Probability and Computing - Classic Hash Tables

Stefan Walzer, Maximilian Katzmann | WS 2023/2024

Prüfungsanmeldung

- Am einfachsten: Hier angeben, wann ihr Zeit habt: https://www.terminplaner.dfn.de/W4m8QyA9vvp1K19m
- Alternativ: Email an Stefan und Max.
- Wir bieten euch dann einen Termin per Email an.

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Hash Table with Chaining

e.g. std::unordered_set, java.util.HashMap

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)
$S \subseteq D: \quad$ set of n keys (possibly with associated data)
$h: D \rightarrow R$: hash function, range usually $R=[m]$
$\alpha=\frac{n}{m}: \quad$ load factor, $\alpha \leq \alpha_{\text {max }}=\mathcal{O}(1)$

Hash Table with Chaining

e.g. std: :unordered_set, java.util.HashMap

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)
$S \subseteq D: \quad$ set of n keys (possibly with associated data)
$h: D \rightarrow R$: hash function, range usually $R=[m]$
$\alpha=\frac{n}{m}: \quad$ load factor, $\alpha \leq \alpha_{\text {max }}=\mathcal{O}(1)$

Goal

Operations in time t with $\mathbb{E}[t]=\mathcal{O}(1)$.
Randomness comes from the hash function.

Hash Table with Chaining

e.g. std: :unordered_set, java.util.HashMap

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)
$S \subseteq D: \quad$ set of n keys (possibly with associated data)
$h: D \rightarrow R$: hash function, range usually $R=[m]$
$\alpha=\frac{n}{m}: \quad$ load factor, $\alpha \leq \alpha_{\text {max }}=\mathcal{O}(1)$

Goal

Operations in time t with $\mathbb{E}[t]=\mathcal{O}(1)$.
Randomness comes from the hash function.

Ideal Hash Functions

Every function from D to R is equally likely to be h.

Ideal Hash Functions are Impractical

Naive Idea

- Let R^{D} denote all functions from D to R. We pick $h \sim \mathcal{U}\left(R^{D}\right)$.
- There are $|R|$ options for the hash of each $x \in D$
- Hence: $\left|R^{D}\right|=|R|^{|D|}$

$x \in D$	x_{1}	x_{2}	x_{3}	\ldots	$x_{\|D\|}$
$h(x) \in R$	$?$	$?$	$?$	\ldots	$?$

Why $h \sim \mathcal{U}\left(R^{D}\right)$ is desirable

- $h \sim \mathcal{U}\left(R^{D}\right) \Leftrightarrow \forall x_{1}, \ldots, x_{n} \in D: h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{n}\right)$ are independent and uniformly random in R.
\hookrightarrow independence is very useful in an analysis
- In particular: $\forall x_{1}, \ldots, x_{n} \in D, \forall i_{1}, \ldots, i_{n}: \underset{h \sim \mathcal{U}\left(R^{D}\right)}{\operatorname{Pr}}\left[h\left(x_{1}\right)=i_{1} \wedge \ldots \wedge h\left(x_{n}\right)=i_{n}\right]=|R|^{-n}$.

Why $h \sim \mathcal{U}\left(R^{D}\right)$ is unwieldy

$$
\log _{2}\left(|R|^{|D|}\right)=|D| \cdot \log _{2}(|R|) \text { bits to store } h \sim \mathcal{U}\left(R^{D}\right) \quad \rightsquigarrow \quad \text { for } D=\{0,1\}^{64}: \text { more than } 2^{64} \text { bits. }
$$

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining 00000000

Use Case 2: Linear Probing 000000000000000

What is a Hash Function?

(it depends on who you ask)

What is a Hash Function?

(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as $h=$ sha256sum
\$ sha256sum myfile.txt
018a7eaee8a...3e79043e21ab4 myfile.txt
Range $R=\{0,1\}^{256}$. It is hard to find x, y with $h(x)=h(y)$.
\hookrightarrow Files with equal hashes are likely the same.

What is a Hash Function?

(it depends on who you ask)

Cryptographic Hash Function

```
A collision resistant function such as h=sha256sum
$ sha256sum myfile.txt
018a7eaee8a...3e79043e21ab4 myfile.txt
Range R={0,1} 256. It is hard to find x,y with h(x)=h(y).
Files with equal hashes are likely the same.
```


Cryptographic Pseudorandom Function

A function f : Seeds $\times D \rightarrow R$ where $\log _{2} \mid$ Seeds \mid is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}$ (Seeds) and
- $h(\cdot)$ for $h \sim \mathcal{U}\left(R^{D}\right)$,
except with negligible probability.
Conceptions: What is a Hash Function?
000000

What is a Hash Function?

(it depends on who you ask)

Karlsruhe Institute of Technology

Hash Function in Algorithm Engineering

Cryptographic Hash Function

A collision resistant function such as $h=$ sha256sum
\$ sha256sum myfile.txt
018a7eaee8a...3e79043e21ab4 myfile.txt
Range $R=\{0,1\}^{256}$. It is hard to find x, y with $h(x)=h(y)$. \hookrightarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function f : Seeds $\times D \rightarrow R$ where $\log _{2} \mid$ Seeds \mid is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}$ (Seeds) and
- $h(\cdot)$ for $h \sim \mathcal{U}\left(R^{D}\right)$,
except with negligible probability.

Conceptions: What is a Hash Function?	Use Case 1: Hash Table with Chaining
0000000	00000000

What is a Hash Function?

(it depends on who you ask)

Karlsruhe Institute of Technology

Hash Function in Algorithm Engineering

Cryptographic Hash Function

A collision resistant function such as $h=$ sha256sum
\$ sha256sum myfile.txt
018a7eaee8a...3e79043e21ab4 myfile.txt
Range $R=\{0,1\}^{256}$. It is hard to find x, y with $h(x)=h(y)$. \hookrightarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function f : Seeds $\times D \rightarrow R$ where $\log _{2} \mid$ Seeds \mid is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}$ (Seeds) and
- $h(\cdot)$ for $h \sim \mathcal{U}\left(R^{D}\right)$,
except with negligible probability.

Conceptions: What is a Hash Function?	Use Case 1: Hash Table with Chaining
0000000	00000000

What is a Hash Function?

(it depends on who you ask)

Hash Function in Algorithm Engineering

Cryptographic Hash Function

A collision resistant function such as $h=$ sha256sum
\$ sha256sum myfile.txt
018a7eaee8a...3e79043e21ab4 myfile.txt
Range $R=\{0,1\}^{256}$. It is hard to find x, y with $h(x)=h(y)$. \hookrightarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function f : Seeds $\times D \rightarrow R$ where $\log _{2} \mid$ Seeds \mid is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}$ (Seeds) and
- $h(\cdot)$ for $h \sim \mathcal{U}\left(R^{D}\right)$,
except with negligible probability.

Conceptions: What is a Hash Function?	Use Case 1: Hash Table with Chaining
0000000	00000000

Use Case 2: Linear Probing 000000000000000

Conclusion

 000
What is a Hash Function?

(it depends on who you ask)

Hash Function in Algorithm Engineering

- typically small range $|R|=\mathcal{O}(n)$ \hookrightarrow cannot be collision resistant
- should behave like $h \sim \mathcal{U}\left(R^{D}\right)$ in my application
- should be fast to evaluate
- adversarial settings rarely considered, although:

Conceptions: What is a Hash Function? \quad Use Case 1: Hash Table with Chaining
0000000

Use Case 2: Linear Probing 000000000000000

Conclusion

 000
Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants,

uint32_t murmur3_32 (const uint8_t* key,
uint $32 \mathrm{t} \mathrm{h}=$ seed
uint32 t k;
for (size_t $i=$ len >> 2; i; i--) \{ memcpy(\&k, key, sizeof(uint32 t)); key $+=$ sizeof(uint32 t); $\mathrm{h}^{\wedge}=$ murmur_32 $\operatorname{scramble}(\mathrm{k})$ $h=(h \ll 13) \mid(h \gg 19) ;$
$h=h * 5+0 x e 6546 \mathrm{~b} 64 ;$
\}
[...]
return h;
\}
static inline uint32 t murmur_32 scramble(uint32_t k) \{
k *= 0xcc9e2d51;
$k=(k \ll 15)$ | $(k \gg 17)$
k * $=0 \times 1 \mathrm{~b} 873593$
return k ;
\}

Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

```
uint32_t murmur3_32(const uint8_t* key,
                size_t len, uint32_t seed) {
    uint32_t h = seed
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k)
        h = (h<< 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}
static inline uint32_t murmur_32 scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k<< 15) | (k >> 17)
    k *= 0x1b873593;
    return k;
}
```


Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

uint32_t murmur3_32 (const uint8_t* key,
size t len, uint32 t seed) \{
uint32_t $\mathrm{h}=$ seed
uint32 $\mathrm{t} k$;
for (size_t $i=$ len >> 2; i; i--) \{ memcpy(\&k, key, sizeof(uint32_t)); key += sizeof(uint32_t); $h^{\wedge}=$ murmur_32 $\operatorname{scramble}(\mathrm{k})$ $h=(h \ll 13) \mid(h \gg 19)$;
$\mathrm{h}=\mathrm{h} * 5+0 \mathrm{xe6546b64}$;
\}
[...]
return h ;
\}
static inline uint32_t murmur_32 scramble (uint32_t k) \{
k *= 0xcc9e2d51;
$k=(k \ll 15) \mid(k \gg 17)$
$\mathrm{k} *=0 \times 1 \mathrm{~b} 873593$.
return k ;
\}

Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

uint32_t murmur3_32 (const uint8_t* key,
slze t len, uint32 t seed)
int $32 \mathrm{t} \mathrm{h}=$ seed
uint32_t k
for (size_t $i=$ len >> 2; i; i--) \{ memcpy(\&k, key, sizeof(uint32_t)); key += sizeof(uint32_t); $h^{\wedge}=$ murmur- 32 scramble (k); $h=(h \ll 13) \mid(h \gg 19)$;
$\mathrm{h}=\mathrm{h} * 5+0 \mathrm{xe6546b64}$
\}
[...]
return h;
\}
static inline uint32_t murmur_32 scramble (uint32_t k) \{ k *= 0xcc9e2d51;
$k=(k \ll 15)$ | (k>> 17)
$k *=0 \times 1 \mathrm{~b} 873593$;
return k;
\}

Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

```
uint32_t murmur3_32(const uint8_t* key,
            size t len, uint32 t seed)
    unt32 t h = seed
    uint32_t k
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32 scramble(k)
        h = (h<< 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}
static inline uint32_t murmur_32 scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17)
    k *= 0x1b873593
    return k;
}
```


Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

```
uint32_t murmur3_32(const uint8_t* key,
            size t len, uint32 t seed)
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32 t);
        h ^= murmur_32 scramble(k)
        h = (h<< 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}
static inline uint32_t murmur_32 scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k= (k<< 15) | (k >> 17)
    k *= 0x1b873593;
    return k;
}
```


Usage

For $R=[m]$, pick seed $\sim \mathcal{U}\left(\{0,1\}^{32}\right)$ and use

$$
h(x)=\text { murmur3_32 }(x, \text { seed }) \bmod m .
$$

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?

- YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher
- NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash\#Vulnerabilities

Hashing in Practice

Black Magic, do not touch!

MurmurHash

Bitshifts, Magic Constants, ...

```
uint32_t murmur3_32(const uint8_t* key,
            size t len, uint32 t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32 t);
        h ^= murmur_32 scramble(k)
        h = (h<< 13) | (h>> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}
static inline uint32_t murmur_32 scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k<< 15) | (k >> 17);
    k *= 0x1b873593
    return k;
}
```


Usage

For $R=[m]$, pick seed $\sim \mathcal{U}\left(\{0,1\}^{32}\right)$ and use

$$
h(x)=\text { murmur3_32 }(x, \text { seed }) \bmod m .
$$

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?

- YES, with respect to many statistical tests. see https://github.com/aappleby/smhasher
- NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash\#Vulnerabilities
- MAYBE, for your favourite application.

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Use Case 2: Linear Probing 000000000000000

What should a Theorist do?

Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}\left(R^{D}\right)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

What should a Theorist do?

Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}\left(R^{D}\right)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1 Assume SUHA holds.
2 Analyse algorithm under SUHA.
3 Hope that algorithm still works with real hash functions.

What should a Theorist do?

Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}\left(R^{D}\right)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1 Assume SUHA holds.
2 Analyse algorithm under SUHA.
3 Hope that algorithm still works with real hash functions.

SUHA is "wrong" but adequate

- Modelling assumption.
\hookrightarrow like e.g. ideal gas law in physics

What should a Theorist do?

Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}\left(R^{D}\right)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1 Assume SUHA holds.
2 Analyse algorithm under SUHA.
3 Hope that algorithm still works with real hash functions.

SUHA is "wrong" but adequate

- Modelling assumption.
\hookrightarrow like e.g. ideal gas law in physics
- Excellent track record in non-adversarial settings.

What should a Theorist do?

Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq R^{D}$ of hash functions with $\log (|\mathcal{H}|)$ not too large. \hookrightarrow sampling and storing $h \in \mathcal{H}$ is cheap
2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

What should a Theorist do?

Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq R^{D}$ of hash functions with $\log (|\mathcal{H}|)$ not too large. \hookrightarrow sampling and storing $h \in \mathcal{H}$ is cheap
2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

What should a Theorist do?

Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq R^{D}$ of hash functions with $\log (|\mathcal{H}|)$ not too large.
\hookrightarrow sampling and storing $h \in \mathcal{H}$ is cheap
2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.

What should a Theorist do?

Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq R^{D}$ of hash functions with $\log (|\mathcal{H}|)$ not too large.
\hookrightarrow sampling and storing $h \in \mathcal{H}$ is cheap
2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.
- Rigorously covers non-adversarial settings.

What should a Theorist do?

Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq R^{D}$ of hash functions with $\log (|\mathcal{H}|)$ not too large. \hookrightarrow sampling and storing $h \in \mathcal{H}$ is cheap
2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.
- Rigorously covers non-adversarial settings.
- Proofs often difficult.
\hookrightarrow Wider theory practice gap than with SUHA.

What should a Theorist do?

Approach 3: Let the Cryptographers do the Work

How to Analyse your Algorithm using Cryptographic Assumptions

1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f.

- Case 1: Everything still works. Great! :-)
- Case 2: Something fails.
\Rightarrow Your use case can tell the difference between f and true randomness.
\hookrightarrow The cryptographers said this is impossible. \&

What should a Theorist do?

Approach 3: Let the Cryptographers do the Work

How to Analyse your Algorithm using Cryptographic Assumptions

1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f.

- Case 1: Everything still works. Great! :-)
- Case 2: Something fails.
\Rightarrow Your use case can tell the difference between f and true randomness.
\hookrightarrow The cryptographers said this is impossible. \&

Should we use cryptographic pseudorandom functions?

What should a Theorist do?

Approach 3: Let the Cryptographers do the Work

How to Analyse your Algorithm using Cryptographic Assumptions

1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f.

- Case 1: Everything still works. Great! :-)
- Case 2: Something fails.
\Rightarrow Your use case can tell the difference between f and true randomness.
\hookrightarrow The cryptographers said this is impossible. \&

Should we use cryptographic pseudorandom functions?

- YES. Algorithms become robust even in some adversarial settings.
\hookrightarrow e.g. Python, Haskell, Ruby, Rust use SipHash by default
https://en.wikipedia.org/wiki/SipHash

What should a Theorist do?

Approach 3: Let the Cryptographers do the Work

How to Analyse your Algorithm using Cryptographic Assumptions

1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f.

- Case 1: Everything still works. Great! :-)
- Case 2: Something fails.
\Rightarrow Your use case can tell the difference between f and true randomness.
\hookrightarrow The cryptographers said this is impossible. \&

Should we use cryptographic pseudorandom functions?

- YES. Algorithms become robust even in some adversarial settings.
\hookrightarrow e.g. Python, Haskell, Ruby, Rust use SipHash by default
https://en.wikipedia.org/wiki/SipHash
- NO. Too slow in high-performance settings.

