Prüfungsanmeldung

- Am einfachsten: Hier angeben, wann ihr Zeit habt:
 https://www.terminplaner.dfn.de/W4m8QyA9vvp1K19m
- Alternativ: Email an Stefan und Max.
- Wir bieten euch dann einen Termin per Email an.
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
terminology

- D: Universe (or domain) of keys
 - (strings, integers, game states in chess)
- $S \subseteq D$: set of n keys (possibly with associated data)
- $h: D \rightarrow R$: hash function, range usually $R = [m]$
- $\alpha = \frac{n}{m}$: load factor, $\alpha \leq \alpha_{\text{max}} = O(1)$

Hash Table with Chaining

Use Case 1: Hash Table with Chaining
 - e.g. std::unordered_set, java.util.HashMap

Use Case 2: Linear Probing

set S of n keys

m buckets

linked lists
Terminology

- **D**: *Universe* (or domain) of keys
 - (strings, integers, game states in chess)

- **S ⊆ D**: set of n keys (possibly with associated data)

- **h : D → R**: hash function, range usually $R = [m]$

- **$\alpha = \frac{n}{m}$**: load factor, $\alpha \leq \alpha_{\text{max}} = O(1)$

Goal

Operations in time t with $\mathbb{E}[t] = O(1)$.

Randomness comes from the hash function.

Use Case 1: Hash Table with Chaining

- e.g. `std::unordered_set`, `java.util.HashMap`

Use Case 2: Linear Probing

Conclusion

References

Conceptions: What is a Hash Function?
Terminology

- **D: Universe (or domain) of keys**
 (strings, integers, game states in chess)
- **$S \subseteq D$: set of n keys** (possibly with associated data)
- **$h: D \to R$: hash function**, range usually $R = [m]$
- **$\alpha = \frac{n}{m}$: load factor**, $\alpha \leq \alpha_{\text{max}} = \mathcal{O}(1)$

Goal

Operations in time t with $\mathbb{E}[t] = \mathcal{O}(1)$.
Randomness comes from the hash function.

Ideal Hash Functions

Let R^D denote all functions from D to R. Every function in R^D is equally likely to be h.

Hash Table with Chaining

e.g. std::unordered_set, java.util.HashMap

Use Case 1: Hash Table with Chaining

e.g. `std::unordered_set`, `java.util.HashMap`

Use Case 2: Linear Probing

Conclusion

References

Hash Table with Chaining

Use Case 1: Hash Table with Chaining
`e.g. std::unordered_set, java.util.HashMap`

Terminology

- **D**: Universe (or domain) of keys
 (strings, integers, game states in chess)
- **S ⊆ D**: set of `n` keys (possibly with associated data)
- **h : D → R**: hash function, range usually `R = [m]`
- **α = \(\frac{n}{m} \)**: load factor, `α ≤ α_{max} = O(1)`

Goal

Operations in time `t` with \(\mathbb{E}[t] = O(1) \).
Randomness comes from the hash function.

Ideal Hash Functions

Let `R^D` denote all functions from `D` to `R`. Every function in `R^D` is equally likely to be `h`.

Ideal Hash Functions are Impractical

- There are \(|R|^{|D|} \) functions in `R^D`.
- \(\log_2(|R|^{|D|}) = |D| \cdot \log_2(|R|) \) bits to store `h`
 \(\Leftarrow \) for `D = \{0, 1\}^{64}`: more than \(2^{64} \) bits.
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
What is a Hash Function?
(it depends on who you ask)
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as $h = \text{sha256sum}$

```
$ \text{sha256sum myfile.txt}
018a7eaee8a...3e79043e21ab4 myfile.txt
```

Range $R = \{0, 1\}^{256}$. It is hard to find x, y with $h(x) = h(y)$.

