Probability \& Computing

Overview \& The Power of Randomness

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995
- Sometimes a randomized approach is the only solution!

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995
- Sometimes a randomized approach is the only solution!

Idea

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995
- Sometimes a randomized approach is the only solution!

Idea

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that...

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995
- Sometimes a randomized approach is the only solution!

Idea

- Utilize randomness in algorithms and data structures to obtain much better performance than that of deterministic approaches
- But we have to pay for that...
- Maybe we only expect the approach to be fast

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995

Why is randomness useful in computation?

- Randomness facilitates the development of algorithms and data structures.
"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."
"Randomized Algorithms", Motwani \& Raghavan, 1995

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case
- sublinear running time observed on many real-world networks

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case
- sublinear running time observed on many real-world networks

Average-Case Analysis

- Distinguish practical instances from the worst case

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case
- sublinear running time observed on many real-world networks
Average-Case Analysis
- Distinguish practical instances from the worst case

- Define probabilistic distributions (over possible inputs) that favor realistic instances

Why is randomness useful in computation?

Karlsruhe Institute of Technology

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case
- sublinear running time observed on many real-world networks
Average-Case Analysis
- Distinguish practical instances from the worst case

- Define probabilistic distributions (over possible inputs) that favor realistic instances
- Analyze performance assuming input is drawn from the distribution

Why is randomness useful in computation?

- Useful when bridging the theory-practice gap regarding the performance of an appraoch Theory-Practice Gap
- Algorithm performance often measured by worst-case running time (strong guarantee)
- Observe much better performance in practice than expected
- Example: bidirectional Breadth-First-Search
- no asymptotic speed-up compared to standard BFS in the worst case
- sublinear running time observed on many real-world networks
Average-Case Analysis
- Distinguish practical instances from the worst case

- Define probabilistic distributions (over possible inputs) that favor realistic instances
- Analyze performance assuming input is drawn from the distribution
- Expect good performance when hard instances are sufficiently unlikely

Overview

Randomized Algorithms \& Data Structures

- Probability Amplification
- Streaming / Online-algorithms
- Hashing

Average-Case Analysis

- Random Graphs
- Algorithm Analysis

Toolbox

- Probabilistic Method
- Yao's Principle
- Coupling
- Dealing with stochastic dependencies
- Concentration bounds

Organization

Organization

Organization

Team Max
Lecture
(first part)

Organization

Organization

Assumed Background

- Algorithms and data structures
- Probability theory

Tuesday 8:00 (every other week)
Website scale.tit.kit.edu/teaching/2023ws/randalg
Questions? llias, Discord, Matrix?
Sheets

- Every week, hand in on the Thursday before the next exercise

Organization

Team

Thursday 11:30
Assumed Background

- Algorithms and data structures
- Probability theory

Material

- Slides
- Previous script
- Probability and Computing
- Randomized Algorithms
- Modern Discrete Probability

Hans-Peter
Exercise

Organization

Team

Thursday 11:30
Assumed Background

- Algorithms and data structures
- Probability theory

Material

- Slides
- Previous script
- Probability and Computing
- Randomized Algorithms
- Modern Discrete Probability

Hans-Peter
Exercise

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

(initial configuration) | $\square+$ |
| :--- |
| $+\square$ |
| \square |
| C_{0} |

- Each node is a board configuration
- A parent-child relation represents a valid move

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move

(1st move)

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

- $c_{0}=1$ if there exists no i such that $c_{1, i}=0$

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

- $c_{0}=1$ if there exists no i such that $c_{1, i}=0$

$$
c_{0}=\bigwedge_{i \in[2]} c_{1, i}
$$ or equivalently, if for all i we have $c_{1, i}=1$

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

- $c_{0}=1$ if there exists no i such that $c_{1, i}=0$

$$
c_{0}=\bigwedge_{i \in[2]} c_{1, i}
$$

(initial configuration)

- $c_{1,2}=1$ if there exists an i such that $c_{2, i}=1$

Power of Randomness: Let's Play a Game

Tic-Tac-Toe

- Players take turns placing O and X in 3×3 grid
- First to get three in a line wins

Can Player 2 win the game?