Hash Function	MiB / sec
SipHash	944
Murmur3F	7623
xxHash64	12109

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function? 000000

Conclusion

 000
Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Hash Table with Chaining

Search Time under Chaining

$$
\begin{aligned}
& \max _{S \subseteq D} \max _{x \in D} \\
& |S|=n
\end{aligned}
$$

$$
1+|\{y \in S \mid h(y)=h(x)\}|
$$

Hash Table with Chaining

Search Time under Chaining

For $n, m \in \mathbb{N}$ and a family $\mathcal{H} \subseteq[m]^{D}$ of hash functions the maximum expected search time is at most

$$
T_{\text {chaining }}(n, m, \mathcal{H})=\max _{\substack{S \subseteq D \\|S|=n}} \max _{x \in D} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|]
$$

Hash Table with Chaining

Search Time under Chaining

For $n, m \in \mathbb{N}$ and a family $\mathcal{H} \subseteq[m]^{D}$ of hash functions the maximum expected search time is at most

$$
T_{\text {chaining }}(n, m, \mathcal{H})=\max _{\substack{S \subseteq D \\|S|=n}} \max _{x \in D} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|]
$$

Key set is worst case. Only $h \in \mathcal{H}$ is random. Key set is fixed before h is chosen.

Hash Table with Chaining

Search Time under Chaining

For $n, m \in \mathbb{N}$ and a family $\mathcal{H} \subseteq[m]^{D}$ of hash functions the maximum expected search time is at most

$$
T_{\text {chaining }}(n, m, \mathcal{H})=\max _{\substack{S \subseteq D \\|S|=n}} \max _{x \in D} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|]
$$

Key set is worst case. Only $h \in \mathcal{H}$ is random. Key set is fixed before h is chosen.

Theorem: Hash Table with Chaining under SUHA

$$
\text { If } \mathcal{H}=[m]^{D} \text { then } T_{\text {chaining }}(n, m, \mathcal{H}) \leq 2+\alpha=\mathcal{O}(1) \text { if } \alpha \in \mathcal{O}(1)
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|]
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \\
= & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[1+\sum_{y \in S} \mathbb{1}_{\{h(y)=h(x)\}}\right]
\end{aligned}
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \\
= & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[1+\sum_{y \in S} \mathbb{1}_{\{h(y)=h(x)\}}\right] \\
= & 1+\sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[\mathbb{1}_{\{h(y)=h(x)\}}\right]
\end{aligned}
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \\
= & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[1+\sum_{y \in S} \mathbb{1}_{\{h(y)=h(x)\}}\right] \\
= & 1+\sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[\mathbb{1}_{\{h(y)=h(x)\}}\right]
\end{aligned}
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\begin{array}{rlrl}
& \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] & & =1+\sum_{y \in S} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)] \\
= & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[1+\sum_{y \in S} \mathbb{1}_{\{h(y)=h(x)\}}\right] & =1+1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)] \\
= & 1+\sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[\mathbb{1}_{\{h(y)=h(x)\}}\right] & &
\end{array}
$$

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H}=[m]^{D}, S \subseteq D$ with $|S|=n$ and $x \in D$ then

$$
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \leq 2+\alpha
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] & & =1+\sum_{y \in S} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)] \\
= & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[1+\sum_{y \in S} \mathbb{1}_{\{h(y)=h(x)\}}\right] & & =1+1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)] \\
= & 1+\sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}\left[\mathbb{1}_{\{h(y)=h(x)\}}\right] & & =2+\sum_{y \in S \backslash\{x\}} \frac{1}{m} \leq 2+\frac{n}{m}=2+\alpha .
\end{aligned}
$$

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

A Universal Hash Family

Definition: c-universal hash family

A class $\mathcal{H} \subseteq[m]^{D}$ is called c-universal if: $\quad \forall x \neq y \in D: \underset{h \sim \mathcal{U}(\mathcal{H})}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{c}{m}$.

A Universal Hash Family

Definition: c-universal hash family
A class $\mathcal{H} \subseteq[m]^{D}$ is called c-universal if: $\quad \forall x \neq y \in D: \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(x)=h(y)] \leq \frac{c}{m}$.

$$
\text { Note: } \mathcal{H}=[m]^{D} \text { is } 1 \text {-universal. }
$$

A Universal Hash Family

Definition: c-universal hash family

A class $\mathcal{H} \subseteq[m]^{D}$ is called c-universal if: $\quad \forall x \neq y \in D: \underset{h \sim \mathcal{U}(\mathcal{H})}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{c}{m}$.

A Universal Hash Family

Definition: c-universal hash family

A class $\mathcal{H} \subseteq[m]^{D}$ is called c-universal if: $\quad \forall x \neq y \in D: \underset{h \sim \mathcal{U}(\mathcal{H})}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{c}{m}$.

Reminder (?): Finite Fields

Let $\mathbb{F}_{p}=\{0, \ldots, p-1\}$ for a prime number p. Then $\left(\mathbb{F}_{p}, \times, \oplus\right)$ is a field where

$$
a \times b:=(a \cdot b) \bmod p \quad \text { and } \quad a \oplus b:=(a+b) \bmod p \text {. }
$$

In particular $\left(\mathbb{F}_{p}^{*}:=\mathbb{F}_{p} \backslash\{0\}, \times\right)$ is a group.

A Universal Hash Family

Definition: c-universal hash family

A class $\mathcal{H} \subseteq[m]^{D}$ is called c-universal if: $\quad \forall x \neq y \in D: \underset{h \sim \mathcal{U}(\mathcal{H})}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{c}{m}$.

Reminder (?): Finite Fields

Let $\mathbb{F}_{p}=\{0, \ldots, p-1\}$ for a prime number p. Then $\left(\mathbb{F}_{p}, \times, \oplus\right)$ is a field where

$$
a \times b:=(a \cdot b) \bmod p \quad \text { and } \quad a \oplus b:=(a+b) \bmod p
$$

In particular $\left(\mathbb{F}_{p}^{*}:=\mathbb{F}_{p} \backslash\{0\}, \times\right)$ is a group.

The class of Linear Hash Functions

Assume $D \subseteq \mathbb{F}_{p}$ for prime p. Then the following class is 1 -universal:

$$
\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\} .
$$

Proof that $\mathcal{H}_{p, m}^{\text {lin }}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {in }}}[h(x)=h(y)] \leq 1 / m$.)

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {in }}}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned}
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {im }}}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {in }}}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b} .
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p} \times \mathbb{F}_{p} \rightarrow \mathbb{F}_{p} \times \mathbb{F}_{p}$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1 -universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {in }}}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y)$ from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow \mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1 -universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}_{p, m}^{\text {in }}}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1 -universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H}_{p, m}^{\text {in }}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y)$ from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$. \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

Conclusion

 000Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1 -universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H}_{p, m}^{\text {in }}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y)$ from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$. \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
\operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1 -universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H}_{p, m}^{\text {in }}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$.
 \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
P:=\mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}
$$

$$
\operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]=\operatorname{Pr}_{a, b}[((a \times x) \oplus b) \bmod m=((a \times y) \oplus b) \bmod m]
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H i m}_{p, m}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$.
 \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
P:=\mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}
$$

$$
\begin{aligned}
& \operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]=\operatorname{Pr}_{a, b}[((a \times x) \oplus b) \bmod m=((a \times y) \oplus b) \bmod m] \\
& =\operatorname{Pr}_{a, b}[c \bmod m=d \bmod m]=\underset{a, b}{\operatorname{Pr} r(c, d) \in B]}
\end{aligned}
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H i m}_{p, m}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$.
 \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
P:=\mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}
$$

$$
\begin{aligned}
& \operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]=\operatorname{Pr}_{a, b}[((a \times x) \oplus b) \bmod m=((a \times y) \oplus b) \bmod m] \\
& =\operatorname{Pr}_{a, b}[c \bmod m=d \bmod m]=\operatorname{Pr}_{a, b}[(c, d) \in B]=\operatorname{Pr}_{c, d \sim \mathcal{U}(P)}[(c, d) \in B]
\end{aligned}
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H i m}_{p, m}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$.
 \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
P:=\mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}
$$

$$
\begin{aligned}
& \operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]=\underset{a, b}{\operatorname{Pr}}[((a \times x) \oplus b) \bmod m=((a \times y) \oplus b) \bmod m] \\
& =\operatorname{Pr}_{a, b}[c \bmod m=d \bmod m]=\operatorname{Pr}_{a, b}[(c, d) \in B]=\operatorname{Pr}_{c, d \sim \mathcal{U}(P)}[(c, d) \in B]=\frac{|B|}{|P|}
\end{aligned}
$$

Proof that $\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times x) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$ is 1-universal.
Let $x \neq y \in \mathbb{F}_{p}$. (To show: $\operatorname{Pr}_{h \sim \mathcal{H}} \mathcal{H i m}_{p, m}[h(x)=h(y)] \leq 1 / m$.)