\rightarrow Files with equal hashes are likely the same.
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as \(h = \text{sha256sum} \)

\[
\text{hash256sum} \text{ myfile.txt} \\
018a7eaee8a...3e79043e21ab4 \text{ myfile.txt}
\]

Range \(R = \{0, 1\}^{256} \). It is hard to find \(x, y \) with \(h(x) = h(y) \).

\(\rightarrow \) Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function \(f : \text{Seeds} \times D \rightarrow R \) where \(\log_2 |\text{Seeds}| \) is small and no efficient algorithm can distinguish

- \(f(s, \cdot) \) for \(s \sim \mathcal{U}(\text{Seeds}) \) and
- \(h(\cdot) \) for \(h \sim \mathcal{U}(R^D) \),

except with negligible probability.
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as $h = \text{sha256sum}$

```bash
$ \text{sha256sum} \text{ myfile.txt }
018a7eaee8a...3e79043e21ab4  \text{ myfile.txt }
```

Range $R = \{0, 1\}^{256}$. It is hard to find x, y with $h(x) = h(y)$.

\leftarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function $f : \text{Seeds} \times D \to R$ where $\log_2 |\text{Seeds}|$ is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}(\text{Seeds})$ and
- $h(\cdot)$ for $h \sim \mathcal{U}(R^D)$,

except with negligible probability.

Hash Function in Algorithm Engineering

- typically small range $|R| = \mathcal{O}(n)$
 \leftarrow cannot be collision resistant
- should behave like $h \sim \mathcal{U}(R^D)$ in my application
- should be fast to evaluate

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as \(h = \text{sha256sum} \)

\[
\text{sha256sum myfile.txt}
018a7eaee8a...3e79043e21ab4 myfile.txt
\]

Range \(R = \{0, 1\}^{256} \). It is hard to find \(x, y \) with \(h(x) = h(y) \).

\(\rightarrow \) Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function \(f : \text{Seeds} \times D \rightarrow R \) where \(\log_2 |\text{Seeds}| \) is small and no efficient algorithm can distinguish

- \(f(s, \cdot) \) for \(s \sim \mathcal{U}(\text{Seeds}) \) and
- \(h(\cdot) \) for \(h \sim \mathcal{U}(R^D) \),

except with negligible probability.

Hash Function in Algorithm Engineering
- typically small range \(|R| = \mathcal{O}(n) \)
 \(\leftrightarrow \) cannot be collision resistant
- should behave like \(h \sim \mathcal{U}(R^D) \) in my application
- should be fast to evaluate
- adversarial settings rarely considered

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as $h = \text{sha256sum}$

```
$ \text{sha256sum\ myfile.txt}
018a7eaee8a...3e79043e21ab4\ myfile.txt
```

Range $R = \{0, 1\}^{256}$. It is hard to find x, y with $h(x) = h(y)$.

\hookrightarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function $f : \text{Seeds} \times D \rightarrow R$ where $\log_2 |\text{Seeds}|$ is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}(\text{Seeds})$ and
- $h(\cdot)$ for $h \sim \mathcal{U}(R^D)$,

except with negligible probability.

Hash Function in Algorithm Engineering

- typically small range $|R| = O(n)$
 \hookrightarrow cannot be collision resistant
- should behave like $h \sim \mathcal{U}(R^D)$ in my application
- should be fast to evaluate
- adversarial settings rarely considered, although:

⚠️ HashDoS is a thing.

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function

A collision resistant function such as $h = \text{sha256sum}$

$\text{sha256sum} \text{ myfile.txt}$

018a7eaee8a...3e79043e21ab4 myfile.txt

Range $R = \{0, 1\}^{256}$. It is hard to find x, y with $h(x) = h(y)$.

\leftrightarrow Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function

A function $f : \text{Seeds} \times D \rightarrow R$ where $\log_2 |\text{Seeds}|$ is small and no efficient algorithm can distinguish

- $f(s, \cdot)$ for $s \sim \mathcal{U}(\text{Seeds})$ and
- $h(\cdot)$ for $h \sim \mathcal{U}(R^D)$,

except with negligible probability.