Tree of Moves

- Each node is a board configuration
- A parent-child relation represents a valid move
- Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

- $c_{0}=1$ if there exists no i such that $c_{1, i}=0$

$$
c_{0}=\bigwedge_{i \in[2]} c_{1, i}
$$

(initial configuration)

$c_{1,1}$ or equivalently, if for all i we have $c_{1, i}=1$

- $c_{1,2}=1$ if there exists an i such that $c_{2, i}=1$

$$
c_{0}=\bigvee_{i \in[4]} c_{2, i}
$$

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves

AND/OR-Trees

Structure

\square Node types: \wedge-nodes, \vee-nodes, and leaves

- The root is a leaf

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- \vee-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
- the disjunction of their children, for \vee-nodes

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
- the disjunction of their children, for \vee-nodes

- the conjunction of their children, for \wedge-nodes

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
- the disjunction of their children, for \vee-nodes

- the conjunction of their children, for \wedge-nodes

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
- the disjunction of their children, for \vee-nodes

- the conjunction of their children, for \wedge-nodes

AND/OR-Trees

Structure

- Node types: \wedge-nodes, \vee-nodes, and leaves
- The root is a leaf or an \wedge-node
- \wedge-nodes have only \vee-nodes as children
- V-nodes have only AND/OR-trees as children

Evaluation

- Leaves contain boolean values
- Inner nodes evaluate to ...
- the disjunction of their children, for \vee-nodes
- the conjunction of their children, for \wedge-nodes

Example Complexities

- Tic-Tac-Toe: 31896 (non-symmetric) games (leaves)
- Checkers: approx. 10^{40} leaves

Deterministic Evaluation

Simplifying Assumption
 - Each inner node has two children
 - All leaves have the same depth $2 k$

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better?

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!
Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$

- $x_{1}:=1$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$
- $x_{1}:=1$ (value of parent determined, but not of root)

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$
- $x_{1}:=1$ (value of parent determined, but not of root)
- w.l.o.g. $A \rightarrow x_{3}$

Can we do better? NO!

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$

- $x_{1}:=1$ (value of parent determined, but not of root)
- w.l.o.g. $A \rightarrow x_{3}$
- $x_{3}:=0$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$

- $x_{1}:=1$ (value of parent determined, but not of root)
- w.l.o.g. $A \rightarrow x_{3}$
- $X_{3}:=0$ (value of parent and root not determined, yet)

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 1: $A \rightarrow x_{2}$

- $x_{1}:=1$ (value of parent determined, but not of root)
- w.l.o.g. $A \rightarrow x_{3} \quad \Rightarrow A \rightarrow x_{4}$
- $x_{3}:=0$ (value of parent and root not determined, yet) \Rightarrow output is $x_{4}{ }^{\checkmark}$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$

- $x_{3}:=0$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$ Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$
- $x_{3}:=0$ (value of parent and root not determined, yet)

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$
- $x_{3}:=0$ (value of parent and root not determined, yet)
- w.l.o.g. $A \rightarrow x_{2}$

Can we do better? NO!

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$

- $x_{3}:=0$ (value of parent and root not determined, yel)
- w.l.o.g. $A \rightarrow x_{2}$
- $x_{2}:=1$

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$

- $x_{3}:=0$ (value of parent and root not determined, yet)
- w.l.o.g. $A \rightarrow x_{2}$
- $x_{2}:=1$ (value of parent determined, but not of root)

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$
$\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)$
Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Base: $k=1$
- A visits ≥ 1 leaf: w.l.o.g. $A \rightarrow x_{1}$
- Set $x_{1}:=0$ (value of parent and root not determined, yet)
- A needs to visit another leaf
- Case 2: $A \rightarrow x_{3}$

- $x_{3}:=0$ (value of parent and root not determined, yet)
- w.l.o.g. $A \rightarrow x_{2}$
$\Rightarrow A \rightarrow x_{4}$
- $x_{2}:=1$ (value of parent determined, but not of root) \Rightarrow output is x_{4}

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer ℓ : 2^{ℓ}

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Step: $k-1 \rightarrow k$
- Consider tree of depth $2 k$ as a tree of depth 2 with trees y_{1}, \ldots, y_{4} (of depth $2(k-1)$) as "leaves"

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Step: $k-1 \rightarrow k$
- Consider tree of depth $2 k$ as a tree of depth 2 with trees y_{1}, \ldots, y_{4} (of depth $2(k-1)$) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_{i}

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Step: $k-1 \rightarrow k$
- Consider tree of depth $2 k$ as a tree of depth 2 with trees y_{1}, \ldots, y_{4} (of depth $2(k-1)$) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_{i}

- By induction, we can force A to look at all leaves in each y_{i}

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Deterministic Evaluation

Simplifying Assumption

- Each inner node has two children
- All leaves have the same depth $2 k$
\Rightarrow A bit-string of length $n=4^{k}$ encodes the input completely
A Simple Deterministic Algorithm
- Compute all nodes bottom up
- Running time on layer $\ell: 2^{\ell}$

$$
\sum_{\ell=0}^{2 k} 2^{\ell}=2^{2 k+1}-1=\Theta\left(4^{k}\right)=\Theta(n)
$$

Can we do better? NO!