- Define

$$
\begin{aligned}
& c=(a \times x) \oplus b \\
& d=(a \times y) \oplus b
\end{aligned} \Leftrightarrow\binom{c}{d}=\underbrace{\left(\begin{array}{ll}
x & 1 \\
y & 1
\end{array}\right)}_{\text {regular! }}\binom{a}{b}
$$

- The mapping $(a, b) \mapsto(c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_{p}^{*} \times \mathbb{F}_{p} \rightarrow P$.
- Define bad set $B:=\{(c, d) \in P \mid c \bmod m=d \bmod m\}$.
 \hookrightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$
P:=\mathbb{F}_{p} \times \mathbb{F}_{p} \backslash\left\{(b, b) \mid b \in \mathbb{F}_{p}\right\}
$$

$$
\begin{aligned}
& \operatorname{Pr}_{a, b \sim \mathcal{U}\left(\mathbb{F}_{p}^{*} \times \mathbb{F}_{p}\right)}[h(x)=h(y)]=\underset{a, b}{\operatorname{Pr}}[((a \times x) \oplus b) \bmod m=((a \times y) \oplus b) \bmod m] \\
& =\operatorname{Pr}_{a, b}[c \bmod m=d \bmod m]=\underset{a, b}{\operatorname{Pr}[(c, d) \in B]=\operatorname{Pr}_{c, d \sim \mathcal{U}(P)}[(c, d) \in B]=\frac{|B|}{|P|} \leq \frac{1}{m} .} .
\end{aligned}
$$

Analysis of Hash Table with Chaining

... using a Universal Hash Family

Theorem

If $\mathcal{H} \subseteq[m]^{D}$ is a c-universal hash family then $T_{\text {chaining }}(n, m, \mathcal{H}) \leq 2+c \alpha=\mathcal{O}(1)$ if $\alpha \in \mathcal{O}(1)$ and $c \in \mathcal{O}(1)$.

Proof: Mostly the same.

$$
\forall S \subseteq[D], \forall x \in D: \quad \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|]
$$

Analysis of Hash Table with Chaining

... using a Universal Hash Family

Theorem

If $\mathcal{H} \subseteq[m]^{D}$ is a c-universal hash family then $T_{\text {chaining }}(n, m, \mathcal{H}) \leq 2+c \alpha=\mathcal{O}(1)$ if $\alpha \in \mathcal{O}(1)$ and $c \in \mathcal{O}(1)$.

Proof: Mostly the same.

$$
\begin{aligned}
\forall S \subseteq[D], \forall x \in D: \quad & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \\
= & \ldots=2+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)]
\end{aligned}
$$

Analysis of Hash Table with Chaining

... using a Universal Hash Family

Theorem

If $\mathcal{H} \subseteq[m]^{D}$ is a c-universal hash family then $T_{\text {chaining }}(n, m, \mathcal{H}) \leq 2+c \alpha=\mathcal{O}(1)$ if $\alpha \in \mathcal{O}(1)$ and $c \in \mathcal{O}(1)$.

Proof: Mostly the same.

$$
\begin{aligned}
\forall S \subseteq[D], \forall x \in D: \quad & \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})}[1+|\{y \in S \mid h(y)=h(x)\}|] \\
= & \ldots=2+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}[h(y)=h(x)] \\
= & 2+\sum_{y \in S \backslash\{x\}} \frac{c}{m} \leq 2+\frac{c n}{m}=2+c \alpha .
\end{aligned}
$$

More Universal Families

Examples for Universal Hash Families

- " $((a x+b) \bmod p) \bmod m$ " is 1-universal

$$
\begin{gathered}
\text { as discussed: } D=\mathbb{F}_{p}, \quad R=[m], \\
\mathcal{H}_{p, m}^{\text {lin }}:=\left\{x \mapsto((a \times b) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}
\end{gathered}
$$

More Universal Families

Examples for Universal Hash Families

- " $((a x+b) \bmod p) \bmod m$ " is 1-universal

$$
\begin{aligned}
& \text { as discussed: } D=\mathbb{F}_{p}, \quad R=[m], \\
& \mathcal{H}_{p, m}^{\text {in }}:=\left\{x \mapsto((a \times b) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}
\end{aligned}
$$

- " $(a x \bmod p) \bmod m$ " is only 2 -universal:

$$
\begin{gathered}
D=\mathbb{F}_{p}, \quad R=[m], \\
\mathcal{H}=\left\{x \mapsto(a \times b) \bmod m \mid a \in \mathbb{F}_{p}^{*}\right\}
\end{gathered}
$$

More Universal Families

Examples for Universal Hash Families

- " $((a x+b) \bmod p) \bmod m$ " is 1-universal
as discussed: $D=\mathbb{F}_{p}, \quad R=[m]$,
$\mathcal{H}_{p, m}^{\text {lin }}:=\left\{x \mapsto((a \times b) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$
- " $(a x \bmod p) \bmod m$ " is only 2 -universal:

$$
\begin{gathered}
D=\mathbb{F}_{p}, \quad R=[m], \\
\mathcal{H}=\left\{x \mapsto(a \times b) \bmod m \mid a \in \mathbb{F}_{p}^{*}\right\}
\end{gathered}
$$

- Multiply-Shift is 2-universal:

$$
\begin{aligned}
& D=\left\{0, \ldots, 2^{w}-1\right\}, \quad R=\left\{0, \ldots, 2^{\ell}-1\right\} \\
& \mathcal{H}=\left\{x \mapsto\left\lfloor\left((a \cdot x+b) \bmod 2^{w}\right) / 2^{w-\ell}\right\rfloor \mid\right. \\
& \text { odd } \left.a \in\left\{1, \ldots, 2^{w}-1\right\}, b \in\left\{0, \ldots, 2^{w}-1\right\} .\right\}
\end{aligned}
$$

More Universal Families

Examples for Universal Hash Families

- " $((a x+b) \bmod p) \bmod m$ " is 1 -universal
as discussed: $D=\mathbb{F}_{p}, \quad R=[m]$,
$\mathcal{H}_{p, m}^{\operatorname{lin}}:=\left\{x \mapsto((a \times b) \oplus b) \bmod m \mid a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\}$
- " $(a x \bmod p) \bmod m$ " is only 2-universal:

$$
\begin{gathered}
D=\mathbb{F}_{p}, \quad R=[m] \\
\mathcal{H}=\left\{x \mapsto(a \times b) \bmod m \mid a \in \mathbb{F}_{p}^{*}\right\}
\end{gathered}
$$

- Multiply-Shift is 2-universal:

$$
\begin{aligned}
& D=\left\{0, \ldots, 2^{w}-1\right\}, \quad R=\left\{0, \ldots, 2^{\ell}-1\right\} \\
& \mathcal{H}=\left\{x \mapsto\left\lfloor\left((a \cdot x+b) \bmod 2^{w}\right) / 2^{w-\ell}\right\rfloor \mid\right. \\
& \left.\quad \text { odd } a \in\left\{1, \ldots, 2^{w}-1\right\}, b \in\left\{0, \ldots, 2^{w}-1\right\} \cdot\right\}
\end{aligned}
$$

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Hash Table with Linear Probing

Hash Table with Linear Probing

$S:$ set of n keys
$m: \#$ of buckets
$\alpha=n / m$

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$. Insert. Put x into first empty bucket.

