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Why is randomness useful in computation?

Randomness facilitates the development of algorithms and data structures.

“For many applications, a randomized algorithm is the simplest
algorithm available, or the fastest, or both.”

Sometimes a randomized approach is the only solution!

Idea
Utilize randomness in algorithms and data structures to obtain
much better performance than that of deterministic approaches
But we have to pay for that . . .

Maybe we only expect the approach to be fast
Maybe we only expect the approach to work correctly

Goal: develop methods that fail only rarely

“Randomized Algorithms”, Motwani & Raghavan, 1995

https://i.imgflip.com/3ajf5v.jpg?a470534
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Why is randomness useful in computation?

Useful when bridging the theory-practice gap regarding the performance of an appraoch
Theory-Practice Gap

Algorithm performance often measured by worst-case running time (strong guarantee)
Observe much better performance in practice than expected “KADABRA is an ADaptive Algorithm for

Betweenness via Random Approximation”,
Borassi & Natale, JEA, 2019Example: bidirectional Breadth-First-Search

no asymptotic speed-up compared to standard
BFS in the worst case
sublinear running time observed on many
real-world networks

Average-Case Analysis
Distinguish practical instances from the worst case
Define probabilistic distributions (over possible inputs) that favor realistic instances
Analyze performance assuming input is drawn from the distribution
Expect good performance when hard instances are sufficiently unlikely
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Overview

Randomized Algorithms & Data Structures

Average-Case Analysis

Toolbox

Probability Amplification
Streaming / Online-algorithms
Hashing

Random Graphs
Algorithm Analysis

Probabilistic Method
Yao’s Principle
Coupling
Dealing with stochastic dependencies
Concentration bounds

A

B

C

D

h(x)

00

01

02

03

04

Sol

Sirius

Procyon

Tau Ceti

x

P
r[
X

≥
x
] 1

1
2

1 2 3 40

Pr[X = 1]

Pr[X = 3]

Pr[X = 2]

Pr[X = 4]



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

Organization

Team Max Stefan Hans-Peter
Lecture Lecture Exercise

Material

(first part) (second part)

Probability and Computing
Randomized Algorithms
Modern Discrete Probability

Slides

Thursday 11:30 Tuesday 8:00 (every other week)

Sheets

Exam

Assumed Background
Algorithms and data structures
Probability theory

Every week, hand in on the
Thursday before the next exercise

Website
Questions?

Oral
Requirment: sheets handed in
regularly

Previous script

scale.iti.kit.edu/teaching/2023ws/randalg

Ilias, Discord, Matrix?
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Power of Randomness: Let’s Play a Game

Tic-Tac-Toe
Players take turns placing and in 3× 3 grid
First to get three in a line wins

Can Player 2 win the game?

Tree of Moves
Each node is a board configuration
A parent-child relation represents a valid move

(initial configuration)

(1st move)

(2nd move)
Label a config 1 if Player 2 can win, 0 o.w.

What label do we put on the root?

c0

c1;0 c1;1 c1;2

c2;0 c2;1 c2;2 c2;3 c2;4c0 = 1 if there exists no i such that c1;i = 0

c0 =
_
i∈[4]

c2;ic1;2 = 1 if there exists an i such that c2;i = 1

or equivalently, if for all i we have c1;i = 1

c0 =
^
i∈[2]

c1;i
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AND/OR-Trees

Node types: ∧-nodes, ∨-nodes, and leaves

Leaves contain boolean values
Inner nodes evaluate to . . .

the conjunction of their children, for ∧-nodes
the disjunction of their children, for ∨-nodes

∧-nodes have only ∨-nodes as children
∨-nodes have only AND/OR-trees as children

Structure

Evaluation

The root is a leaf

∧

0 0 0 1

101

0 1

or an ∧-node
1

0

1

1

∨ ∨

∨

∧

∨

∧

Example Complexities
Tic-Tac-Toe: 31896 (non-symmetric) games (leaves) Chess: approx. 10123 leaves
Checkers: approx. 1040 leaves Go (19×19): approx. 10360 leaves
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Deterministic Evaluation