Proof via Induction

- Idea: We are an adversary who knows A and constructs an input (...on the fly, while the algorithm is running. Since A is deterministic this does not make a difference.)
Step: $k-1 \rightarrow k$
- Consider tree of depth $2 k$ as a tree of depth 2 with trees y_{1}, \ldots, y_{4} (of depth $2(k-1)$) as "leaves"
- Analogous to the base, we can enforce that A needs to look at all y_{i}

- By induction, we can force A to look at all leaves in each y_{i}
$\Rightarrow A$ looks at all leaves

Theorem: Let A be any deterministic AND/OR-tree-algorithm. For $k \geq 1$ there exists an input $x_{1}, \ldots, x_{4^{k}}$ s.t. A visits all 4^{k} leaves and the output is the value of the last one visited.

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$
while ignoring the other child!

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$

Algorithm

evalAndNode(v)
if v is leaf then return value(v)
$c:=$ uniformSample(v.children)
if evalOrNode $(c)=0$ then
return 0
$c^{\prime}:=$ the other child return evalOrNode(c^{\prime})

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$
while ignoring the other child!

Algorithm

evalAndNode(v)
if v is leaf then return value(v)

Here each of the two children is selected with equal probability $1 / 2$.
$c:=$ uniformSample(v.children)
if evalOrNode $(c)=0$ then
return 0
$c^{\prime}:=$ the other child
return evalOrNode(c')

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$

Algorithm

evalAndNode(v)
if v is leaf then return value(v)

Here each of the two children is selected with equal probability $1 / 2$.
while ignoring the other child!

$c:=$ uniformSample(v.children)

if evalOrNode $(c)=0$ then return 0
$c^{\prime}:=$ the other child
return evalOrNode(c^{\prime})
if evalAndNode (c) $=1$ then
return 1
$c^{\prime}:=$ the other child
return evalAndNode(c^{\prime})

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$

Algorithm

evalAndNode(v)
if v is leaf then return value(v)

Here each of the two children is selected with equal probability $1 / 2$.
while ignoring the other child!
$c:=$ uniformSample(v.children)
if evalOrNode $(c)=0$ then return 0
$c^{\prime}:=$ the other child
return evalOrNode(c^{\prime})

- Execute as evalAndNode(r) for root-node r

Randomized Evaluation

Idea

- We can evaluate an \wedge-node to 0 if we find one 0 -child
- We can evaluate an \vee-node to 1 if we find one 1 -child $\}$

Algorithm

evalAndNode(v)
while ignoring the other child!

```
if \(v\) is leaf then return value( \(v\) )
Here each of the two children is selected with equal probability \(1 / 2\).
\(c:=\) uniformSample(v.children)
if evalOrNode \((c)=0\) then return 0
\(c^{\prime}:=\) the other child
return evalOrNode( \(c^{\prime}\) )
return value(v)
```

```
evalOrNode(v)
                                    eaves in our setting
    c := uniformSample(v.children)
    if evalAndNode(c)=1 then
        return 1
    c':= the other child
    return evalAndNode(c')
```


Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right)$.

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!
Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

- Expected number of nodes evaluated on even layer $\ell=2 i \quad \ell=0$ is at most 3^{i}
$\ell=1$
$\ell=2$
$\ell=3$
$\ell=4$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

- Expected number of nodes evaluated on even layer $\ell=2 i \quad \ell=0$ is at most 3^{i}
- Expected number of nodes evaluated on odd layer ℓ is at $\quad \ell=1$ most that of the layer beneath

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

- Expected number of nodes evaluated on even layer $\ell=2 i \quad \ell=0$ is at most 3^{i}
- Expected number of nodes evaluated on odd layer ℓ is at $\quad \ell=1$ most that of the layer beneath
- Expected number of total evaluated nodes is at most

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

- Expected number of nodes evaluated on even layer $\ell=2 i \quad \ell=0$ is at most 3^{i}
- Expected number of nodes evaluated on odd layer ℓ is at $\quad \ell=1$ most that of the layer beneath
- Expected number of total evaluated nodes is at most
$\ell=2$