Hash Table with Linear Probing

$S:$ set of n keys
$m: \#$ of buckets
$\alpha=n / m$

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$. Insert. Put x into first empty bucket.

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$. Insert. Put x into first empty bucket.

Hash Table with Linear Probing

$S:$ set of n keys
$m: \#$ of buckets
$\alpha=n / m$

\equiv	$\boldsymbol{\top}$		\triangle	\boldsymbol{q}	\odot	\star	\ddagger	\dagger			\diamond

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$. Insert. Put x into first empty bucket.

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$. Insert. Put x into first empty bucket.

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Hash Table with Linear Probing

S : set of n keys
m : \# of buckets
$\alpha=n / m$

Running Times

- Lookup $(x \in S)$: At most x 's insertion time.

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Running Times

- Lookup $(x \in S)$: At most x 's insertion time.
- Lookup $(x \notin S$): At most the time it would take to insert x now.
- Delete $(x \in S)$: At most the time it would take to insert $y \notin S$ with $h(y)=h(x)$.
\hookrightarrow It suffices to understand insertion times!

Theorem: Linear Probing under SUHA

Let $T_{n, m}$ be the random insertion time into a linear probing hash table. If $\frac{1}{2} \leq \alpha=\frac{n}{m}<\alpha_{\text {max }}$ for some $\alpha_{\text {max }}<1$ then under SUHA we have

$$
\mathbb{E}\left[T_{n, m}\right]=\quad \mathcal{O}(1)
$$

Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x)+1, h(x)+2, \ldots(\bmod m)$.
Insert. Put x into first empty bucket.
Lookup. Look for x, abort when encountering empty bucket.
Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.
\hookrightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Running Times

- Lookup $(x \in S)$: At most x 's insertion time.
- Lookup $(x \notin S$): At most the time it would take to insert x now.
- Delete $(x \in S)$: At most the time it would take to insert $y \notin S$ with $h(y)=h(x)$.
\hookrightarrow It suffices to understand insertion times!

Theorem: Linear Probing under SUHA

Let $T_{n, m}$ be the random insertion time into a linear probing hash table. If $\frac{1}{2} \leq \alpha=\frac{n}{m}<\alpha_{\text {max }}$ for some $\alpha_{\text {max }}<1$ then under SUHA we have

$$
\left.\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}\left(\frac{1}{\left(1-\alpha_{\max }\right)^{2}}\right)=\mathcal{O}(1) . \quad \text { (not here }\right)
$$

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Preparation: A concentration bound

Chernoff

For $X \sim \operatorname{Bin}(n, p)$ and $\varepsilon \in[0,1]$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq \exp \left(-\varepsilon^{2} \mathbb{E}[X] / 3\right)$.

Preparation: A concentration bound

Chernoff

For $X \sim \operatorname{Bin}(n, p)$ and $\varepsilon \in[0,1]$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq \exp \left(-\varepsilon^{2} \mathbb{E}[X] / 3\right)$.

Lemma: $\operatorname{Pr}[\geq k$ hits in segment of length $k]$

range of k buckets (wlog $i=1$)
Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.

$$
\text { Then } \operatorname{Pr}_{h \sim \mathcal{U}\left(R^{D}\right)}[X \geq k] \leq \exp \left(-(1-\alpha)^{2} k / 3\right) .
$$

Preparation: A concentration bound

Chernoff

For $X \sim \operatorname{Bin}(n, p)$ and $\varepsilon \in[0,1]$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq \exp \left(-\varepsilon^{2} \mathbb{E}[X] / 3\right)$.

Lemma: $\operatorname{Pr}[\geq k$ hits in segment of length $k]$

range of k buckets (wlog $i=1$)
Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.

$$
\text { Then } \operatorname{Pr}_{h \sim \mathcal{U}\left(R^{D}\right)}[X \geq k] \leq \exp \left(-(1-\alpha)^{2} k / 3\right)
$$

Proof

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{i}=\mathbb{1}_{\left\{h\left(x_{i}\right) \in\{1, \ldots, k\}\right\}} \sim \operatorname{Ber}\left(\frac{k}{m}\right)$. Then $X=\sum_{i \in[n]} X_{i} \sim \operatorname{Bin}\left(n, \frac{k}{m}\right)$ with $\mathbb{E}[X]=\frac{k n}{m}=\alpha k$.

Preparation: A concentration bound

Chernoff

For $X \sim \operatorname{Bin}(n, p)$ and $\varepsilon \in[0,1]$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq \exp \left(-\varepsilon^{2} \mathbb{E}[X] / 3\right)$.

Lemma: $\operatorname{Pr}[\geq k$ hits in segment of length $k]$

range of k buckets (wlog $i=1$)
Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.

$$
\text { Then } \operatorname{Pr}_{h \sim \mathcal{U}\left(R^{0}\right)}[X \geq k] \leq \exp \left(-(1-\alpha)^{2} k / 3\right)
$$

Proof

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{i}=\mathbb{1}_{\left\{h\left(x_{i}\right) \in\{1, \ldots, k\}\right\}} \sim \operatorname{Ber}\left(\frac{k}{m}\right)$. Then $X=\sum_{i \in[n]} X_{i} \sim \operatorname{Bin}\left(n, \frac{k}{m}\right)$ with $\mathbb{E}[X]=\frac{k n}{m}=\alpha k$.

$$
\begin{aligned}
\operatorname{Pr}[X \geq k] & =\operatorname{Pr}\left[X \geq \frac{1}{\alpha} \mathbb{E}[X]\right] \\
& =\operatorname{Pr}\left[X \geq\left(1+\frac{1-\alpha}{\alpha}\right) \mathbb{E}[X]\right] \\
& \leq \exp \left(-\left(\frac{1-\alpha}{\alpha}\right)^{2} \alpha k / 3\right) \\
& \left.\leq \exp \left(-(1-\alpha)^{2} k / 3\right) . \quad \text { (using } \frac{1}{2} \leq \alpha \leq 1\right)
\end{aligned}
$$

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$\mathbb{E}[T]$

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\mathbb{E}[T] \leq \mathbb{E}[B]
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:

Reasoning:

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\mathbb{E}[T] \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]
$$

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\mathbb{E}[T] \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right]
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:

Reasoning:

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right] \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1}\right]
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:

Reasoning:

(1) Union Bound.

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right] \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1}\right] \stackrel{(2)}{=} \sum_{k \geq 1} k \cdot k \cdot \operatorname{Pr}\left[A_{1, k}\right]
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:
$\cdots \square|u|||l| l| l . .$.

Reasoning:

(1) Union Bound.
(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right] \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1}\right] \stackrel{(2)}{=} \sum_{k \geq 1} k \cdot k \cdot \operatorname{Pr}\left[A_{1, k}\right] \\
& \stackrel{(3)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[\mid\{y \in S|h(y) \in\{1, \ldots, k\}| \geq k]
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:
$\cdots \cdot|u| n|l| l \mid l . .$.

Reasoning:

(1) Union Bound.
(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
(3) Note: Keys stored in block cannot come in from the left.

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right] \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1}\right] \stackrel{(2)}{=} \sum_{k \geq 1} k \cdot k \cdot \operatorname{Pr}\left[A_{1, k}\right] \\
& \stackrel{(3)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[\mid\{y \in S|h(y) \in\{1, \ldots, k\}| \geq k] \\
& \stackrel{(4)}{\leq} \sum_{k \geq 1} k^{2} \cdot \exp \left(-(1-\alpha)^{2} k / 3\right)
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:
$\cdots \cdot|u| n|l| l \mid l . .$.

Reasoning:

(1) Union Bound.
(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
(3) Note: Keys stored in block cannot come in from the left.
(4) Chernoff argument from previous slide.

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right] \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1}\right] \stackrel{(2)}{=} \sum_{k \geq 1} k \cdot k \cdot \operatorname{Pr}\left[A_{1, k}\right] \\
& \stackrel{(3)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[\mid\{y \in S|h(y) \in\{1, \ldots, k\}| \geq k] \\
& \stackrel{(4)}{\leq} \sum_{k \geq 1} k^{2} \cdot \exp \left(-(1-\alpha)^{2} k / 3\right) \\
& \leq \sum_{k \geq 1} k^{2} \cdot \exp \left(-\left(1-\alpha_{\max }\right)^{2} k / 3\right)
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:
$\cdots \cdot|u| n|l| l \mid l . .$.