∧∧

Simplifying Assumption

All leaves have the same depth 2k

∨

∧

∨ ∨∨ ∨∨ ∨∨
∧ ∧

∨ ∨

1001 111 1 100 0000 0

k = 2

A bit-string of length n = 4k

encodes the input completely
A Simple Deterministic Algorithm

Compute all nodes bottom up
Running time on layer ‘: 2‘
2kX
‘=0

2‘ = 22k+1−1 = Θ(4k) = Θ(n)

Can we do better? NO!
Theorem: Let A be any deterministic AND/OR-tree-algorithm. For k ≥ 1 there exists an
input x1; : : : ; x4k s.t. A visits all 4k leaves and the output is the value of the last one visited.

⇒

Each inner node has two children
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Deterministic Evaluation

Simplifying Assumption

All leaves have the same depth 2k

A bit-string of length n = 4k

encodes the input completely
A Simple Deterministic Algorithm

Compute all nodes bottom up
Running time on layer ‘: 2‘
2kX
‘=0

2‘ = 22k+1−1 = Θ(4k) = Θ(n)

Can we do better? NO!
Theorem: Let A be any deterministic AND/OR-tree-algorithm. For k ≥ 1 there exists an
input x1; : : : ; x4k s.t. A visits all 4k leaves and the output is the value of the last one visited.

Proof via Induction
Idea: We are an adversary who knows A and con-
structs an input (...on the fly, while the algorithm is running. Since A is

deterministic this does not make a difference.)

Base: k = 1

x1 x2 x3 x4

A visits ≥ 1 leaf: w.l.o.g. A → x1

Set x1 := 0

0

(value of parent and root not determined, yet)

A needs to visit another leaf

?

Case 1: A → x2
x1 := 1 (value of parent determined, but not of root)

1

1

w.l.o.g. A → x3
x3 := 0

0

(value of parent and root not determined, yet) ⇒ output is x4
✓

⇒ A → x4

∨
∧

∨

⇒

Each inner node has two children
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Deterministic Evaluation

Simplifying Assumption

All leaves have the same depth 2k

A bit-string of length n = 4k

encodes the input completely
A Simple Deterministic Algorithm

Compute all nodes bottom up
Running time on layer ‘: 2‘
2kX
‘=0

2‘ = 22k+1−1 = Θ(4k) = Θ(n)

Can we do better? NO!
Theorem: Let A be any deterministic AND/OR-tree-algorithm. For k ≥ 1 there exists an
input x1; : : : ; x4k s.t. A visits all 4k leaves and the output is the value of the last one visited.

Proof via Induction
Idea: We are an adversary who knows A and con-
structs an input (...on the fly, while the algorithm is running. Since A is

deterministic this does not make a difference.)

Step: k − 1 → k

Consider tree of depth 2k as a tree
of depth 2 with trees y1; : : : ; y4 (of
depth 2(k − 1)) as “leaves”

y1 y2 y3 y4

∨
∧

∨

Analogous to the base, we can en-
force that A needs to look at all yi
By induction, we can force A to look
at all leaves in each yi ⇒ A looks at all leaves ✓

⇒

Each inner node has two children
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Randomized Evaluation

Idea
We can evaluate an ∧-node to 0 if we find one 0-child
We can evaluate an ∨-node to 1 if we find one 1-child

evalAndNode(v)
if v is leaf then

c := uniformSample(v .children)
if evalOrNode(c) = 0 then

return value(v)

return 0
c ′ := the other child
return evalOrNode(c ′)

Here each of the two children is se-
lected with equal probability 1=2.

evalOrNode(v)

if evalAndNode(c) = 1 then
return 1

c ′ := the other child
return evalAndNode(c ′)

while ignoring the other child!