$\ell=3$
$\ell=4$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

- Expected number of nodes evaluated on even layer $\ell=2 i \quad \ell=0$ is at most 3^{i}
- Expected number of nodes evaluated on odd layer ℓ is at $\quad \ell=1$ most that of the layer beneath
- Expected number of total evaluated nodes is at most
$\overbrace{\underbrace{3^{0}}_{i=0}+\overbrace{\underbrace{3^{1}}}^{\ell=1}+\underbrace{\overbrace{3^{1}}^{\ell}}_{i=1}+\underbrace{\overbrace{i=2}^{\ell}}_{\underbrace{3^{2}}}+\underbrace{\overbrace{}^{3^{2}}}_{i=2}+\cdots+\underbrace{\overbrace{}^{3^{k}}}_{i=k} \leq \underbrace{\ell=2 k}_{i=0}}^{\overbrace{i=1}^{k}} 2 \cdot 3^{i}=\Theta\left(3^{k}\right)$
$\ell=2$
$\ell=3$
$\ell=4$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)
Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
- $\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{3}\right]=1 / 2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit x_{4}

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
$-\operatorname{Pr}\left[\mathrm{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
$-\operatorname{Pr}\left[R E \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{4}\right]=1 / 2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{4}\right]=1 / 2 \rightarrow$ do not visit x_{3}

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{4}\right]=1 / 2 \rightarrow$ do not visit $x_{3} \rightarrow X_{R}=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first $\mathbb{E}\left[X_{R}\right]=2+\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1=\frac{7}{2}$
- $\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{4}\right]=1 / 2 \rightarrow$ do not visit $x_{3} \rightarrow X_{R}=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first $\mathbb{E}\left[X_{R}\right]=2+\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1=\frac{7}{2}$
- $\operatorname{Pr}\left[\mathrm{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
- First left/right with prob $1 / 2$
$-\operatorname{Pr}\left[\mathrm{RE} \rightarrow x_{4}\right]=1 / 2 \rightarrow$ do not visit $x_{3} \rightarrow X_{R}=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Base: $k=1$

- Case analysis over all bit-strings $x_{1}, x_{2}, x_{3}, x_{4}$, example 0001
- Let X_{L} be number of leaves visited when going left first
- Independent of leaf choice, need to look at other too: $X_{L}=2$

- When left \vee-node is checked, root value is determined $\mathbb{E}\left[X_{L}\right]=2$
- Let X_{R} be number of leaves visited when going right first $\mathbb{E}\left[X_{R}\right]=2+\frac{1}{2} \cdot 2+\frac{1}{2} \cdot 1=\frac{7}{2}$
- $\operatorname{Pr}\left[\mathrm{RE} \rightarrow x_{3}\right]=1 / 2 \rightarrow$ visit $x_{4} \longrightarrow X_{R}=2$
$-\operatorname{Pr}\left[\operatorname{RE} \rightarrow x_{4}\right]=1 / 2 \rightarrow$ do not visit $x_{3} \rightarrow X_{R}=1$
- First left/right with prob $1 / 2$
$\mathbb{E}[X]=\frac{1}{2} \cdot 2+\frac{1}{2} \cdot \frac{7}{2}=\frac{11}{4} \leq 3 \checkmark$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!
Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to 0

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to 0
- both sub-trees evaluate to 0

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!
Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- V-Case 0 : node evaluates to 0
- both sub-trees evaluate to $0 \longrightarrow Y=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!
Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- V-Case 1: node evaluates to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- \vee-Case 1: node evaluates to 1

- at least one sub-tree evaluates to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- \vee-Case 1: node evaluates to 1

- at least one sub-tree evaluates to 1
- with prob $p \geq 1 / 2$ (only!) this tree is visited first $\longrightarrow Y=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- \vee-Case 1: node evaluates to 1

- at least one sub-tree evaluates to 1
- with prob $p \geq 1 / 2$ (only!) this tree is visited first $\longrightarrow Y=1$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- \vee-Case 1: node evaluates to 1

