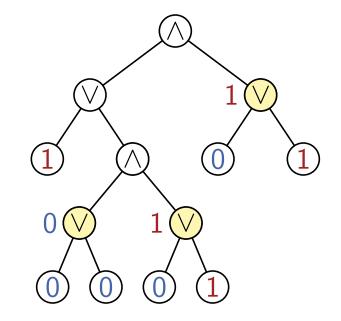


AND/OR-Trees

Structure

- Node types: \land -nodes, \lor -nodes, and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land -nodes$ have only $\lor -nodes$ as children
- V-nodes have only AND/OR-trees as children

- Leaves contain boolean values
- Inner nodes evaluate to ...
 - the disjunction of their children, for V-nodes



AND/OR-Trees

Structure

- Node types: \land -nodes, \lor -nodes, and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land -nodes$ have only $\lor -nodes$ as children
- V-nodes have only AND/OR-trees as children

- Leaves contain boolean values
- Inner nodes evaluate to ...
 - $\hfill \hfill \hfill$
 - the conjunction of their children, for \wedge -nodes

\bigotimes	1(\sum
	0	
0 0 1	\bigtriangledown	

AND/OR-Trees

Structure

- Node types: \land -nodes, \lor -nodes, and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land -nodes$ have only $\lor -nodes$ as children
- V-nodes have only AND/OR-trees as children

- Leaves contain boolean values
- Inner nodes evaluate to ...
 - $\hfill \hfill \hfill$
 - \blacksquare the conjunction of their children, for $\wedge\text{-nodes}$

1 💟		1(\mathcal{Q}
		0	
0		\bigtriangledown	
	0) (1)	

Structure

AND/OR-Trees

- Node types: \land -nodes, \lor -nodes, and leaves
- The root is a leaf or an \wedge -node
- \land -nodes have only \lor -nodes as children
- V-nodes have only AND/OR-trees as children

- Leaves contain boolean values
- Inner nodes evaluate to
 - the disjunction of their children, for \lor -nodes
 - the conjunction of their children, for \wedge -nodes

	1	$\overline{\mathbf{A}}$	
1	X	1	\mathbb{Q}
1		0	
0 🚫		\heartsuit	
	0		

7 Maximilian Katzmann, Stefan Walzer – Probability & Computing

AND/OR-Trees

Structure

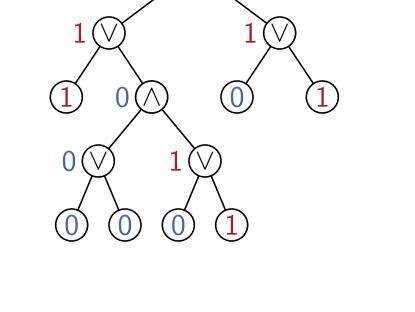
- \blacksquare Node types: $\land \text{-nodes}, \lor \text{-nodes},$ and leaves
- \blacksquare The root is a leaf or an $\wedge\text{-node}$
- $\blacksquare \land -nodes$ have only $\lor -nodes$ as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
 - $\hfill \ensuremath{\bullet}$ the disjunction of their children, for $\lor\hfill \ensuremath{\bullet}$ nodes
 - \blacksquare the conjunction of their children, for $\wedge\text{-nodes}$

Example Complexities

- Tic-Tac-Toe: 31896 (non-symmetric) games (leaves) Chess: approx. 10¹²³ leaves
- Checkers: approx. 10⁴⁰ leaves

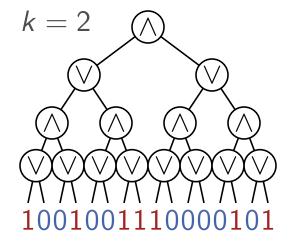


• Go (19×19) : approx. 10^{360} leaves

Deterministic Evaluation

Simplifying Assumption

Each inner node has two children
All leaves have the same depth 2k

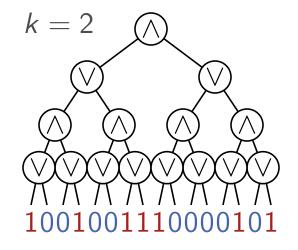


Deterministic Evaluation

Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely



Deterministic Evaluation

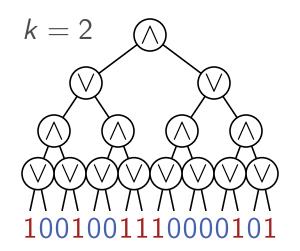
Simplifying Assumption

Each inner node has two children
 All loaves have the same depth 2k

- All leaves have the same depth 2k
 - $\Rightarrow A \text{ bit-string of length } n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

Compute all nodes bottom up



Deterministic Evaluation

Simplifying Assumption

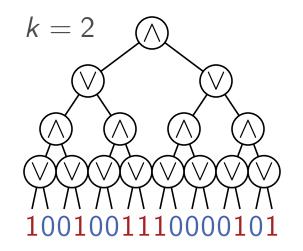
Each inner node has two children
 All loaves have the same depth 2k

- All leaves have the same depth 2k
 - $\Rightarrow A \text{ bit-string of length } n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

Compute all nodes bottom up

• Running time on layer ℓ : 2^{ℓ}



Deterministic Evaluation

Simplifying Assumption

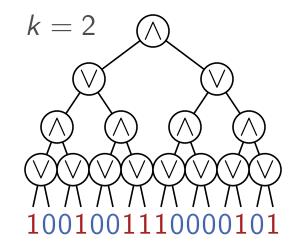
Each inner node has two children
 All leaves have the same depth 2k

- All leaves have the same depth 2k
 - $\Rightarrow A \text{ bit-string of length } n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$



Deterministic Evaluation

Simplifying Assumption

Each inner node has two children
 All leaves have the same depth 2/

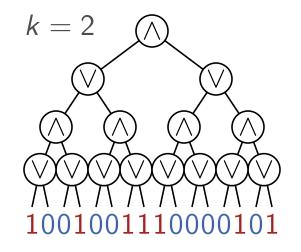
- All leaves have the same depth 2k
 - $\Rightarrow A \text{ bit-string of length } n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better?



Deterministic Evaluation

Simplifying Assumption

Each inner node has two children
 All leaves have the same depth 2/

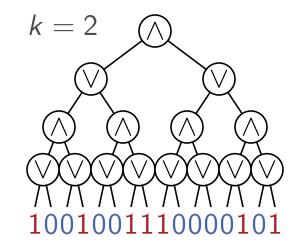
- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? **NO!**



Simplifying Assumption

Deterministic Evaluation

Each inner node has two children

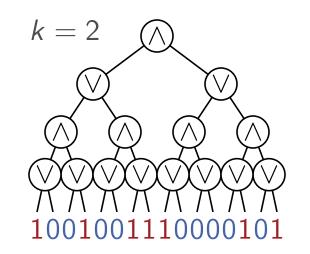
- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? **NO!**



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? **NO!**

Theorem: Let *A* be any deterministic AND/OR-tree-algorithm. For $k \ge 1$ there exists an input x_1, \ldots, x_{4^k} s.t. *A* visits all 4^k leaves and the output is the value of the last one visited.

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$

Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

 $\ell = 0$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \ge 1$ there exists an input x_1, \ldots, x_{4^k} s.t. A visits all 4^k leaves and the output is the value of the last one visited.