How long does that take?

Algorithm

Execute as evalAndNode(r ) for root-node r

∨-nodes are not
leaves in our setting

c := uniformSample(v .children)
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Randomized Evaluation – Running Time

Depends on how lucky we are, i.e., how often we can avoid checking the other child

Theorem: On every input x1; : : : x4k the Randomized Evaluation algorithm (RE) has an
expected running time of O(nlog4(3)).

The running time is a random variable, we cannot deduce a specific value in advance

≈ O(n0:792:::) is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is ≤ 3k = 3log4(n) = nlog4(3) in expectation)
Expected number of nodes evaluated on even layer ‘ = 2i
is at most 3i

Expected number of nodes evaluated on odd layer ‘ is at
most that of the layer beneath

∧∧
∨

∧

∨ ∨∨ ∨∨ ∨∨
∧ ∧

∨ ∨
‘ = 0

‘ = 2

‘ = 1

‘ = 3

‘ = 4

Expected number of total evaluated nodes is at most

≤
kX

i=0

2 · 3i = Θ(3k)30 + 31 + 31 + 32 + 32 + · · ·+ 3k

‘ = 0 ‘ = 2‘ = 1 ‘ = 3 ‘ = 4

i = 0 i = 1 i = 2 i = k

‘ = 2k
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Randomized Evaluation – Running Time

Depends on how lucky we are, i.e., how often we can avoid checking the other child

Theorem: On every input x1; : : : x4k the Randomized Evaluation algorithm (RE) has an
expected running time of O(nlog4(3)).

The running time is a random variable, we cannot deduce a specific value in advance

≈ O(n0:792:::) is sublinear!

Proof via Induction
Base: k = 1

Case analysis over all bit-strings x1; x2; x3; x4, example 0001

x1 x2 x3 x4

∧

Let XR be number of leaves visited when going right first

1=2

(that the number X of visited leaves at depth 2k is ≤ 3k = 3log4(n) = nlog4(3) in expectation)

Pr[RE → x3] = 1=2

Pr[RE → x4] = 1=2

0

visit x4 XR = 2

do not visit x3 XR = 1

Independent of leaf choice, need to look at other too: XL = 2
00

E[XR] = 2 + 1
2 · 2 + 1

2 · 1 = 7
2

Let XL be number of leaves visited when going left first
1

E[XL] = 2

E[X] = 1
2 · 2 + 1

2 · 7
2 = 11

4 ≤ 3

When left ∨-node is checked, root value is determined

✓

∨ ∨

First left/right with prob 1=2

1=2
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Randomized Evaluation – Running Time

Depends on how lucky we are, i.e., how often we can avoid checking the other child

Theorem: On every input x1; : : : x4k the Randomized Evaluation algorithm (RE) has an
expected running time of O(nlog4(3)).

The running time is a random variable, we cannot deduce a specific value in advance

≈ O(n0:792:::) is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is ≤ 3k = 3log4(n) = nlog4(3) in expectation)

Step: k − 1 → k

Let Y be trees visited in ∨-node
∨-Case 0: node evaluates to 0

both sub-trees evaluate to 0
∨-Case 1: node evaluates to 1

at least one sub-tree evaluates to 1

1

with prob p ≥ 1=2 (only!) this tree is visited first
with prob 1−p ≤ 1=2 both sub-trees are visited

Y = 1

Y = 2

Y = 2
E[Y ] = p · 1 + (1− p) · 2 = 2− p ≤ 3

2

E[Y ] = 2

10

∧
∨ ∨
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Randomized Evaluation – Running Time

Depends on how lucky we are, i.e., how often we can avoid checking the other child

Theorem: On every input x1; : : : x4k the Randomized Evaluation algorithm (RE) has an
expected running time of O(nlog4(3)).

The running time is a random variable, we cannot deduce a specific value in advance

≈ O(n0:792:::) is sublinear!