Hash Function in Algorithm Engineering

- typically small range $|R| = \mathcal{O}(n)$
 \leftrightarrow cannot be collision resistant
- should behave like $h \sim \mathcal{U}(R^D)$ in my application
- should be fast to evaluate
- adversarial settings rarely considered, although:

⚠️ HashDoS is a thing.
However: Hash function and hash values need not be public.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

ITI, Algorithm Engineering & Scalable Algorithms
MurmurHash

Bitshifts, Magic Constants, ...

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    return h;
}

static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage
For R = [m], pick seed ∼ U(0, 1) and use h(x) = murmur3_32(x, seed) mod m.
(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher
NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities
MAYBE, for your favourite application.

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
MurmurHash

Bitshifts, Magic Constants, …

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}

static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage

For \(R = [m] \), pick seed \(\sim \mathcal{U}(\{0, 1\}^{32}) \) and use

\[
h(x) = \text{murmur3}_\text{32}(x, \text{seed}) \mod m.
\]
MurmurHash

Usage

For $R = [m]$, pick seed $\sim U(\{0, 1\}^{32})$ and use

$$h(x) = \text{murmur3}_32(x, \text{seed}) \mod m.$$

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2023/2024 Stefan Walzer, Maximilian Katzmann: Classic Hash Tables ITI, Algorithm Engineering & Scalable Algorithms
MurmurHash

Bitshifts, Magic Constants, ...

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    [...]
    return h;
}
static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage

For \(R = [m] \), pick seed \(\sim U\{0, 1\}^{32} \) and use

\[
h(x) = \text{murmur3_32}(x, \text{seed}) \mod m.
\]

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does \(h \) behave like a random function?

YES, with respect to many statistical tests. see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known. see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.
MurmurHash

Bitshifts, Magic Constants, ...

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    return h;
}
```

```c
static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage

For \(R = [m] \), pick seed \(\sim \mathcal{U}(\{0, 1\}^32) \) and use

\[
h(x) = \text{murmur3}_32(x, \text{seed}) \mod m.\]

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does \(h \) behave like a random function?

- YES, with respect to many statistical tests.
 see https://github.com/aappleby/smhasher
- NO, HashDoS attacks are known.
 see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities
- MAYBE, for your favourite application.
MurmurHash

Bitshifts, Magic Constants, ...

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    return h;
}

static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage

For \(R = [m] \), pick seed \(\sim U(\{0, 1\}^{32}) \) and use

\[
h(x) = \text{murmur3}_32(x, \text{seed}) \mod m.
\]

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does \(h \) behave like a random function?

- **YES**, with respect to many statistical tests.
 see https://github.com/aappleby/smhasher
- **NO**, HashDoS attacks are known.
 see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

Conceptions: What is a Hash Function?

- 5

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

7/35

WS 2023/2024 Stefan Walzer, Maximilian Katzmann: Classic Hash Tables

ITI, Algorithm Engineering & Scalable Algorithms
MurmurHash

Bitshifts, Magic Constants, …

```c
uint32_t murmur3_32(const uint8_t* key, size_t len, uint32_t seed) {
    uint32_t h = seed;
    uint32_t k;
    for (size_t i = len >> 2; i; i--) {
        memcpy(&k, key, sizeof(uint32_t));
        key += sizeof(uint32_t);
        h ^= murmur_32_scramble(k);
        h = (h << 13) | (h >> 19);
        h = h * 5 + 0xe6546b64;
    }
    …
    return h;
}
```

```c
static inline uint32_t murmur_32_scramble(uint32_t k) {
    k *= 0xcc9e2d51;
    k = (k << 15) | (k >> 17);
    k *= 0x1b873593;
    return k;
}
```

Usage

For $R = [m]$, pick seed $\sim U\{0, 1\}^{32}$ and use

$$h(x) = \text{murmur3}_32(x, \text{seed}) \mod m.$$

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?