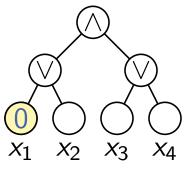
Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

• A visits \geq 1 leaf: w.l.o.g. $A \rightarrow x_1$

• Set
$$x_1 \coloneqq 0$$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

 $\ell = 0$

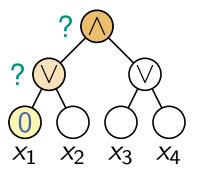
Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \ge 1$ there exists an input x_1, \ldots, x_{4^k} s.t. A visits all 4^k leaves and the output is the value of the last one visited.

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root not determined, yet)



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

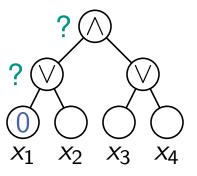
l=0

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

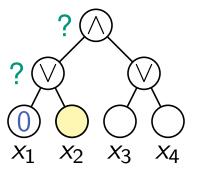
 ~ 1

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

Proof via Induction

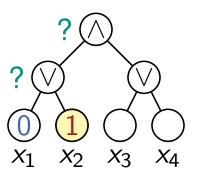
Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf

• Case 1:
$$A \rightarrow x_2$$

$$x_1 \coloneqq 1$$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

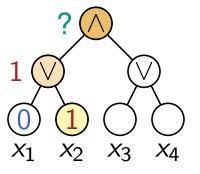
Can we do better? NO!

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$
 - $x_1 := 1$ (value of parent determined, but not of root)



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

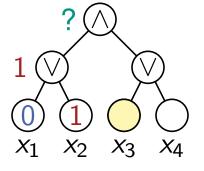
Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$
 - $x_1 := 1$ (value of parent determined, but not of root)

• w.l.o.g.
$$A \rightarrow x_3$$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

Proof via Induction

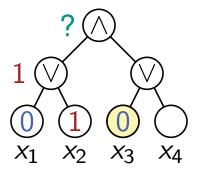
Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$
 - $x_1 := 1$ (value of parent determined, but not of root)

• w.l.o.g.
$$A \rightarrow x_3$$

• $x_3 := 0$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

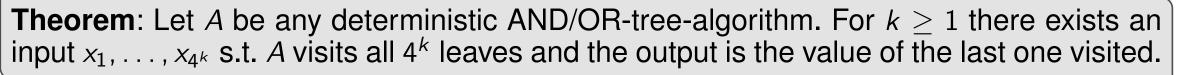
Can we do better? NO!

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$
 - $x_1 := 1$ (value of parent determined, but not of root)
 - w.l.o.g. $A \rightarrow x_3$
 - **a** $\chi_3 := 0$ (value of parent and root *not* determined, yet)



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

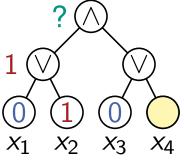
Can we do better? **NO!**

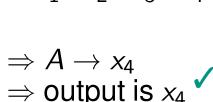
Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_2$
 - $x_1 := 1$ (value of parent determined, but not of root)
 - w.l.o.g. $A \rightarrow x_3$
 - **•** $\chi_3 := 0$ (value of parent and root *not* determined, yet)





Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

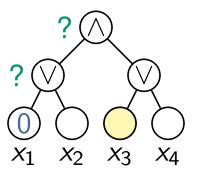
 ~ 1

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

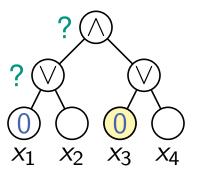
Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$

$$\bullet x_3 := 0$$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

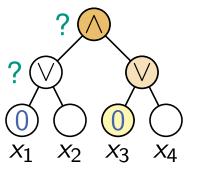
Can we do better? NO!

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$
 - $x_3 := 0$ (value of parent and root not determined, yet)



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

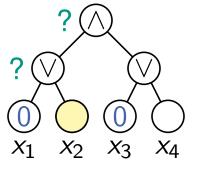
Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$
 - $x_3 := 0$ (value of parent and root *not* determined, yet)

• w.l.o.g.
$$A \rightarrow x_2$$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

Compute all nodes bottom up

Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

Proof via Induction

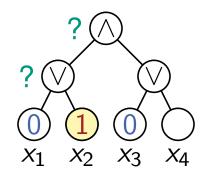
Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$
 - $x_3 := 0$ (value of parent and root *not* determined, yet)

• w.l.o.g.
$$A \rightarrow x_2$$

• $x_2 \coloneqq 1$



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$
 - $x_3 := 0$ (value of parent and root *not* determined, yet)
 - w.l.o.g. $A \rightarrow x_2$

• $\chi_2 := 1$ (value of parent determined, but not of root)

Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{\ell=0}^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

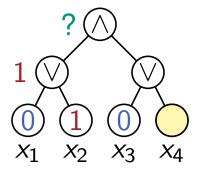
Can we do better? **NO!**

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Base:
$$k = 1$$

- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_1$
- Set $x_1 := 0$ (value of parent and root *not* determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_3$
 - $x_3 := 0$ (value of parent and root *not* determined, yet)
 - w.l.o.g. $A \rightarrow x_2$
 - **a** $\chi_2 := 1$ (value of parent determined, but not of root)



 $\Rightarrow A \rightarrow x_4$

 \Rightarrow output is x_4

Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

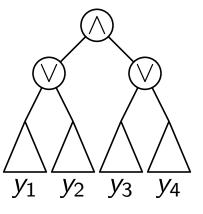
 $\ell = 0$

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Step:
$$k - 1 \rightarrow k$$

Consider tree of depth 2k as a tree of depth 2 with trees y₁,..., y₄ (of depth 2(k - 1)) as "leaves"



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum_{k=1}^{2^{k}} 2^{\ell} = 2^{2^{k+1}} - 1 = \Theta(4^{k}) = \Theta(n)$$

Can we do better? NO!

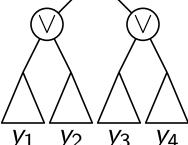
l=0

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Step: $k - 1 \rightarrow k$

- Consider tree of depth 2k as a tree of depth 2 with trees y_1, \ldots, y_4 (of depth 2(k-1)) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_i



Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Step: $k - 1 \rightarrow k$

- Consider tree of depth 2k as a tree of depth 2 with trees y_1, \ldots, y_4 (of depth 2(k-1)) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_i
- By induction, we can force A to look $y_1 y_2 y_3 y_4$ at all leaves in each y_i

V۵

Simplifying Assumption

Each inner node has two children

- All leaves have the same depth 2k
 - \Rightarrow A bit-string of length $n = 4^k$ encodes the input completely

A Simple Deterministic Algorithm

- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$\sum^{2k} 2^{\ell} = 2^{2k+1} - 1 = \Theta(4^k) = \Theta(n)$$

Can we do better? NO!

 $\ell = 0$

Proof via Induction

Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)

Step: $k - 1 \rightarrow k$

- Consider tree of depth 2k as a tree of depth 2 with trees y_1, \ldots, y_4 (of depth 2(k-1)) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_i
- By induction, we can force A to look $y_1 \overline{y_2} \overline{y_3}$ at all leaves in each y_i

 \Rightarrow A looks at all leaves \checkmark

Idea

- We can evaluate an \wedge -node to 0 if we find *one* 0-child while ignoring the other child!
- We can evaluate an \lor -node to 1 if we find one 1-child

Idea

- We can evaluate an ^-node to 0 if we find one 0-child
- We can evaluate an \lor -node to 1 if we find one 1-child

Algorithm

```
evalAndNode(v)
```

- if v is leaf then
 - return value(v)
- c := uniformSample(v.children)
- if evalOrNode(c) = 0 then

```
return 0
```

 $c' \coloneqq$ the other child

```
return evalOrNode(c')
```

while ignoring the other child!