Proof via Induction (that the number X of visited leaves at depth 2k is ≤ 3k = 3log4(n) = nlog4(3) in expectation)

Step: k − 1 → k

Let Y be trees visited in ∨-node Case 0: E[Y ] = 2 Case 1: E[Y ] ≤ 3
2

Let Z be trees visited in ∧-node

∧

∧-Case 0: node evaluates to 0
at least one ∨-node evaluates to 0
with prob p ≥ 1=2 (only!) this node is visited first
with prob 1− p ≤ 1=2 both ∨-nodes are visited

E[Z] = p · 2 +

∨ ∨

(1− p) · (2 + 3
2 )

≤ 11
4 ≤ 3

= 7
2 − 3

2p

∧-Case 1: node evaluates to 1
both ∨-nodes evaluate to 1

E[Z] = 2 · 3
2 = 3

Both cases: visit ≤ 3 trees in exp.
Induction: exp. leaves per tree ≤ 3k−1

E[X] ≤ 3 · 3k−1 = 3k ✓
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Power of Randomness: Average-Case Analysis

Goal: in a sequence of elements, quickly determine whether a given element is contained
Binary Search Trees

Idea: elements in left sub-tree are smaller, elements in right sub-tree
are larger

(1; 3; 4; 5; 7; 8; 9) 4

2 6

1 3 5 7

Example:

8

1 7 9

Maintenance

How can we maintain the search-tree property as new elements arrive?
Setting: elements appended over time, but never deleted

Red-Black-Trees (a; b)-Trees AVL-Trees

Query
Element equal to node? O.w. recurse in left/right child when element is smaller/larger

5

3

4

Running time: linear in the depth of the tree

Find: 4

Complicated mechanisms that update the tree structure after an insertion
Ensure that the depth is logarithmic in the number of nodes Is all that necessary?
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Keep it Simple

98

56

42

Simple Insert Strategy
Place a new element where it belongs. ✓

4

2 6

1 3 5 7

8

1 7 9

5

3

4
Example: Insert 2

2

; 10

10

13

23

27

; 13 ; 23; 27; 42; 56; 98
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Keep it Simple

Simple Insert Strategy
Place a new element where it belongs. ✓

Example: Insert 2 ; 10 ; 13 ; 23; 27; 42; 56; 98
Problem

If elements come in sorted order, tree is unbalanced
Worst case: linear running time for single query
Is that actually a problem?
Is it likely that this happens in a real-world application?

?

Only 1 sequence yields this tree

98

4

6

1

3

5

7
8

1

7

9

5

3
4

2

10

13

23

27

56

42
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Keep it Simple

Simple Insert Strategy
Place a new element where it belongs. ✓

Example: Insert 2 ; 10 ; 13 ; 23; 27; 42; 56; 98
Problem

If elements come in sorted order, tree is unbalanced
Worst case: linear running time for single query
Is that actually a problem?
Is it likely that this happens in a real-world application?

?

Average-Case Analysis
Model real world via probability distribution over possible inputs, which is

simple (so that we can analyze it)
realistic (so that we can make useful predictions about the real world)

In the following: uniform random permutation of the numbers

✓

Not so clear...

Only 1 sequence yields this tree , 21964800 sequences yield a perfectly balanced tree

9881
7

9

53

4
2

10

13

23

27
56

42

https://oeis.org/A056971



Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Simple Insert Strategy: Analysis

w.l.o.g. we can assume the elements to be 1; : : : ; n, as we are only interested in the order

Theorem: Let S be a permutation of M = {1; 2; : : : ; n} chosen uniformly at random. Then,
the expected depth of a binary search tree with the Simple Insert Strategy is O(log(n)).

Observation: Let T be a binary search tree with the Simple Insert Strategy and let v ∈ T
be an element. Then the path from v to the root contains a node u < v , if and only if u is
the first among Mu;v = {u; : : : ; v} in S.