- **YES**, with respect to many statistical tests.
 see https://github.com/aappleby/smhasher
- **NO**, HashDoS attacks are known.
 see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities
- **MAYBE**, for your favourite application.

Conceptions: What is a Hash Function?

- Use Case 1: Hash Table with Chaining
- Use Case 2: Linear Probing
- Conclusion
- References
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim U(R^D)$ for any R and D.
- h takes $O(1)$ time to evaluate.
- h takes no space to store.
Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}(R^D)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1. **Assume** SUHA holds.
2. **Analyse** algorithm under SUHA.
3. **Hope** that algorithm still works with real hash functions.
Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim U(R^D)$ for any R and D.
- h takes $\mathcal{O}(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1. Assume SUHA holds.
2. Analyse algorithm under SUHA.
3. Hope that algorithm still works with real hash functions.

SUHA is “wrong” but adequate

- Modelling assumption.
 \leftrightarrow like e.g. ideal gas law in physics
Simple Uniform Hashing Assumption (SUHA)

- We have access to $h \sim \mathcal{U}(R^D)$ for any R and D.
- h takes $O(1)$ time to evaluate.
- h takes no space to store.

How to Analyse your Algorithm

1. Assume SUHA holds.
2. Analyse algorithm under SUHA.
3. Hope that algorithm still works with real hash functions.

SUHA is “wrong” but adequate

- Modelling assumption.
 - like e.g. ideal gas law in physics
- Excellent track record in non-adversarial settings.
Analyse Algorithm using Universal Hashing

1. Define family $\mathcal{H} \subseteq R^D$ of hash functions with $\log(|\mathcal{H}|)$ not too large.
 \leftrightarrow sampling and storing $h \in \mathcal{H}$ is cheap

2. Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.
Analyse Algorithm using Universal Hashing

1. Define family $\mathcal{H} \subseteq \mathbb{R}^D$ of hash functions with $\log(|\mathcal{H}|)$ not too large.
 \iff sampling and storing $h \in \mathcal{H}$ is cheap

2. Proof that algorithm with $h \sim \mathcal{U} (\mathcal{H})$ has good expected behaviour.

Remarks

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Analyse Algorithm using Universal Hashing

1. Define family $\mathcal{H} \subseteq \mathbb{R}^D$ of hash functions with $\log(|\mathcal{H}|)$ not too large.
 \iff sampling and storing $h \in \mathcal{H}$ is cheap

2. Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.
Analyse Algorithm using Universal Hashing

1. Define family $\mathcal{H} \subseteq R^D$ of hash functions with $\log(|\mathcal{H}|)$ not too large.
 \iff sampling and storing $h \in \mathcal{H}$ is cheap

2. Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.
- *Rigorously* covers non-adversarial settings.
What should a Theorist do?
Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family $\mathcal{H} \subseteq \mathbb{R}^D$ of hash functions with $\log(|\mathcal{H}|)$ not too large.
 \iff sampling and storing $h \in \mathcal{H}$ is cheap

2 Proof that algorithm with $h \sim \mathcal{U}(\mathcal{H})$ has good expected behaviour.

Remarks

- Mathematical structure of \mathcal{H} must be amenable to analysis.
- Rigorously covers non-adversarial settings.
- Proofs often difficult.
 \iff Wider theory practice gap than with SUHA.
How to Analyse your Algorithm using Cryptographic Assumptions

1. Analyse algorithm under SUHA.
2. Actually use cryptographic pseudorandom function f.
 - **Case 1:** Everything still works. Great! :-)
 - **Case 2:** Something fails.
 - \Rightarrow Your use case can tell the difference between f and true randomness.
 - \Leftarrow The cryptographers said this is impossible.

Should we use cryptographic pseudorandom functions? **YES.** Algorithms become robust even in some adversarial settings.

NO. Too slow in high-performance settings.