Idea

- We can evaluate an ^-node to 0 if we find one 0-child
- We can evaluate an \lor -node to 1 if we find one 1-child

Algorithm

evalAndNode(v)

if v is leaf then
 return value(v)

Here each of the two children is selected with equal probability 1/2.

- c := uniformSample(v.children)
- if evalOrNode(c) = 0 then

```
return 0
```

c' := the other child

return evalOrNode(c')

while ignoring the other child!

Idea

We can evaluate an ^-node to 0 if we find one 0-child

We can evaluate an V-node to 1 if we find one 1-child_

Algorithm

evalAndNode(v)

if v is leaf then
 return value(v)

```
Here each of the two children is selected with equal probability 1/2.
```

- c := uniformSample(v.children)
- if evalOrNode(c) = 0 then

```
return 0
```

c' := the other child return evalOrNode(c')

```
0-child while ignoring the other child!
```

evalOrNode(v) c := uniformSample(v.children)if evalAndNode(c) = 1 then return 1 c' := the other childreturn evalAndNode(c')

Idea

We can evaluate an ^-node to 0 if we find one 0-child

We can evaluate an V-node to 1 if we find one 1-child_

Algorithm

evalAndNode(v)

if v is leaf then
 return value(v)

Here each of the two children is selected with equal probability 1/2.

- c := uniformSample(v.children)
- if evalOrNode(c) = 0 then

```
return 0
```

 $c' \coloneqq$ the other child

return evalOrNode(c')

Execute as evalAndNode(r) for root-node r

evalOrNode(v) c := uniformSample(v.children)if evalAndNode(c) = 1 then return 1 c' := the other childreturn evalAndNode(c')

while ignoring the other child!

Idea

We can evaluate an ^-node to 0 if we find one 0-child

We can evaluate an V-node to 1 if we find one 1-child_

Algorithm

evalAndNode(v)

if v is leaf then
 return value(v)

Here each of the two children is selected with equal probability 1/2.

- c := uniformSample(v.children)
- if evalOrNode(c) = 0 then

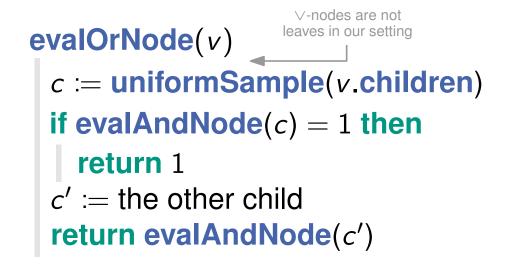
```
return 0
```

c' := the other child

return evalOrNode(c')

Execute as evalAndNode(r) for root-node r

How long does that take?



while ignoring the other child!

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
The running time is a *random variable*, we cannot deduce a specific value in advance

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input x_1, \ldots, x_{4^k} the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)})$.

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

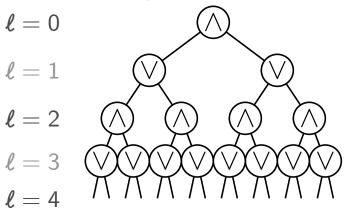
Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation)

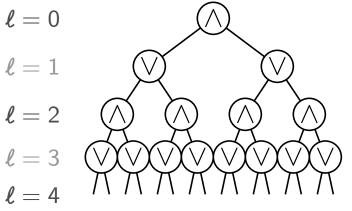
• Expected number of nodes evaluated on *even* layer $\ell = 2i$ $\ell = 0$ is at most 3^i



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

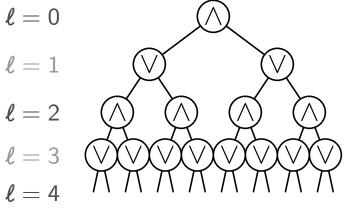
- Expected number of nodes evaluated on even layer let = 2i let = 3i is at most 3ⁱ
- Expected number of nodes evaluated on odd layer l is at most that of the layer beneath



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Expected number of nodes evaluated on *even* layer $\ell = 2i$ ℓ is at most 3^i
- Expected number of nodes evaluated on odd layer l is at most that of the layer beneath
- Expected number of total evaluated nodes is at most



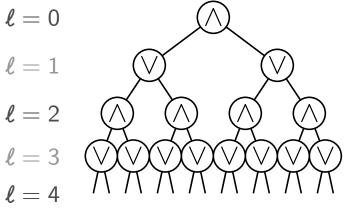
Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation)

- Expected number of nodes evaluated on *even* layer $\ell = 2i$ ℓ is at most 3^i
- Expected number of nodes evaluated on odd layer l is at most that of the layer beneath
- Expected number of total evaluated nodes is at most

 $\ell = 0 \ \ell = 1 \ \ell = 2 \ \ell = 3 \ \ell = 4 \qquad \ell = 2k$ $3^{0} + 3^{1} + 3^{1} + 3^{2} + 3^{2} + 3^{2} + \dots + 3^{k}$ $i = 0 \qquad i = 1 \qquad i = 2 \qquad i = k$



Depends on how lucky we are, i.e., how often we can avoid checking the other child The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input x_1, \ldots, x_{4^k} the **Randomized Evaluation** algorithm (RE) has an expected running time of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation)

- Expected number of nodes evaluated on *even* layer $\ell = 2i$ l =is at most 3^i
- Expected number of nodes evaluated on *odd* layer ℓ is at most that of the layer beneath
- Expected number of total evaluated nodes is at most

$$\ell = 0 \ \ell = 1 \ \ell = 2 \ \ell = 3 \ \ell = 4 \qquad \ell = 2k
30 + 31 + 31 + 32 + 32 + 32 + \dots + 3k
i = 0 \qquad i = 1 \qquad i = 2 \qquad i = k \qquad \leq \sum_{i=0}^{k} 2 \cdot 3^{i} = \Theta(3^{k})$$

$$\ell = 0$$

$$\ell = 1$$

$$\ell = 2$$

$$\ell = 3$$

$$\ell = 4$$

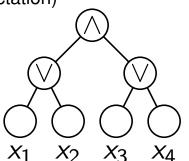
l =

l =

 $\ell =$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

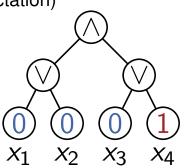


Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

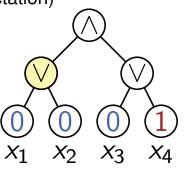
Case analysis over all bit-strings x₁, x₂, x₃, x₄, example 0001



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

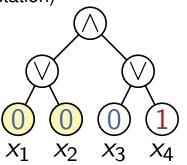
- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

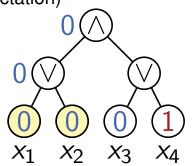
- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

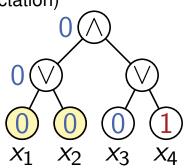
- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - \blacksquare When left \lor -node is checked, root value is determined



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

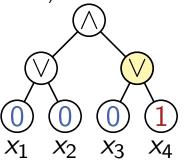
- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first