- at least one sub-tree evaluates to 1
- with prob $p \geq 1 / 2$ (only!) this tree is visited first $\longrightarrow Y=1$
- with prob $1-p \leq 1 / 2$ both sub-trees are visited $\longrightarrow Y=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node
- \vee-Case 0 : node evaluates to $0 \longrightarrow \mathbb{E}[Y]=2$
- both sub-trees evaluate to $0 \longrightarrow Y=2$
- \vee-Case 1: node evaluates to $1 \longrightarrow \mathbb{E}[Y]=p \cdot 1+(1-p) \cdot 2=2-p \leq \frac{3}{2}$
 - at least one sub-tree evaluates to 1
- with prob $p \geq 1 / 2$ (only!) this tree is visited first $\longrightarrow Y=1$
- with prob $1-p \leq 1 / 2$ both sub-trees are visited $\longrightarrow Y=2$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!
Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to 0

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to 0
- at least one \vee-node evaluates to 0

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0: node evaluates to 0
- at least one \vee-node evaluates to 0

- with prob $p \geq 1 / 2$ (only!) this node is visited first

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to 0
- at least one \vee-node evaluates to 0

- with prob $p \geq 1 / 2$ (only!) this node is visited first

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
$-\wedge$-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+\cdots$
- at least one \vee-node evaluates to 0

- with prob $p \geq 1 / 2$ (only!) this node is visited first

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
$-\wedge$-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+\cdots$
- at least one \vee-node evaluates to 0

- with prob $p \geq 1 / 2$ (only!) this node is visited first
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p) \cdot\left(2+\frac{3}{2}\right)$

- at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$
$\left(2+\frac{3}{2}\right)=\frac{7}{2}-\frac{3}{2} p$

- at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$ - at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
$\leq \frac{11}{4} \leq 3$
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$ - at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
$\left(2+\frac{3}{2}\right)=\frac{7}{2}-\frac{3}{2} p$

- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1: node evaluates to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation)

Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$
- at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
$\left(2+\frac{3}{2}\right)=\frac{7}{2}-\frac{3}{2} p$

- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1: node evaluates to 1
- both \vee-nodes evaluate to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$

- Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$
- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$ - at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1: node evaluates to $1 \rightarrow \mathbb{E}[Z]=2 \cdot \frac{3}{2}=3$
- both \vee-nodes evaluate to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$
- at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first

Both cases: visit ≤ 3 trees in exp.

- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1: node evaluates to $1 \rightarrow \mathbb{E}[Z]=2 \cdot \frac{3}{2}=3$
- both \vee-nodes evaluate to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$ - at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first

Both cases: visit ≤ 3 trees in exp.

- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1 : node evaluates to $1 \rightarrow \mathbb{E}[Z]=2 \cdot \frac{3}{2}=3$ - Induction: exp. leaves per tree $\leq 3^{k-1}$ - both \vee-nodes evaluate to 1

Randomized Evaluation - Running Time

- Depends on how lucky we are, i.e., how often we can avoid checking the other child
- The running time is a random variable, we cannot deduce a specific value in advance

Theorem: On every input $x_{1}, \ldots x_{4^{k}}$ the Randomized Evaluation algorithm (RE) has an expected running time of $O\left(n^{\log _{4}(3)}\right) . \approx O\left(n^{0.792 \ldots}\right)$ is sublinear!

Proof via Induction (that the number X of visited leaves at depth $2 k$ is $\leq 3^{k}=3^{\log _{4}(n)}=n^{\log _{4}(3)}$ in expectation) Step: $k-1 \rightarrow k$
Let Y be trees visited in \vee-node \rightarrow Case $0: \mathbb{E}[Y]=2$ Case $1: \mathbb{E}[Y] \leq \frac{3}{2}$

- Let Z be trees visited in \wedge-node
- \wedge-Case 0 : node evaluates to $0 \rightarrow \mathbb{E}[Z]=p \cdot 2+(1-p)$ - at least one \vee-node evaluates to 0
- with prob $p \geq 1 / 2$ (only!) this node is visited first
- Both cases: visit ≤ 3 trees in exp.
- with prob $1-p \leq 1 / 2$ both \vee-nodes are visited
- \wedge-Case 1 : node evaluates to $1 \rightarrow \mathbb{E}[Z]=2 \cdot \frac{3}{2}=3$ - both \vee-nodes evaluate to 1
- Induction: exp. leaves per tree $\leq 3^{k-1}$

$$
\mathbb{E}[X] \leq 3 \cdot 3^{k-1}=3^{k}
$$

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive?