Reasoning:

(1) Union Bound.
(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
(3) Note: Keys stored in block cannot come in from the left.
(4) Chernoff argument from previous slide.

Proof: Expected LP-Insertion Time under SUHA is $\mathcal{O}(1)$

$$
\begin{aligned}
& \mathbb{E}[T] \leq \mathbb{E}[B]=\sum_{k \geq 1} k \cdot \operatorname{Pr}[B=k]=\sum_{k \geq 1} k \cdot \operatorname{Pr}\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1]}\right. \\
& \quad \stackrel{(1)}{\leq} \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \operatorname{Pr}\left[A_{h(x)-d, h(x)-d+k-1] \stackrel{(2)}{=} \sum_{k \geq 1} k \cdot k \cdot \operatorname{Pr}\left[A_{1, k}\right]}\right. \\
& \quad \begin{array}{l}
(3) \\
\leq \\
\sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[\mid\{y \in S|h(y) \in\{1, \ldots, k\}| \geq k] \\
\\
\\
\quad(4) \\
\leq
\end{array} \sum_{k \geq 1} k^{2} \cdot \exp \left(-(1-\alpha)^{2} k / 3\right) \\
& \leq \sum_{k \geq 1} k^{2} \cdot \exp \left(-\left(1-\alpha_{\max }\right)^{2} k / 3\right)=\mathcal{O}(1)
\end{aligned}
$$

$$
\text { Wolfram Alpha gives: } \int_{0}^{\infty} k^{2} \exp \left(-\left(1-\alpha_{\max }\right)^{2} k / 3\right)=\frac{54}{\left(1-\alpha_{\max }\right)^{6}}
$$

$A_{u, v}:\{u, v\}$ is maximal occupied block:

$\cdots \cdot$| | u | | | | v |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Reasoning:

(1) Union Bound.
(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
(3) Note: Keys stored in block cannot come in from the left.
(4) Chernoff argument from previous slide.

Content

1. Conceptions: What is a Hash Function?

- Hashing in the Wild
- What should a Theorist do?

2. Use Case 1: Hash Table with Chaining

- Using SUHA
- Using Universal Hashing

3. Use Case 2: Linear Probing

- Using SUHA
- Using Universal Hashing

4. Conclusion

Degrees of Independence

(Mutual / Collective) Independence

A family \mathcal{E} of events is independent if $\forall k \in \mathbb{N}$ and distinct $E_{1}, \ldots, E_{k} \in \mathcal{E}$ we have

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{k} E_{i}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[E_{i}\right] .
$$

A family \mathcal{X} of discrete random variables is independent if $\forall k \in \mathbb{N}$, distinct $X_{1}, \ldots, X_{k} \in \mathcal{X}$ and all $x_{1}, \ldots, x_{k} \in \mathbb{R}$ we have

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{k} x_{i}=x_{i}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[X_{i}=x_{i}\right] .
$$

Degrees of Independence

Pairwise Independence

A family \mathcal{E} of events is pairwise independent if for distinct $E_{1}, E_{2} \in \mathcal{E}$ we have

$$
\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right]
$$

A family \mathcal{X} of discrete random variables is pairwise independent if for all distinct $X_{1}, X_{2} \in \mathcal{X}$ and all $x_{1}, x_{2} \in \mathbb{R}$ we have

$$
\operatorname{Pr}\left[X_{1}=x_{1} \wedge X_{2}=x_{2}\right]=\operatorname{Pr}\left[X_{1}=x_{1}\right] \cdot \operatorname{Pr}\left[X_{2}=x_{2}\right]
$$

Degrees of Independence

d-wise Independence

A family \mathcal{E} of events is d-wise independent if $\forall k \in\{2, \ldots, d\}$ and distinct $E_{1}, \ldots, E_{k} \in \mathcal{E}$ we have

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{k} E_{i}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[E_{i}\right] .
$$

A family \mathcal{X} of discrete random variables is d-wise independent if $\forall k \in\{2, \ldots, d\}$, distinct $X_{1}, \ldots, X_{k} \in \mathcal{X}$ and all $x_{1}, \ldots, x_{k} \in \mathbb{R}$ we have

$$
\operatorname{Pr}\left[\bigwedge_{i=1}^{k} x_{i}=x_{i}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[x_{i}=x_{i}\right]
$$

d-Independent Hash Family

Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq[R]^{D}$ of hash functions is d-independent if for distinct
$x_{1}, \ldots, x_{d} \in D$ and any $i_{1}, \ldots, i_{d} \in R: \quad$ (grey is implied by black)
$\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{1}\right)=i_{1} \wedge \ldots \wedge h\left(x_{d}\right)=i_{d}\right]=\prod_{j=1}^{d} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{j}\right)=i_{j}\right]=|R|^{-d}$.

d-Independent Hash Family

Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq[R]^{D}$ of hash functions is d-independent if for distinct $x_{1}, \ldots, x_{d} \in D$ and any $i_{1}, \ldots, i_{d} \in R: \quad$ (grey is implied by black)
$\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{1}\right)=i_{1} \wedge \ldots \wedge h\left(x_{d}\right)=i_{d}\right]=\prod_{j=1}^{d} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{j}\right)=i_{j}\right]=|R|^{-d}$.

Alternative Definition

\mathcal{H} is d-independent if for $h \sim \mathcal{U}(\mathcal{H})$

- the family $(h(x))_{x \in D}$ of random variables is d-independent and
- $h(x) \sim \mathcal{U}(R)$ for each $x \in D$.

d-Independent Hash Family

Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq[R]^{D}$ of hash functions is d-independent if for distinct $x_{1}, \ldots, x_{d} \in D$ and any $i_{1}, \ldots, i_{d} \in R: \quad$ (grey is implied by black)
$\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{1}\right)=i_{1} \wedge \ldots \wedge h\left(x_{d}\right)=i_{d}\right]=\prod_{j=1}^{d} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{j}\right)=i_{j}\right]=|R|^{-d}$.

Alternative Definition

\mathcal{H} is d-independent if for $h \sim \mathcal{U}(\mathcal{H})$

- the family $(h(x))_{x \in D}$ of random variables is d-independent and
- $h(x) \sim \mathcal{U}(R)$ for each $x \in D$.

Theorem

Let $D=R=\mathbb{F}$ be a finite field. Then

$$
\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}
$$

is a d-independent family.
Note: $\mathcal{H} \subseteq \mathbb{F}^{\mathbb{F}} \rightsquigarrow$ not yet useful.

d-Independent Hash Family

Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq[R]^{D}$ of hash functions is d-independent if for distinct $x_{1}, \ldots, x_{d} \in D$ and any $i_{1}, \ldots, i_{d} \in R: \quad$ (grey is implied by black)

$$
\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{1}\right)=i_{1} \wedge \ldots \wedge h\left(x_{d}\right)=i_{d}\right]=\prod_{j=1}^{d} \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[h\left(x_{j}\right)=i_{j}\right]=|R|^{-d}
$$

Alternative Definition

\mathcal{H} is d-independent if for $h \sim \mathcal{U}(\mathcal{H})$

- the family $(h(x))_{x \in D}$ of random variables is d-independent and
- $h(x) \sim \mathcal{U}(R)$ for each $x \in D$.

Theorem

Let $D=R=\mathbb{F}$ be a finite field. Then

$$
\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}
$$

is a d-independent family.
Note: $\mathcal{H} \subseteq \mathbb{F}^{\mathbb{P}} \rightsquigarrow$ not yet useful.

Corollary: Smaller Ranges (proof omitted)

- If m divides $|\mathbb{F}|$, then adding "mod m " gives a d-independent family $\mathcal{H}^{\prime} \subseteq[m]^{\mathbb{F}}$.
- If m does not divide $|\mathbb{F}|$, then adding "mod m " gives a family $\mathcal{H}^{\prime} \subseteq[m]^{\mathbb{F}}$ such that for $h \sim \mathcal{U}\left(\mathcal{H}^{\prime}\right)$ the family $(h(x))_{x \in \mathbb{F}}$ is d-independent but only approximately uniformly distributed in $[m]$.