• $\Pr[\mathsf{RE} \rightarrow x_3] = 1/2$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first
 - $\Pr[\mathsf{RE} \rightarrow x_3] = 1/2 \rightarrow \mathsf{visit} x_4$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first

$$\Pr[\mathsf{RE} \to x_3] = 1/2 \twoheadrightarrow \mathsf{visit} x_4 \longrightarrow X_R = 2$$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first

•
$$\Pr[\mathsf{RE} \to x_3] = 1/2 \longrightarrow \text{visit } x_4 \longrightarrow X_R = 2$$

• $\Pr[\mathsf{RE} \to x_4] = 1/2$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first

$$\Pr[\mathsf{RE} \to x_3] = 1/2 \twoheadrightarrow \mathsf{visit} x_4 \longrightarrow X_R = 2$$

• $\Pr[\mathsf{RE} \to x_4] = 1/2 \rightarrow \mathsf{do} \ \mathsf{not} \ \mathsf{visit} \ x_3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first

•
$$\Pr[\mathsf{RE} \to x_3] = 1/2 \rightarrow \mathsf{visit} x_4 \longrightarrow X_R = 2$$

• $\Pr[\mathsf{RE} \to x_4] = 1/2 \twoheadrightarrow \text{do not visit } x_3 \twoheadrightarrow X_R = 1$

X₂

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first $\mathbb{E}[X_R] = 2 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1 = \frac{7}{2}$

Pr[RE
$$\rightarrow x_3$$
] = 1/2 \rightarrow visit x_4 \longrightarrow X_R = 2
Pr[RE $\rightarrow x_4$] = 1/2 \rightarrow do *not* visit x_3 \rightarrow X_R = 1

 X_2

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first $\mathbb{E}[X_R] = 2 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1 = \frac{7}{2}$

$$\Pr[\mathsf{RE} \to x_3] = 1/2 \twoheadrightarrow \mathsf{visit} x_4 \longrightarrow X_R = 2$$

• $\Pr[\mathsf{RE} \to x_4] = 1/2 \twoheadrightarrow \text{do not visit } x_3 \twoheadrightarrow X_R = 1$

First left/right with prob 1/2

 X_2

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Base: k = 1

- Case analysis over all bit-strings x_1 , x_2 , x_3 , x_4 , example 0001
- Let X_L be number of leaves visited when going left first
 - Independent of leaf choice, need to look at other too: $X_L = 2$
 - When left \lor -node is checked, root value is determined $|\mathbb{E}[X_L] = 2$
- Let X_R be number of leaves visited when going right first $\mathbb{E}[X_R] = 2 + \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1 = \frac{7}{2}$

$$\Pr[\mathsf{RE} \to x_3] = 1/2 \twoheadrightarrow \text{visit } x_4 \longrightarrow X_R = 2$$

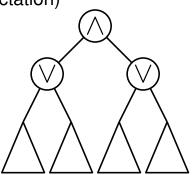
• $\Pr[\mathsf{RE} \to x_4] = 1/2 \longrightarrow \text{do not visit } x_3 \longrightarrow X_R = 1$

First left/right with prob 1/2

 $\mathbb{E}[X] = \frac{1}{2} \cdot \frac{2}{2} + \frac{1}{2} \cdot \frac{7}{2} = \frac{11}{4} \le 3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

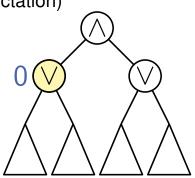
■ Let *Y* be *trees* visited in ∨-node

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

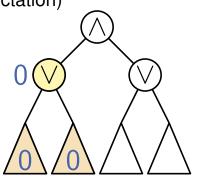
Let Y be *trees* visited in V-node
 V-Case 0: node evaluates to 0



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

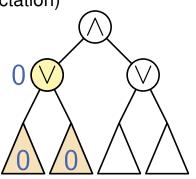
- Let *Y* be *trees* visited in ∨-node
- V-Case 0: node evaluates to 0
 - both sub-trees evaluate to 0



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

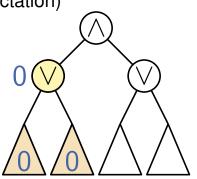
- Let *Y* be *trees* visited in ∨-node
- V-Case 0: node evaluates to 0
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Let *Y* be *trees* visited in ∨-node
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to $0 \rightarrow Y = 2$



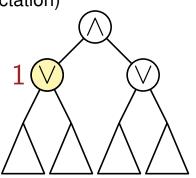
Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

■ Let *Y* be *trees* visited in ∨-node

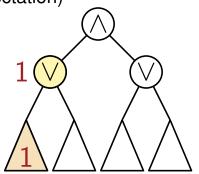
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$
- V-Case 1: node evaluates to 1



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

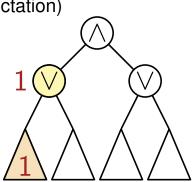
- Let *Y* be *trees* visited in ∨-node
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$
- V-Case 1: node evaluates to 1
 - at least one sub-tree evaluates to 1



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

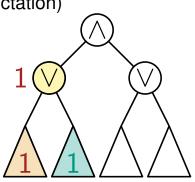
- Let *Y* be *trees* visited in ∨-node
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$
- V-Case 1: node evaluates to 1
 - at least one sub-tree evaluates to 1
 - with prob $p \ge 1/2$ (only!) this tree is visited first $\longrightarrow Y = 1$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

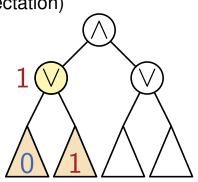
- Let *Y* be *trees* visited in ∨-node
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$
- V-Case 1: node evaluates to 1
 - at least one sub-tree evaluates to 1
 - with prob $p \ge 1/2$ (only!) this tree is visited first $\longrightarrow Y = 1$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

- Let *Y* be *trees* visited in ∨-node
- \vee -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to 0 $\longrightarrow Y = 2$
- V-Case 1: node evaluates to 1
 - at least one sub-tree evaluates to 1
 - with prob $p \ge 1/2$ (only!) this tree is visited first $\longrightarrow Y = 1$
 - with prob $1 p \le 1/2$ both sub-trees are visited $\rightarrow Y = 2$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

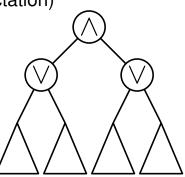
- Let *Y* be *trees* visited in ∨-node
- \lor -Case 0: node evaluates to 0 $\longrightarrow \mathbb{E}[Y] = 2$
 - both sub-trees evaluate to $0 \longrightarrow Y = 2$
- \vee -Case 1: node evaluates to 1 $\longrightarrow \mathbb{E}[Y] = p \cdot 1 + (1-p) \cdot 2 = 2 p \le \frac{3}{2}$
 - at least one sub-tree evaluates to 1
 - with prob $p \ge 1/2$ (only!) this tree is visited first $\rightarrow Y = 1$
 - with prob $1 p \le 1/2$ both sub-trees are visited $\rightarrow Y = 2$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

• Let Z be trees visited in \wedge -node

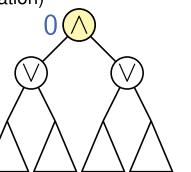
Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0