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive? Red-Black-Trees (a, b)-Trees AVL-Trees
- Complicated mechanisms that update the tree structure after an insertion

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive? Red-Black-Trees (a, b)-Trees AVL-Trees
- Complicated mechanisms that update the tree structure after an insertion
- Ensure that the depth is logarithmic in the number of nodes

Power of Randomness: Average-Case Analysis

Binary Search Trees

- Goal: in a sequence of elements, quickly determine whether a given element is contained
- Example: (1, 3, 4, 5, 7, 8, 9) Find: 4
- Idea: elements in left sub-tree are smaller, elements in right sub-tree are larger

Query

- Element equal to node? O.w. recurse in left/right child when element is smaller/larger
- Running time: linear in the depth of the tree

Maintenance

- Setting: elements appended over time, but never deleted
- How can we maintain the search-tree property as new elements arrive? Red-Black-Trees (a, b)-Trees AVL-Trees
- Complicated mechanisms that update the tree structure after an insertion
- Ensure that the depth is logarithmic in the number of nodes

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2,10

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2,10

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2,10,13

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert 2,10,13

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert $2,10,13,23,27,42,56,98$

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs. \checkmark
- Example: Insert $2,10,13,23,27,42,56,98$

Problem

- If elements come in sorted order, tree is unbalanced

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
\square

(4)

(5)
\square
(8)

(27)

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$ Problem?
- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

(4)

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$ Problem?
- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it likely that this happens in a real-world application?

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$ Problem?
- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?
- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree

(3)

(4)

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

Average-Case Analysis

- Model real world via probability distribution over possible inputs, which is

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

Average-Case Analysis

- Model real world via probability distribution over possible inputs, which is
- simple (so that we can analyze it)

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

Average-Case Analysis

- Model real world via probability distribution over possible inputs, which is
- simple (so that we can analyze it)
- realistic (so that we can make useful predictions about the real world)

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

Average-Case Analysis

- Model real world via probability distribution over possible inputs, which is
- simple (so that we can analyze it)
- realistic (so that we can make useful predictions about the real world)

In the following: uniform random permutation of the numbers

Keep it Simple

Simple Insert Strategy

- Place a new element where it belongs.
- Example: Insert $2,10,13,23,27,42,56,98$

Problem?

- If elements come in sorted order, tree is unbalanced
- Worst case: linear running time for single query
- Is that actually a problem?

- Is it likely that this happens in a real-world application?
- Only 1 sequence yields this tree, 21964800 sequences yield a perfectly balanced tree

Average-Case Analysis

- Model real world via probability distribution over possible inputs, which is
- simple (so that we can analyze it) \downarrow
- realistic (so that we can make useful predictions about the real world) Not so clear...

In the following: uniform random permutation of the numbers

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.

- w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\begin{aligned}
& M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\} \\
& S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\begin{aligned}
& M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\} \\
& S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\begin{aligned}
& M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\} \\
& S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger

$$
S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger
- All paths that would lead to $x \in M_{u, v}$ are identical

$$
S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger

$$
S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
$$

- All paths that would lead to $x \in M_{u, v}$ are identical
- Let $u^{\prime} \in M_{u, v}$ be the first element from $M_{u, v}$ to appear in S

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.

- w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger

$$
S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
$$

- All paths that would lead to $x \in M_{u, v}$ are identical
- Let $u^{\prime} \in M_{u, v}$ be the first element from $M_{u, v}$ to appear in S
- From then on, u^{\prime} is on the path that would lead to v

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.
Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger

- All paths that would lead to $x \in M_{u, v}$ are identical
- Let $u^{\prime} \in M_{u, v}$ be the first element from $M_{u, v}$ to appear in S
- From then on, u^{\prime} is on the path that would lead to v
- Cense 1: $u^{\prime}=u$: u is on path \checkmark

$$
S=(7,11,4, \ldots, u, \ldots, v, \ldots, u+1, \ldots, 1)
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.

- w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Before an element in $M_{u, v}$ is added, all elements $M=\{1,2,3,4, \ldots, u, u+1, \ldots, v, \ldots, n\}$ are smaller/larger
- All paths that would lead to $x \in M_{u, v}$ are identical
- Let $u^{\prime} \in M_{u, v}$ be the first element from $M_{u, v}$ to appear in S
- From then on, u^{\prime} is on the path that would lead to v
- Cense 1 : $u^{\prime}=u$: u is on path \checkmark
- Uase 2: $u^{\prime} \neq u:\left(u<u^{\prime}\right) \& u$ is in left sub-tree of u^{\prime} but v is in right u not on path v (1) (1)

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.