<table>
<thead>
<tr>
<th>Hash Function</th>
<th>MiB / sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>SipHash</td>
<td>944</td>
</tr>
<tr>
<td>Murmur3F</td>
<td>7623</td>
</tr>
<tr>
<td>xxHash64</td>
<td>12109</td>
</tr>
</tbody>
</table>

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
How to Analyse your Algorithm using Cryptographic Assumptions

1. Analyse algorithm under SUHA.
2. Actually use *cryptographic pseudorandom function* f.
 - **Case 1**: Everything still works. Great! :-)
 - **Case 2**: Something fails.
 - Your use case can tell the difference between f and true randomness.
 - The cryptographers said this is impossible.

Should we use cryptographic pseudorandom functions?

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

Should we use cryptographic pseudorandom functions?

<table>
<thead>
<tr>
<th>Hash Function</th>
<th>MiB / sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>SipHash</td>
<td>944</td>
</tr>
<tr>
<td>Murmur3F</td>
<td>7623</td>
</tr>
<tr>
<td>xxHash64</td>
<td>12109</td>
</tr>
</tbody>
</table>

(source: https://github.com/rurban/smhasher)
How to Analyse your Algorithm using Cryptographic Assumptions

1. Analyse algorithm under SUHA.
2. Actually use cryptographic pseudorandom function f.
 - **Case 1:** Everything still works. Great! :-)
 - **Case 2:** Something fails.
 ⇒ Your use case can tell the difference between f and true randomness.
 ⇔ The cryptographers said this is impossible.

Should we use cryptographic pseudorandom functions?

- **YES.** Algorithms become robust even in some adversarial settings.
 ⇐ e.g. Python, Haskell, Ruby, Rust use *SipHash* by default

How to Analyse your Algorithm using Cryptographic Assumptions

1. Analyse algorithm under SUHA.
2. Actually use cryptographic pseudorandom function f.
 - **Case 1**: Everything still works. Great! :-)
 - **Case 2**: Something fails.
 ⇒ Your use case can tell the difference between f and true randomness.
 ⇔ The cryptographers said this is impossible. 😞

Should we use cryptographic pseudorandom functions?

- **YES**. Algorithms become robust even in some adversarial settings.
 ⇐ e.g. Python, Haskell, Ruby, Rust use **SipHash** by default

- **NO**. Too slow in high-performance settings.

<table>
<thead>
<tr>
<th>Hash Function</th>
<th>MiB / sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>SipHash</td>
<td>944</td>
</tr>
<tr>
<td>Murmur3F</td>
<td>7623</td>
</tr>
<tr>
<td>xxHash64</td>
<td>12109</td>
</tr>
</tbody>
</table>

(source: https://github.com/rurban/smhasher)
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
Search Time under Chaining

\[
\max_{S \subseteq D} \max_{x \in D} \left| S \right| = n \\
1 + \left| \{ y \in S \mid h(y) = h(x) \} \right|
\]

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
Search Time under Chaining

For $n, m \in \mathbb{N}$ and a family $\mathcal{H} \subseteq [m]^D$ of hash functions the maximum expected search time is at most

$$T_{\text{chaining}}(n, m, \mathcal{H}) = \max_{S \subseteq D} \max_{x \in D} \mathbb{E}_{h \sim \mathcal{H}} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right]$$
Search Time under Chaining

For \(n, m \in \mathbb{N} \) and a family \(\mathcal{H} \subseteq [m]^D \) of hash functions the \textit{maximum expected search time} is at most

\[
T_{\text{chaining}}(n, m, \mathcal{H}) = \max_{S \subseteq D} \max_{x \in D} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + |\{ y \in S \mid h(y) = h(x) \}| \right]
\]

⚠️ Key set is \textit{worst case}. Only \(h \in \mathcal{H} \) is random. Key set is fixed \textit{before} \(h \) is chosen.
Hash Table with Chaining

Search Time under Chaining

For $n, m \in \mathbb{N}$ and a family $\mathcal{H} \subseteq [m]^D$ of hash functions the maximum expected search time is at most

$$T_{\text{chaining}}(n, m, \mathcal{H}) = \max_{\mathcal{H}} \max_{x \in D} \max_{\mathcal{H}} \mathbb{E}_{h \sim \mathcal{H}} \left[1 + \#\{y \in S \mid h(y) = h(x)\} \right]$$

⚠️ Key set is worst case. Only $h \in \mathcal{H}$ is random. Key set is fixed before h is chosen.