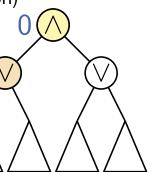
Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let *Z* be trees visited in ∧-node
- \wedge -Case 0: node evaluates to 0
 - at least one \lor -node evaluates to 0



Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0
 - at least one \lor -node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0
 - at least one \lor -node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let *Z* be trees visited in ∧-node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + \cdots$
 - at least one \lor -node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + \cdots$
 - at least one v-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node \rightarrow Case 0: $\mathbb{E}[Y] = \frac{2}{2}$ Case 1: $\mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2 + \frac{3}{2})$
 - at least one v-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p/2$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p/2$
 - at least one \lor -node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

 $\leq \frac{11}{4} \leq 3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p/2$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

• \wedge -Case 1: node evaluates to 1

 $\leq \frac{11}{4} \leq 3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p/2$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited
- \wedge -Case 1: node evaluates to 1
 - both \lor -nodes evaluate to 1

 $\leq \frac{11}{4} \leq 3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node \rightarrow Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge -node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p/2$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited
- \wedge -Case 1: node evaluates to $1 \rightarrow \mathbb{E}[Z] = 2 \cdot \frac{3}{2} = 3$
 - both \lor -nodes evaluate to 1

 $\leq \frac{11}{4} \leq 3$

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let *Z* be trees visited in ∧-node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p$
 - at least one v-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

• \wedge -Case 1: node evaluates to 1 $\rightarrow \mathbb{E}[Z] = 2 \cdot \frac{3}{2} = 3$

both V-nodes evaluate to 1

 $\leq \frac{11}{4} \leq 3$

Both cases: visit < 3 trees in exp.</p>

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let *Z* be trees visited in ∧-node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited

• \wedge -Case 1: node evaluates to $1 \rightarrow \mathbb{E}[Z] = 2 \cdot \frac{3}{2} = 3$

both V-nodes evaluate to 1

 $\leq \frac{11}{4} \leq 3$

Induction: exp. leaves per tree $\leq 3^{k-1}$

• Both cases: visit \leq 3 trees in exp.

Depends on how *lucky* we are, i.e., how often we can avoid checking the other child
 The running time is a *random variable*, we cannot deduce a specific value in advance

Theorem: On *every* input $x_1, \ldots x_{4^k}$ the **Randomized Evaluation** algorithm (RE) has an *expected running time* of $O(n^{\log_4(3)}) \approx O(n^{0.792...})$ is sublinear!

Proof via Induction (that the number *X* of visited leaves at depth 2k is $\leq 3^k = 3^{\log_4(n)} = n^{\log_4(3)}$ in expectation) Step: $k - 1 \rightarrow k$

• Let Y be *trees* visited in \lor -node - Case 0: $\mathbb{E}[Y] = 2$ Case 1: $\mathbb{E}[Y] \le \frac{3}{2}$

- Let *Z* be trees visited in ∧-node
- \wedge -Case 0: node evaluates to 0 $\rightarrow \mathbb{E}[Z] = p \cdot 2 + (1-p) \cdot (2+\frac{3}{2}) = \frac{7}{2} \frac{3}{2}p$
 - at least one ∨-node evaluates to 0
 - with prob $p \ge 1/2$ (only!) this node is visited first
 - with prob $1 p \le 1/2$ both \lor -nodes are visited
- \wedge -Case 1: node evaluates to 1 $\rightarrow \mathbb{E}[Z] = 2 \cdot \frac{3}{2} = 3$
 - both \lor -nodes evaluate to 1

Both cases: visit ≤ 3 trees in exp.

 $\leq \frac{11}{4} \leq 3$

■ Induction: exp. leaves per tree $\leq 3^{k-1}$ $\mathbb{E}[X] \leq 3 \cdot 3^{k-1} = 3^k \checkmark$

Binary Search Trees

• Goal: in a sequence of elements, quickly determine whether a given element is contained

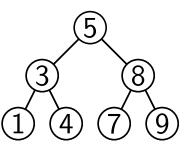
Binary Search Trees

Goal: in a sequence of elements, quickly determine whether a given element is contained

Example: (1, 3, 4, 5, 7, 8, 9) Find: 4

Binary Search Trees

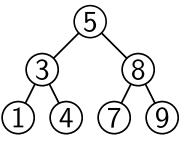
- Goal: in a sequence of elements, quickly determine whether a given element is contained
- **Example:** (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger



Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query



Binary Search Trees

Goal: in a sequence of elements, quickly determine whether a given element is contained

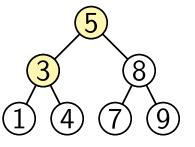
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

• Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

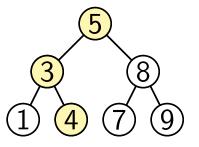
Query



• Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query



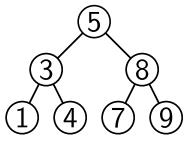
• Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

Element equal to node? O.w. recurse in left/right child when element is smaller/larger

Running time: linear in the depth of the tree



• Goal: in a sequence of elements, quickly determine whether a given element is contained

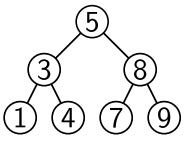
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

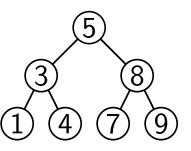
Maintenance

Setting: elements appended over time, but never deleted



Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger



- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive?

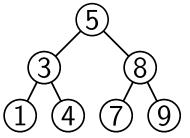
Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

- Query Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive?
 - Red-Black-Trees (a, b)-Trees AVL-Trees
- Complicated mechanisms that update the tree structure after an insertion



Goal: in a sequence of elements, quickly determine whether a given element is contained

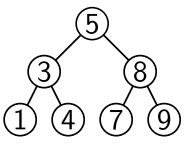
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

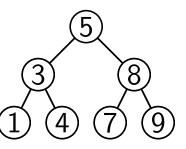
Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive?
 - Red-Black-Trees (a, b)-Trees AVL-Trees
- Complicated mechanisms that update the tree structure after an insertion
- Ensure that the depth is logarithmic in the number of nodes



Goal: in a sequence of elements, quickly determine whether a given element is contained

- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger



- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

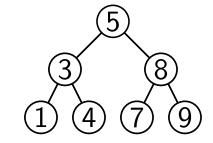
- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive?

Red-Black-Trees (a, b)-Trees AVL-Trees

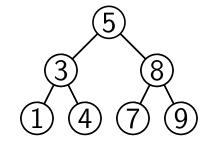
- Complicated mechanisms that update the tree structure after an insertion
- Ensure that the depth is logarithmic in the number of nodes
 Is all that necessary?