- w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$
$M_{v, u}=\{v, \ldots, u\}$
(for symmetry reasons)

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

$$
M_{v, u}=\{v, \ldots, u\}
$$

(for symmetry reasons)

- Let $S_{u, v}$ be the subsequence of S containing the elements in $M_{u, v}$

$$
\begin{aligned}
M_{u, v} & =\{u, u+1, u+2, v\} \\
S & =(\ldots, u, \ldots, u+2, \ldots, v, \ldots, u+1, \ldots) \\
S_{u, v} & =(u, u+2, v, u+1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
M_{v, u}=\{v, \ldots, u\}
$$

(for symmetry reasons)

- Let $S_{u, v}$ be the subsequence of S containing the elements in $M_{u, v}$
- Then $S_{u, v}$ is a uniform random permutation of $M_{u, v}$

$$
\begin{aligned}
M_{u, v} & =\{u, u+1, u+2, v\} \\
S & =(\ldots, u, \ldots, u+2, \ldots, v, \ldots, u+1, \ldots) \\
S_{u, v} & =(u, u+2, v, u+1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\begin{equation*}
M_{v, u}=\{v, \ldots, u\} \tag{forsymmetryreasons}
\end{equation*}
$$

- Let $S_{u, v}$ be the subsequence of S containing the elements in $M_{u, v}$
- Then $S_{u, v}$ is a uniform random permutation of $M_{u, v}$
- The probability that u is first in $S_{u, v}$ is
$\operatorname{Pr}\left[\right.$ " u first in $\left.S_{u, v} "\right]=1 /\left|M_{u, v}\right|=1 /(v-u+1)$

$$
\begin{aligned}
M_{u, v} & =\{u, u+1, u+2, v\} \\
S & =(\ldots, u, \ldots, u+2, \ldots, v, \ldots, u+1, \ldots) \\
S_{u, v} & =(u, u+2, v, u+1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\begin{equation*}
M_{v, u}=\{v, \ldots, u\} \tag{forsymmetryreasons}
\end{equation*}
$$

- Let $S_{u, v}$ be the subsequence of S containing the elements in $M_{u, v}$
- Then $S_{u, v}$ is a uniform random permutation of $M_{u, v}$
- The probability that u is first in $S_{u, v}$ is
$\operatorname{Pr}\left[" u\right.$ first in $\left.S_{u, v} "\right]=1 /\left|M_{u, v}\right|=1 /(v-u+1)$
- Aralogous for $S_{v, u}$

Pr ["u first in $S_{v, u "]}=1 /(u-v+1)$

$$
\begin{aligned}
M_{u, v} & =\{u, u+1, u+2, v\} \\
S & =(\ldots, u, \ldots, u+2, \ldots, v, \ldots, u+1, \ldots) \\
S_{u, v} & =(u, u+2, v, u+1)
\end{aligned}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

- Let X_{u} be the indicator random variable with $X_{u}=\left\{\begin{array}{l}1, \text { if } u \text { is on the path to } v \\ 0, \text { otherwhise }\end{array}\right.$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.
$u>v$

- Let X_{u} be the indicator random variable with $X_{u}=\left\{\begin{array}{l}1, \text { if } u \text { is on the path to } v \\ 0, \text { otherwhise }\end{array}\right.$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Let X_{u} be the indicator random variable with

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$
$\underset{E}{\mathbb{E}[\ell]}=\mathbb{E}\left[\sum_{u=1}^{v-1} x_{u}+\sum_{u=v+1}^{n} x_{u}\right]$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Let X_{u} be the indicator random variable with

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$\operatorname{Pr}[" u$ on path to $v "]=\left\{\begin{array}{l}1 /(v-u+1), \text { if } u<v \\ 1 /(u-v+1), \text { if } v<u\end{array}\right.$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S.

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$\operatorname{Pr}[" u$ on path to $v "]=\left\{\begin{array}{l}1 /(v-u+1), \text { if } u<v \\ 1 /(u-v+1), \text { if } v<u\end{array}\right.$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$
$\underset{\substack{\text { (} \\ \mathbb{E}[]]}}{ }=\mathbb{E}\left[\sum_{u=1}^{v-1} X_{u}+\sum_{u=v+1}^{n} X_{u}\right]=\sum_{u=1}^{v-1} \frac{1}{v-u+1}+\sum_{u=v+1}^{n} \frac{1}{u-v+1}$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$
$\underset{\substack{\mathbb{E}[\ell] \\ \text { E] }]}}{ } \mathbb{E}\left[\sum_{u=1}^{v-1} X_{u}+\sum_{u=v+1}^{n} X_{u}\right]=\sum_{u=1}^{v-1} \frac{1}{v-u+1}+\sum_{u=v+1}^{n} \frac{1}{u-v+1}=\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{v}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-v+1}$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