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show: $\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j \in[d]: h\left(x_{j}\right)=i_{j}\right]=|\mathbb{F}|^{-d}$.

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show : $\left.\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})} \forall j \in[d]: h\left(x_{j}\right)=i\right]=|\mathbb{F}|^{-d}$.
For $h \in \mathcal{H}$ (given via a_{0}, \ldots, a_{d-1}) the following is equivalent:

$$
\begin{array}{ll}
h\left(x_{1}\right)=i_{1} & a_{0}+a_{1} x_{1}+\cdots+a_{d-1} x_{1}^{d-1}=i_{1} \\
h\left(x_{2}\right)=i_{2} & a_{0}+a_{1} x_{2}+\cdots+a_{d-1} x_{2}^{d-1}=i_{2}
\end{array}
$$

$h\left(x_{d}\right)=i_{d}$
$a_{0}+a_{1} x_{d}+\cdots+a_{d-1} x_{d}^{d-1}=i_{d}$

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show : $\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j \in[d]: h\left(x_{j}\right)=i_{j}\right]=|\mathbb{F}|^{-d}$.
For $h \in \mathcal{H}$ (given via a_{0}, \ldots, a_{d-1}) the following is equivalent:

$$
\begin{gathered}
h\left(x_{1}\right)=i_{1} \\
h\left(x_{2}\right)=i_{2} \\
\vdots \\
h\left(x_{d}\right)=i_{d}
\end{gathered} \Longleftrightarrow \begin{gathered}
a_{0}+a_{1} x_{1}+\cdots+a_{d-1} x_{1}^{d-1}=i_{1} \\
a_{0}+a_{1} x_{2}+\cdots+a_{d-1} x_{2}^{d-1}=i_{2} \\
\vdots \\
a_{0}+a_{1} x_{d}+\cdots+a_{d-1} x_{d}^{d-1}=i_{d}
\end{gathered} \Longleftrightarrow \underbrace{\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{d-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{d-1} \\
\vdots & & & \ddots & \vdots \\
1 & x_{d} & x_{d}^{2} & \ldots & x_{d}^{d-1}
\end{array}\right)} \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d-1}
\end{array}\right)=\left(\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{d}
\end{array}\right)
$$

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show : $\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j \in[d]: h\left(x_{j}\right)=i_{j}\right]=|\mathbb{F}|^{-d}$.
For $h \in \mathcal{H}$ (given via a_{0}, \ldots, a_{d-1}) the following is equivalent:

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show : $\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j \in[d]: h\left(x_{j}\right)=i_{j}\right]=|\mathbb{F}|^{-d}$.
For $h \in \mathcal{H}$ (given via a_{0}, \ldots, a_{d-1}) the following is equivalent:

Exactly one vector $\vec{a}=M^{-1} \cdot \vec{i}$ solves the equation.

Proof: $\mathcal{H}:=\left\{x \mapsto \sum_{i=0}^{d-1} a_{i} x^{i} \mid a_{0}, \ldots, a_{d-1} \in \mathbb{F}\right\}$ is d-independent
Let $x_{1}, \ldots, x_{d} \in \mathbb{F}$ be distinct keys and $i_{1}, \ldots i_{d} \in \mathbb{F}$ arbitrary.
\hookrightarrow to show : $\operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j \in[d]: h\left(x_{j}\right)=i_{j}\right]=|\mathbb{F}|^{-d}$.
For $h \in \mathcal{H}$ (given via a_{0}, \ldots, a_{d-1}) the following is equivalent:

$$
\begin{gathered}
h\left(x_{1}\right)=i_{1} \\
h\left(x_{2}\right)=i_{2} \\
\vdots \\
h\left(x_{d}\right)=i_{d}
\end{gathered} \Longleftrightarrow \begin{gathered}
a_{0}+a_{1} x_{1}+\cdots+a_{d-1} x_{1}^{d-1}=i_{1} \\
a_{0}+a_{1} x_{2}+\cdots+a_{d-1} x_{2}^{d-1}=i_{2} \\
\vdots \\
a_{0}+a_{1} x_{d}+\cdots+a_{d-1} x_{d}^{d-1}=i_{d}
\end{gathered} \Longleftrightarrow \underbrace{\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{d-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{d-1} \\
\vdots & & & \ddots & \vdots \\
1 & x_{d} & x_{d}^{2} & \ldots & x_{d}^{d-1}
\end{array}\right)}_{\text {Vandermonde matrix } M \Rightarrow \text { regular }} \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d-1}
\end{array}\right)=\left(\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{d}
\end{array}\right)
$$

Exactly one vector $\vec{a}=M^{-1} \cdot \vec{i}$ solves the equation.

$$
\Rightarrow \operatorname{Pr}_{h \sim \mathcal{U}(\mathcal{H})}\left[\forall j: h\left(x_{j}\right)=i_{j}\right]=\operatorname{Pr}_{a_{0}, \ldots, a_{d-1} \sim \mathcal{U}(\mathbb{F})}\left[\vec{a}=M^{-1} \cdot \vec{i}\right]=\mathbb{F}^{-d}
$$

Concentration Bound for d-Independent Variables

(Tricky) Exercise

Let d be even and $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ a d-independent family of random variables with $p=\Omega(1 / n)$. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $\varepsilon>0$ we have

$$
\operatorname{Pr}[X-\mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)
$$

Concentration Bound for d-Independent Variables

(Tricky) Exercise

Let d be even and $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ a d-independent family of random variables with $p=\Omega(1 / n)$. Let $X=\sum_{i=1}^{n} X_{i}$. Then for any $\varepsilon>0$ we have

$$
\operatorname{Pr}[X-\mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)
$$

Remark: Weaker than Chernoff, stronger than Chebyshev

Chebycheff gives $\operatorname{Pr}[X-\mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] \leq \frac{1-p}{\varepsilon^{2} \mathbb{E}[X]}$. (requires $d=2$)
Chernoff gave $\operatorname{Pr}[X-\mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] \leq \exp \left(-\varepsilon^{2} \mathbb{E}[X] / 3\right)$. (requires $d=n$).

Preparation: A Concentration Bound

again for d-independence

Lemma (last slide)

For d-independent $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ and $X=\sum_{i \in[n]} X_{i}$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)$.

Preparation: A Concentration Bound

again for d-independence

Lemma (last slide)

For d-independent $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ and $X=\sum_{i \in[n]} X_{i}$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)$.

Lemma: $\geq k$ hits in segment of length k

range of k buckets (wlog $i=1$)
Let \mathcal{H} be a d-independent hash family and $h \sim \mathcal{U}(\mathcal{H})$.
Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.
Then $\operatorname{Pr}[X \geq k] \leq \mathcal{O}\left((1-\alpha)^{-d} k^{-d / 2}\right)$.

Preparation: A Concentration Bound

again for d-independence

Lemma (last slide)

For d-independent $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ and $X=\sum_{i \in[n]} X_{i}$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)$.

Lemma: $\geq k$ hits in segment of length k

range of k buckets (wlog $i=1$)
Let \mathcal{H} be a d-independent hash family and $h \sim \mathcal{U}(\mathcal{H})$. Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.

Proof

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{i}=\mathbb{1}_{\left\{h\left(x_{i}\right) \in\{1, \ldots, k\}\right\}} \sim \operatorname{Ber}\left(\frac{k}{m}\right)$. Then $X=\sum_{i \in[n]} X_{i}$ fits the Lemma with $\mathbb{E}[X]=\frac{k n}{m}=\alpha k$.

Preparation: A Concentration Bound

again for d-independence

Lemma (last slide)

For d-independent $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$ and $X=\sum_{i \in[n]} X_{i}$ we have $\operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]]=\mathcal{O}\left(\varepsilon^{-d} \mathbb{E}[X]^{-d / 2}\right)$.

Lemma: $\geq k$ hits in segment of length k

range of k buckets ($w \log i=1$)
Let \mathcal{H} be a d-independent hash family and $h \sim \mathcal{U}(\mathcal{H})$. Let $k \in \mathbb{N}$ and $X=|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}|$.