M = {1; 2; 3; 4; :::; u; u + 1; :::; v ; :::; n}
S = (7; 11; 4; :::; u; :::; v ; :::; u + 1; :::; 1)

4

Before an element in Mu;v is added, all elements
are smaller/larger
All paths that would lead to x ∈ Mu;v are identical

7

11Let u′ ∈ Mu;v be the first element from Mu;v to appear in S
u′

u′

From then on, u′ is on the path that would lead to v

Case 1: u′ = u:
Case 2: u′ ̸= u: (u < u′) u& u is in left sub-tree of u′ but v is in right vu not on path ✓

u is on path ✓
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Simple Insert Strategy: Analysis

w.l.o.g. we can assume the elements to be 1; : : : ; n, as we are only interested in the order

Theorem: Let S be a permutation of M = {1; 2; : : : ; n} chosen uniformly at random. Then,
the expected depth of a binary search tree with the Simple Insert Strategy is O(log(n)).

Observation: Let T be a binary search tree with the Simple Insert Strategy and let v ∈ T
be an element. Then the path from v to the root contains a node u < v , if and only if u is
the first among Mu;v = {u; : : : ; v} in S. u > v

Mv;u = {v; : : : ; u} (for symmetry reasons)
Let Su;v be the subsequence of S containing the elements in Mu;v

Then Su;v is a uniform random permutation of Mu;v

S = (:::; u; :::; u + 2; :::; v ; :::; u + 1; :::)

Mu;v = {u; u + 1; u + 2; v}

Su;v = (u; u + 2; v ; u + 1)

The probability that u is first in Su;v is
Pr[“u first in Su;v ”] = 1=|Mu;v | = 1=(v − u + 1)

Analogous for Sv;u

Pr[“u first in Sv;u”] = 1=(u − v + 1)
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Simple Insert Strategy: Analysis

w.l.o.g. we can assume the elements to be 1; : : : ; n, as we are only interested in the order

Theorem: Let S be a permutation of M = {1; 2; : : : ; n} chosen uniformly at random. Then,
the expected depth of a binary search tree with the Simple Insert Strategy is O(log(n)).

Observation: Let T be a binary search tree with the Simple Insert Strategy and let v ∈ T
be an element. Then the path from v to the root contains a node u < v , if and only if u is
the first among Mu;v = {u; : : : ; v} in S. u > v

Pr[“u on path to v ”] =
ȷ
1=(v − u + 1); if u < v

1=(u − v + 1); if v < u

Let Xu be the indicator random variable with

Xu =

ȷ
1; if u is on the path to v

0; otherwhise

Then the length of the path to v is ‘ =
P

u∈{1;:::;n}\{v} Xu

E[‘] = E
"
v−1X
u=1

Xu +
nX

u=v+1

Xu

#
=

v−1X
u=1

1

v − u + 1
+

nX
u=v+1

1

u − v + 1
=

1

2
+
1

3
+: : :+

1

v
+

1

2
+
1

3
+: : :+

1

n − v + 1

Hv − 1 Hn−v+1 − 1+ ∈ O(log(n)) ✓

Harmonic number:
Hn=

Pn
i=1

1
i
∈O(log(n))

E[Xu] = Pr[Xu = 1]
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Conclusion

Organizational
Homepage:
A place for questions will be linked on the website

Randomized Algorithms
Often simpler/faster than deterministic ones (sometimes the only possible way)
At the cost of certainty (may be slow, may be wrong)

Example: AND/OR-Trees, expected running time sublinear in the input size
Average-Case Analysis

Model real world using probability distributions over inputs
If worst case is unlikely, expect good running times
Example: Binary search-trees with simple insert strategy have same
expected depth as complicated deterministic data structures

0 0

∨
1

∧
∨

0

4

7

11

Quicksort (expected O(n log(n)) but O(n2) worst case) Next week!

scale.iti.kit.edu/teaching/2023ws/randalg