$$
\begin{aligned}
& \text { Harmonic number: } \\
& H_{n}=\sum_{i=1}^{n} \frac{1}{i} \in O(\log (n))
\end{aligned}
$$

$$
\mathbb{E}[\ell]=\mathbb{E}\left[\sum_{u=1}^{v-1} X_{u}+\sum_{u=v+1}^{n} X_{u}\right]=\sum_{u=1}^{v-1} \frac{1}{v-u+1}+\sum_{u=v+1}^{n} \frac{1}{u-v+1}=\underbrace{\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{v}}_{H_{v}-1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-v+1}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.
w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

$$
\begin{aligned}
& \text { Harmonic number: } \\
& H_{n}=\sum_{i=1}^{n} \frac{1}{i} \in O(\log (n))
\end{aligned}
$$

$$
\mathbb{E}[\ell]=\mathbb{E}\left[\sum_{u=1}^{v-1} X_{u}+\sum_{u=v+1}^{n} X_{u}\right]=\sum_{u=1}^{v-1} \frac{1}{v-u+1}+\sum_{u=v+1}^{n} \frac{1}{u-v+1}=\underbrace{\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{v}}_{H_{v}-1}+\underbrace{\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-v+1}}_{H_{n-v+1}-1}
$$

Simple Insert Strategy: Analysis

Theorem: Let S be a permutation of $M=\{1,2, \ldots, n\}$ chosen uniformly at random. Then, the expected depth of a binary search tree with the Simple Insert Strategy is $O(\log (n))$.

- w.l.o.g. we can assume the elements to be $1, \ldots, n$, as we are only interested in the order

Observation: Let T be a binary search tree with the Simple Insert Strategy and let $v \in T$ be an element. Then the path from v to the root contains a node $u<v$, if and only if u is the first among $M_{u, v}=\{u, \ldots, v\}$ in S. $u>v$

- Let X_{u} be the indicator random variable with

$$
X_{u}=\left\{\begin{array}{l}
1, \text { if } u \text { is on the path to } v \\
0, \text { otherwhise }
\end{array} \mathbb{E}\left[X_{u}\right]=\operatorname{Pr}\left[X_{u}=1\right]\right.
$$

$$
\operatorname{Pr}[" u \text { on path to } v "]=\left\{\begin{array}{l}
1 /(v-u+1), \text { if } u<v \\
1 /(u-v+1), \text { if } v<u
\end{array}\right.
$$

- Then the length of the path to v is $\ell=\sum_{u \in\{1, \ldots, n\} \backslash\{v\}} X_{u}$

$$
\begin{aligned}
& \text { Harmonic number: } \\
& H_{n}=\sum_{i=1}^{n} \frac{1}{i} \in O(\log (n))
\end{aligned}
$$

$$
\mathbb{E}[\ell]=\mathbb{E}\left[\sum_{u=1}^{v-1} X_{u}+\sum_{u=v+1}^{n} X_{u}\right]=\sum_{u=1}^{v-1} \frac{1}{v-u+1}+\sum_{u=v+1}^{n} \frac{1}{u-v+1}=\underbrace{\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{v}}_{H_{v}-1}+\underbrace{\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-v+1}}_{H_{n-v+1}-1 \in O(\log (n))}
$$

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log (n))$ but $O\left(n^{2}\right)$ worst case)

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log (n))$ but $O\left(n^{2}\right)$ worst case) Next week!

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log (n))$ but $O\left(n^{2}\right)$ worst case) Next week!

- Example: AND/OR-Trees, expected running time sublinear in the input size

Conclusion

Organizational

- Homepage: scale.iti.kit.edu/teaching/2023ws/randalg
- A place for questions will be linked on the website

Randomized Algorithms

- Often simpler/faster than deterministic ones (sometimes the only possible way)
- At the cost of certainty (may be slow, may be wrong)

Quicksort (expected $O(n \log (n))$ but $O\left(n^{2}\right)$ worst case) Next week!

- Example: AND/OR-Trees, expected running time sublinear in the input size Average-Case Analysis

- Model real world using probability distributions over inputs
- If worst case is unlikely, expect good running times
- Example: Binary search-trees with simple insert strategy have same expected depth as complicated deterministic data structures