Then $\operatorname{Pr}[X \geq k] \leq \mathcal{O}\left((1-\alpha)^{-d} k^{-d / 2}\right)$.

Proof

Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and $X_{i}=\mathbb{1}_{\left\{h\left(x_{i}\right) \in\{1, \ldots, k\}\right\}} \sim \operatorname{Ber}\left(\frac{k}{m}\right)$. Then $X=\sum_{i \in[n]} X_{i}$ fits the Lemma with $\mathbb{E}[X]=\frac{k n}{m}=\alpha k$.

$$
\begin{aligned}
\operatorname{Pr}[X \geq k] & =\operatorname{Pr}\left[X \geq \frac{1}{\alpha} \mathbb{E}[X]\right] \\
& =\operatorname{Pr}\left[X \geq\left(1+\frac{1-\alpha}{\alpha}\right) \mathbb{E}[X]\right] \\
& =\mathcal{O}\left(\left(\frac{1-\alpha}{\alpha}\right)^{-d}(\alpha k)^{-d / 2}\right) \\
& \left.\leq \mathcal{O}\left((1-\alpha)^{-d} k^{-d / 2}\right) . \quad \text { using } \alpha \leq 1\right)
\end{aligned}
$$

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

$A_{u, v}:\{u, v\}$ is a maximal occupied block:

Reasoning:

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

$A_{u, v}:\{u, v\}$ is a maximal occupied block:

Reasoning:

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

$A_{u, v}:\{u, v\}$ is a maximal occupied block:

Reasoning:

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

Proof Sketch

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B] \leq \ldots \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}| \geq k]
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is a maximal occupied block:

Reasoning:
(1) Same as before, except we have to condition on $h(x)$ and may only use 8 -independence in the following. (this is the hand wavy part!)

Conclusion

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

Proof Sketch

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B] \leq \ldots \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}| \geq k] \\
& \stackrel{(2)}{\leq} \sum_{k \geq 1} k^{2} \cdot \mathcal{O}\left((1-\alpha)^{-8} k^{-8 / 2}\right)
\end{aligned}
$$

$$
\begin{gathered}
A_{u, v}:\{u, v\} \text { is a maximal occupied block: } \\
\qquad \cdots \square|u|||||v| .
\end{gathered}
$$

Reasoning:
(1) Same as before, except we have to condition on $h(x)$ and may only use 8 -independence in the following. (this is the hand wavy part!)
(2) Concentration bound from previous slide for $d=8$.

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

Proof Sketch

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B] \leq \cdots \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}| \geq k] \\
& \stackrel{(2)}{\leq} \sum_{k \geq 1} k^{2} \cdot \mathcal{O}\left((1-\alpha)^{-8} k^{-8 / 2}\right) \\
& \leq \sum_{k \geq 1} k^{-2} \cdot \mathcal{O}\left((1-\alpha)^{-8}\right)
\end{aligned}
$$

$A_{u, v}:\{u, v\}$ is a maximal occupied block:

Reasoning:
(1) Same as before, except we have to condition on $h(x)$ and may only use 8 -independence in the following. (this is the hand wavy part!)
(2) Concentration bound from previous slide for $d=8$.

Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n, m}$ for linear probing satisfies:

$$
\mathbb{E}\left[T_{n, m}\right]=\mathcal{O}(1)
$$

Proof Sketch

$$
\begin{aligned}
\mathbb{E}[T] & \leq \mathbb{E}[B] \leq \ldots \\
& \stackrel{(1)}{\leq} \sum_{k \geq 1} k^{2} \cdot \operatorname{Pr}[|\{y \in S \mid h(y) \in\{1, \ldots, k\}\}| \geq k] \\
& \stackrel{(2)}{\leq} \sum_{k \geq 1} k^{2} \cdot \mathcal{O}\left((1-\alpha)^{-8} k^{-8 / 2}\right) \\
& \leq \sum_{k \geq 1} k^{-2} \cdot \mathcal{O}\left((1-\alpha)^{-8}\right) \\
& \stackrel{(3)}{=} \frac{\pi^{2}}{6} \mathcal{O}\left((1-\alpha)^{-8}\right)=\mathcal{O}(1) .
\end{aligned}
$$

Final Remarks on Linear Probing + Universal Hashing

Much more is known about insertion times of linear probing:

- Any 5 -independent family gives $\mathcal{O}\left(\frac{1}{(1-\alpha)^{2}}\right)$.
\hookrightarrow A. Pagh, R. Pagh, and Ruzic 2011
- An (artificially bad) 4-independent family gives $\Omega(\log n)$.
\hookrightarrow Pătraşcu and Thorup 2016
- A (well-designed) 4-independent family gives $\mathcal{O}\left(\frac{1}{(1-\alpha)^{2}}\right)$.
\hookrightarrow Puatracscu and Thorup 2013

Conclusion

Technical Takeaway: Performance of Hash Tables

For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash table using linear probing or chaining provably has an expected running time of $\mathcal{O}(\mathbf{1})$ per operation.

Conclusion

Technical Takeaway: Performance of Hash Tables

For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash table using linear probing or chaining provably has an expected running time of $\mathcal{O}(\mathbf{1})$ per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

Conclusion

Technical Takeaway: Performance of Hash Tables

For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash table using linear probing or chaining provably has an expected running time of $\mathcal{O}(\mathbf{1})$ per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

Anhang: Mögliche Prüfungsfragen I

- Was könnte eine Idealvorstellung einer Hashfunktion sein? Inwiefern wäre eine ideale Hashfunktion nützlich? Was ist das Problem an dieser Vorstellung?
- Was ist die Simple Uniform Hashing Assumption (SUHA)? Was spricht dafür diese Annahme zu treffen? Welche Alternativen gibt es?
- Inwiefern ist eine pseudozufällige Funktion mit kryptographischen Ununterscheidbarkeitsgarantien nützlich für uns? Wie ist der Zusammenhang zur SUHA?*
- Universelles Hashing:
- Wie ist c-Universalität definiert?
- Welche c-universellen Hashklasse haben wir kennengelernt? Wie haben wir die c-Universalität bewiesen?
- Wie ist d-Unabhängigkeit für eine Hashklasse definiert?
- Welche d-universelle Hashklasse haben wir kennengelernt?
- Welcher Zusammenhang besteht zwischen d-Unabhängigkeit und c-Universalität? (Übungsaufgabe)
- Chernoff Schranken sind für Summen unabhängiger Zufallsvariablen gedacht. Was kann man machen, wenn die Zufallsvariablen nur d-unabhängig sind?*

Anhang: Mögliche Prüfungsfragen II

- Betrachten wir Hashing mit verketteten Listen:
- Welche Schranke an die erwartete Einfügezeit haben wir bewiesen? Wie?
- An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
- Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis funktioniert.
- Betrachten wir Hashing mit linearem Sondieren:
- Welche Schranke an die erwartete Laufzeit haben wir bewiesen? Wie?
- An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
- Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis funktioniert.
- Wie wir diese Eigenschaft ausgenutzt?*

References I

[1] Anna Pagh, Rasmus Pagh, and Milan Ruzic. "Linear Probing with 5-wise Independence". In: SIAM Rev. 53.3 (2011), pp. 547-558. DOI: 10.1137/110827831. URL: https://doi.org/10.1137/110827831.
[2] Mihai Pătraşcu and Mikkel Thorup. "On the k-Independence Required by Linear Probing and Minwise Independence". In: ACM Trans. Algorithms 12.1 (2016), 8:1-8:27. DOI: 10.1145/2716317. URL: https://doi.org/10.1145/2716317.
[3] Mihai Puatracscu and Mikkel Thorup. "Twisted Tabulation Hashing". In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013. Ed. by Sanjeev Khanna. SIAM, 2013, pp. 209-228. DOI: 10.1137/1.9781611973105.16. URL: https://doi.org/10.1137/1.9781611973105.16.
[4] Mikkel Thorup. "High Speed Hashing for Integers and Strings". In: CoRR abs/1504.06804 (2015). arXiv: 1504.06804. URL: http://arxiv.org/abs/1504.06804.