Simple Insert Strategy

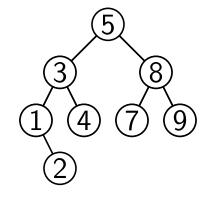
 \blacksquare Place a new element where it belongs. \checkmark



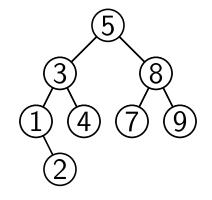
- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2



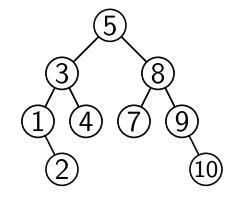
- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2



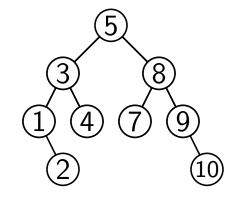
- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2, 10



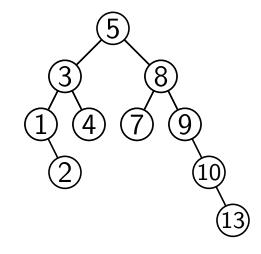
- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2, 10



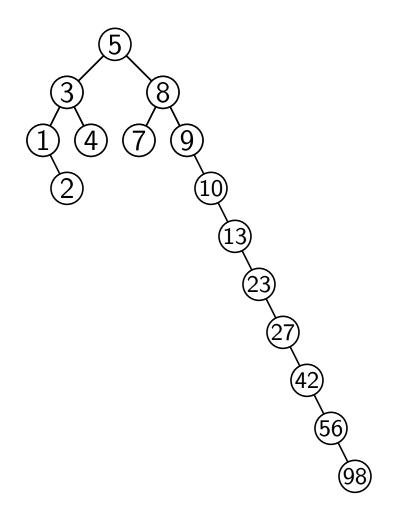
- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2, 10, 13



- \blacksquare Place a new element where it belongs. \checkmark
- Example: Insert 2, 10, 13



- \blacksquare Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98



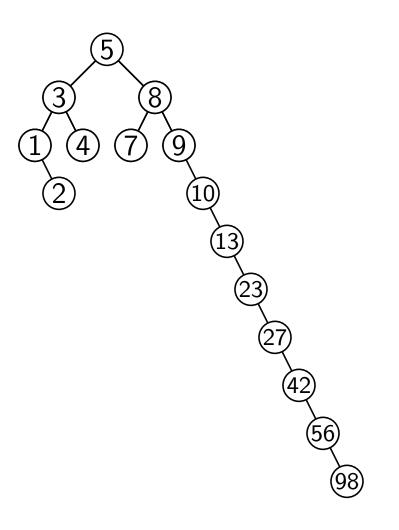
Simple Insert Strategy

 \blacksquare Place a new element where it belongs. \checkmark

Example: Insert 2, 10, 13, 23, 27, 42, 56, 98

Problem

If elements come in sorted order, tree is unbalanced



Karlsruhe Institute of Technology

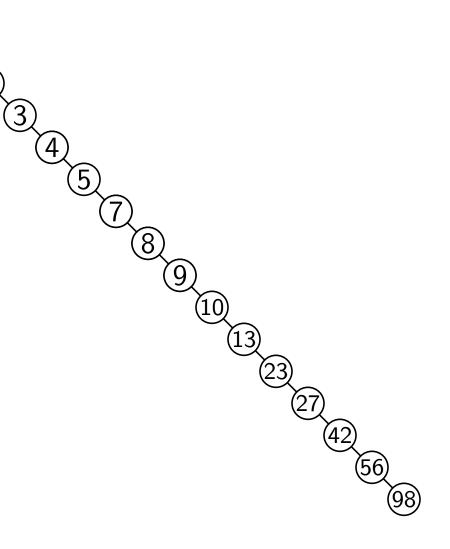
Keep it Simple

Simple Insert Strategy

- \blacksquare Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query



Carlsruhe Institute of Technology

12 Maximilian Katzmann, Stefan Walzer – Probability & Computing

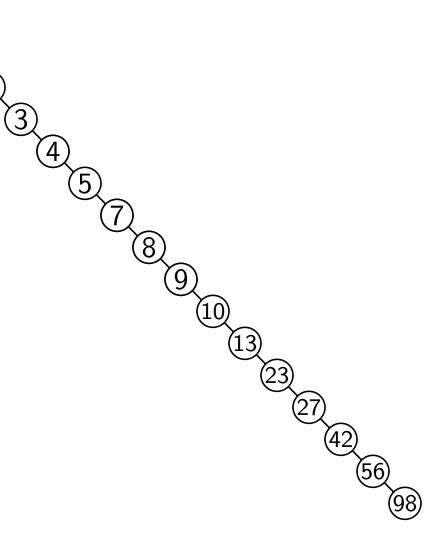
Keep it Simple

Simple Insert Strategy

- \blacksquare Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

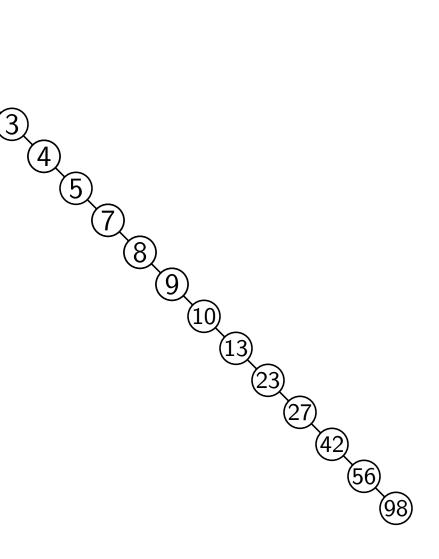


Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?



Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

https://oeis.org/A056971

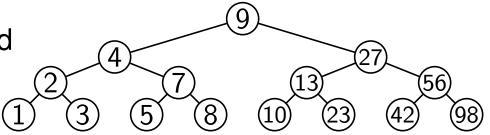


Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree Average-Case Analysis
 https://oeis.org/A056971
- Model real world via probability distribution over possible inputs, which is

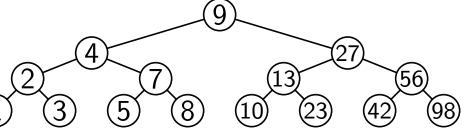


Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree, 21964800 sequences yield a perfectly balanced tree
 Average-Case Analysis
- Model real world via probability distribution over possible inputs, which is
 - simple (so that we can analyze it)

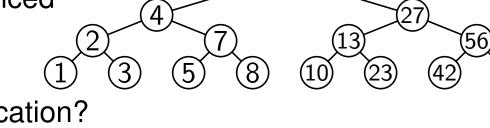


Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree Average-Case Analysis
 https://oeis.org/A056971
- Model real world via probability distribution over possible inputs, which is
 - simple (so that we can analyze it)
 - realistic (so that we can make useful predictions about the real world)



9

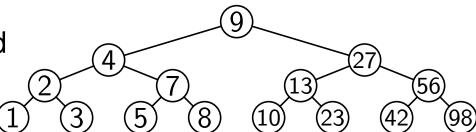
Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree, 21964800 sequences yield a perfectly balanced tree
 Average-Case Analysis
- Model real world via probability distribution over possible inputs, which is
 - simple (so that we can analyze it)
 - realistic (so that we can make useful predictions about the real world)

In the following: uniform random permutation of the numbers

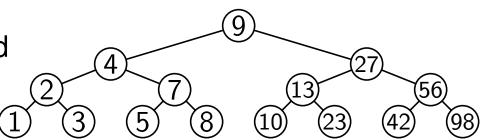


Simple Insert Strategy

- Place a new element where it belongs.
- **Example: Insert** 2, 10, 13, 23, 27, 42, 56, 98

Problem ?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it *likely* that this happens in a real-world application?
- Only 1 sequence yields this tree, 21964800 sequences yield a perfectly balanced tree
 Average-Case Analysis
- Model real world via probability distribution over possible inputs, which is
 - \blacksquare simple (so that we can analyze it) \checkmark
- realistic (so that we can make useful predictions about the real world) Not so clear...
 In the following: uniform random permutation of the numbers



• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

$$M = \{1, 2, 3, 4, \dots, u, u + 1, \dots, v, \dots, n\}$$

$$S = (7, 11, 4, \dots, u, \dots, v, \dots, u + 1, \dots, 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

$$M = \{1, 2, 3, 4, \dots, u, u + 1, \dots, v, \dots, n\}$$

$$S = (7, 11, 4, \dots, u, \dots, v, \dots, u + 1, \dots, 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

$$M = \{1, 2, 3, 4, \dots, u, u + 1, \dots, v, \dots, n\}$$

$$S = (7, 11, 4, \dots, u, \dots, v, \dots, u + 1, \dots, 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

Before an element in $M_{u,v}$ is added, all elements $M = \{1, 2, 3, 4, ..., u, u, u, u, v, ..., v, ..., u, ..., n\}$ are smaller/larger S = (7, 11, 4, ..., u, ..., v, ..., u + 1, ..., 1)

• All paths that would lead to $x \in M_{u,v}$ are identical

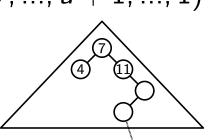
• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

Before an element in $M_{u,v}$ is added, all elements $M = \{1, 2, 3, 4, ..., u, u, u + 1, ..., v, ..., n\}$ are smaller/larger S = (7, 11, 4, ..., u, ..., v, ..., u + 1, ..., 1)

• All paths that would lead to $x \in M_{u,v}$ are identical

• Let $u' \in M_{u,v}$ be the *first* element from $M_{u,v}$ to appear in S



• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

Before an element in $M_{u,v}$ is added, all elements $M = \{1, 2, 3, 4, ..., u, u + 1, ..., v, ..., n\}$ are smaller/larger S = (7, 11, 4, ..., u, ..., v, ..., u + 1, ..., 1)

• All paths that would lead to $x \in M_{u,v}$ are identical

• Let $u' \in M_{u,v}$ be the *first* element from $M_{u,v}$ to appear in S

• From then on, u' is on the path that would lead to v

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

Before an element in $M_{u,v}$ is added, all elements $M = \{1, 2, 3, 4, ..., u, u, u + 1, ..., v, ..., n\}$ are smaller/larger S = (7, 11, 4, ..., u, 1, ..., v, ..., u + 1, ..., 1)

• All paths that would lead to $x \in M_{u,v}$ are identical

• Let $u' \in M_{u,v}$ be the *first* element from $M_{u,v}$ to appear in S

From then on, u' is on the path that would lead to vCase 1: u' = u: u is on path \checkmark

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*.

Before an element in $M_{u,v}$ is added, all elements $M = \{1, 2, 3, 4, ..., u, u, u + 1, ..., v, ..., n\}$ are smaller/larger S = (7, 11, 4, ..., u, ..., v, ..., u + 1, ..., 1)

• All paths that would lead to $x \in M_{u,v}$ are identical

- Let $u' \in M_{u,v}$ be the *first* element from $M_{u,v}$ to appear in S
- From then on, u' is on the path that would lead to v
- Case 1: u' = u: *u* is on path \checkmark

• Case 2: $u' \neq u$: (u < u') & u is in left sub-tree of u' but v is in right u not on path \sqrt{u}

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node u < v, if and only if u is the first among $M_{u,v} = \{u, \ldots, v\}$ in S. u > v

 $M_{v,u} = \{v, \ldots, u\}$

(for symmetry reasons)

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

 $M_{v,u} = \{v, \ldots, u\}$

(for symmetry reasons)

• Let $S_{u,v}$ be the subsequence of S containing the elements in $M_{u,v}$

$$M_{u,v} = \{u, u + 1, u + 2, v\}$$

$$S = (..., u, ..., u + 2, ..., v, ..., u + 1, ...)$$

$$S_{u,v} = (u, u + 2, v, u + 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

 $M_{v,u} = \{v, \ldots, u\}$

(for symmetry reasons)

• Let $S_{u,v}$ be the subsequence of S containing the elements in $M_{u,v}$

• Then $S_{u,v}$ is a uniform random permutation of $M_{u,v}$

$$M_{u,v} = \{u, u + 1, u + 2, v\}$$

$$S = (..., u, ..., u + 2, ..., v, ..., u + 1, ...)$$

$$S_{u,v} = (u, u + 2, v, u + 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

$$M_{v,u} = \{v, \ldots, u\}$$

(for symmetry reasons)

• Let $S_{u,v}$ be the subsequence of S containing the elements in $M_{u,v}$

• Then $S_{u,v}$ is a uniform random permutation of $M_{u,v}$

The probability that *u* is first in $S_{u,v}$ is $\Pr[``u \text{ first in } S_{u,v}"] = 1/|M_{u,v}| = 1/(v - u + 1)$

$$M_{u,v} = \{u, u + 1, u + 2, v\}$$

$$S = (..., u, ..., u + 2, ..., v, ..., u + 1, ...)$$

$$S_{u,v} = (u, u + 2, v, u + 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

$$M_{v,u} = \{v, \ldots, u\}$$

(for symmetry reasons)

• Let $S_{u,v}$ be the subsequence of S containing the elements in $M_{u,v}$

• Then $S_{u,v}$ is a uniform random permutation of $M_{u,v}$

 $\Pr["u \text{ first in } S_{v,u}"] = 1/(u - v + 1)$

$$M_{u,v} = \{u, u + 1, u + 2, v\}$$

$$S = (..., u, ..., u + 2, ..., v, ..., u + 1, ...)$$

$$S_{u,v} = (u, u + 2, v, u + 1)$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

$$\Pr[``u \text{ on path to } v"] = \begin{cases} 1/(v - u + 1), & \text{if } u < v \\ 1/(u - v + 1), & \text{if } v < u \end{cases}$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

• Let X_u be the indicator random variable with

 $X_u = \begin{cases} 1, & \text{if } u \text{ is on the path to } v \\ 0, & \text{otherwhise} \end{cases}$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

Let X_u be the indicator random variable with

$$X_u = \begin{cases} 1, & \text{if } u \text{ is on the path to } \\ 0, & \text{otherwhise} \end{cases}$$

• Then the length of the path to v is $\ell = \sum_{u \in \{1,...,n\} \setminus \{v\}} X_u$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

• Let X_u be the indicator random variable with

$$X_u = \begin{cases} 1, & \text{if } u \text{ is on the path to } v \\ 0, & \text{otherwhise} \end{cases}$$

• Then the length of the path to v is $\ell = \sum_{u \in \{1,...,n\} \setminus \{v\}} X_u$

$$\mathbb{E}\left[\sum_{u=1}^{\nu-1} X_u + \sum_{u=\nu+1}^n X_u\right]$$

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

Observation: Let *T* be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from *v* to the root contains a node u < v, if and only if *u* is the first among $M_{u,v} = \{u, \ldots, v\}$ in *S*. u > v

• Let X_u be the indicator random variable with

$$X_u = \begin{cases} 1, & \text{if } u \text{ is on the path to } v \\ 0, & \text{otherwhise} \end{cases}$$

• Then the length of the path to v is $\ell = \sum_{u \in \{1,...,n\} \setminus \{v\}} X_u$

$$\mathbb{E}\left[\sum_{u=1}^{\nu-1} X_u + \sum_{u=\nu+1}^n X_u\right] = \sum_{u=1}^{\nu-1} \mathbb{E}[X_u] + \sum_{u=\nu+1}^n \mathbb{E}[X_u]$$

1), if u < v

1), if v < u

Theorem: Let *S* be a permutation of $M = \{1, 2, ..., n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log(n))$.

• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

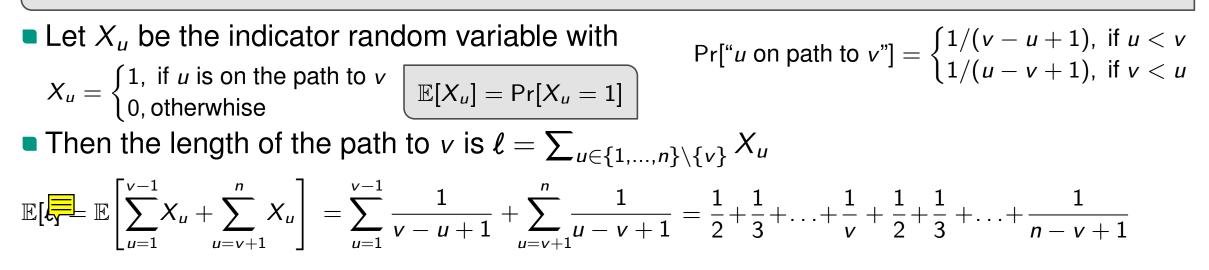
Let
$$X_u$$
 be the indicator random variable with
$$X_u = \begin{cases} 1, \text{ if } u \text{ is on the path to } v \\ 0, \text{ otherwhise} \end{cases} \quad \mathbb{E}[X_u] = \Pr[X_u = 1] \end{cases} \qquad \Pr[``u \text{ on path to } v''] = \begin{cases} 1/(v - u + v) \\ 1/(u - v + v) \end{cases}$$
Then the length of the path to v is $\ell = \sum_{u \in \{1, \dots, n\} \setminus \{v\}} X_u$

$$\mathbb{E}\left[\sum_{u=1}^{v-1} X_u + \sum_{u=v+1}^n X_u\right] = \sum_{u=1}^{v-1} \mathbb{E}[X_u] + \sum_{u=v+1}^n \mathbb{E}[X_u]$$

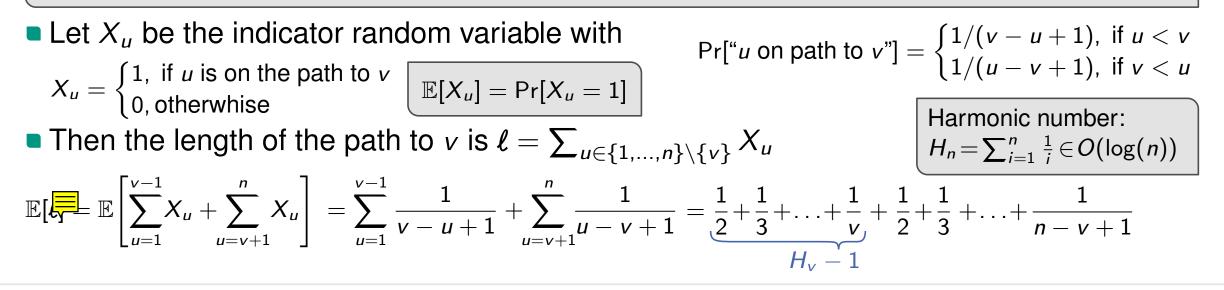
• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order

• Let
$$X_u$$
 be the indicator random variable with
 $X_u = \begin{cases} 1, \text{ if } u \text{ is on the path to } v \\ 0, \text{ otherwhise} \end{cases}$ $\mathbb{E}[X_u] = \Pr[X_u = 1]$
• Then the length of the path to v is $\ell = \sum_{u \in \{1, \dots, n\} \setminus \{v\}} X_u$
 $\mathbb{E}[\sum_{u=1}^{v-1} X_u + \sum_{u=v+1}^n X_u] = \sum_{u=1}^{v-1} \frac{1}{v-u+1} + \sum_{u=v+1}^n \frac{1}{u-v+1}$

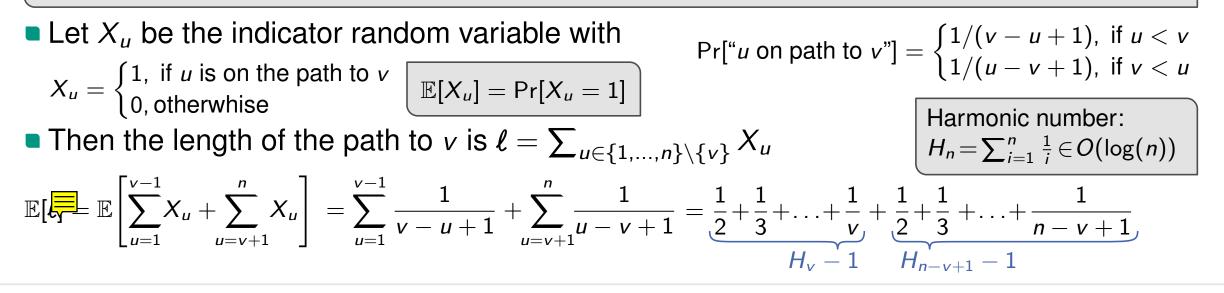
• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order



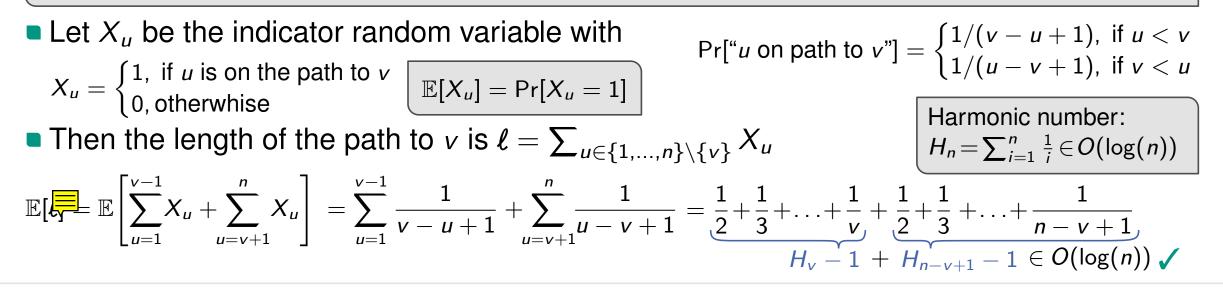
• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order



• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order



• w.l.o.g. we can assume the elements to be 1, ..., n, as we are only interested in the order



Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log(n))$ but $O(n^2)$ worst case)

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log(n))$ but $O(n^2)$ worst case) Next week!

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log(n))$ but $O(n^2)$ worst case) Next week!

Example: AND/OR-Trees, expected running time sublinear in the input size

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log(n))$ but $O(n^2)$ worst case) Next week!

- Example: AND/OR-Trees, expected running time sublinear in the input size Average-Case Analysis
- Model real world using probability distributions over inputs
- If worst case is unlikely, expect good running times
- Example: Binary search-trees with simple insert strategy have same expected depth as complicated deterministic data structures