Theorem: Hash Table with Chaining under SUHA

If $\mathcal{H} = [m]^D$ then $T_{\text{chaining}}(n, m, \mathcal{H}) \leq 2 + \alpha = O(1)$ if $\alpha \in O(1)$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H} = [m]^D$, $S \subseteq D$ with $|S| = n$ and $x \in D$ then

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha$$
Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H} = [m]^D$, $S \subseteq D$ with $|S| = n$ and $x \in D$ then

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{y \in S \mid h(y) = h(x)\} \right| \right] \leq 2 + \alpha$$

Proof.

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{y \in S \mid h(y) = h(x)\} \right| \right]$$
Theorem: Hash Table with Chaining under SUHA

Let $H = [m]^D$, $S \subseteq D$ with $|S| = n$ and $x \in D$ then

$$\mathbb{E}_{h \sim U(H)} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha$$

Proof.

$$\mathbb{E}_{h \sim U(H)} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right]$$

$$= \mathbb{E}_{h \sim U(H)} \left[1 + \sum_{y \in S} 1_{\{h(y)=h(x)\}} \right]$$
Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H} = [m]^D$, $S \subseteq D$ with $|S| = n$ and $x \in D$ then

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha$$

Proof.

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right]$$

$$= \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \sum_{y \in S} 1_{\{h(y) = h(x)\}} \right]$$

$$= 1 + \sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1_{\{h(y) = h(x)\}} \right]$$
Theorem: Hash Table with Chaining under SUHA

Let $\mathcal{H} = [m]^D$, $S \subseteq D$ with $|S| = n$ and $x \in D$ then

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha$$

Proof.

$$\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] = 1 + \sum_{y \in S} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)] = 1 + \sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 \{ h(y) = h(x) \} \right]$$
Theorem: Hash Table with Chaining under SUHA

Let \(\mathcal{H} = [m]^D \), \(S \subseteq D \) with \(|S| = n \) and \(x \in D \) then

\[
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha
\]

Proof.

\[
\begin{align*}
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] &= 1 + \sum_{y \in S} \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 \{ h(y) = h(x) \} \right] \\
&= 1 + \sum_{y \in S} \mathbb{P}_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)] \\
&= 1 + 1 + \sum_{y \in S \setminus \{x\}} \mathbb{P}_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)] \\
&= 1 + 1 + \sum_{y \in S \setminus \{x\}} \mathbb{P}_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)]
\end{align*}
\]
Theorem: Hash Table with Chaining under SUHA

Let \(\mathcal{H} = [m]^D \), \(S \subseteq D \) with \(|S| = n\) and \(x \in D \) then

\[
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] \leq 2 + \alpha
\]

Proof.

\[
\mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right] = 1 + \sum_{y \in S} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)]
\]

\[
= 1 + \sum_{y \in S \setminus \{x\}} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)]
\]

\[
= 2 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} \leq 2 + \frac{n}{m} = 2 + \alpha. \quad \Box
\]
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
Definition: c-universal hash family

A class $\mathcal{H} \subseteq [m]^D$ is called c-universal if:

$$\forall x \neq y \in D : \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x) = h(y)] \leq \frac{c}{m}.$$
A Universal Hash Family

Definition: \(c \)-universal hash family

A class \(\mathcal{H} \subseteq [m]^D \) is called \(c \)-universal if:

\[\forall x \neq y \in D : \Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq \frac{c}{m}. \]

Note: \(\mathcal{H} = [m]^D \) is 1-universal.
Definition: c-universal hash family

A class $\mathcal{H} \subseteq [m]^D$ is called c-universal if:

$$\forall x \neq y \in D : \Pr_{h \sim \mathcal{U}(\mathcal{H})} [h(x) = h(y)] \leq \frac{c}{m}.$$
Definition: c-universal hash family

A class $\mathcal{H} \subseteq [m]^D$ is called c-universal if:

$$\forall x \neq y \in D: \Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq \frac{c}{m}.$$

Reminder (?): Finite Fields

Let $\mathbb{F}_p = \{0, \ldots, p - 1\}$ for a prime number p. Then $(\mathbb{F}_p, \times, \oplus)$ is a field where

$$a \times b := (a \cdot b) \mod p \quad \text{and} \quad a \oplus b := (a + b) \mod p.$$

In particular $(\mathbb{F}_p^* := \mathbb{F}_p \setminus \{0\}, \times)$ is a group.
Definition: c-universal hash family

A class $\mathcal{H} \subseteq [m]^D$ is called c-universal if:

$$\forall x \neq y \in D : \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x) = h(y)] \leq \frac{c}{m}.$$

Reminder (?): Finite Fields

Let $\mathbb{F}_p = \{0, \ldots, p-1\}$ for a prime number p. Then $(\mathbb{F}_p, \times, \oplus)$ is a field where

$$a \times b := (a \cdot b) \mod p \quad \text{and} \quad a \oplus b := (a + b) \mod p.$$

In particular $(\mathbb{F}_p^* := \mathbb{F}_p \setminus \{0\}, \times)$ is a group.

The class of Linear Hash Functions

Assume $D \subseteq \mathbb{F}_p$ for prime p. Then the following class is 1-universal:

$$\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}.$$

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof that $H_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim H_{p,m}^{\text{lin}}} [h(x) = h(y)] \leq 1/m$.)
Proof that \(H_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \} \) is 1-universal.

Let \(x \neq y \in \mathbb{F}_p \). (To show: \(\Pr_{h \sim H_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m. \))

- Define
 \[c = (a \times x) \oplus b \]
 \[d = (a \times y) \oplus b \]
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \overline{F}_p, b \in \overline{F}_p \}$ is 1-universal.

Let $x \neq y \in \overline{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$
- Define $d = (a \times y) \oplus b$

$\iff \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$. regular!
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b \iff \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$. Regular!

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p \times \mathbb{F}_p \to \mathbb{F}_p \times \mathbb{F}_p$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b$ implies
 $$\begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow \mathbb{F}_p \times \mathbb{F}_p \setminus \{(b, b) \mid b \in \mathbb{F}_p\}$

$P := \mathbb{F}_p \times \mathbb{F}_p \setminus \{(b, b) \mid b \in \mathbb{F}_p\}$
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b$.

$$
\begin{align*}
 (c, d) &= \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.
\end{align*}
$$

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow P$.

$P := \mathbb{F}_p \times \mathbb{F}_p \setminus \{(b, b) \mid b \in \mathbb{F}_p\}$

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
Proof that \(\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \} \) is 1-universal.

Let \(x \neq y \in \mathbb{F}_p \). (To show: \(\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}} [h(x) = h(y)] \leq 1/m \).)

- Define
 \[
 c = (a \times x) \oplus b \\
 d = (a \times y) \oplus b
 \]
 \[
 (c, d) = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.
 \]
 The mapping \((a, b) \mapsto (c, d) \) is a bijection (for every \(x \neq y \)) from \(\mathbb{F}_p^* \times \mathbb{F}_p \to P \).

- Define bad set \(B := \{(c, d) \in P \mid c \mod m = d \mod m \} \).
 \[
 \text{from picture: } \frac{|B|}{|P|} \leq \frac{1}{m}.
 \]

\[
\begin{array}{c}
\text{d} \quad (p = 13, m = 4) \\
p-1 \quad \text{d} \\
\uparrow \\
p-1 \quad \text{c} \\
0 \quad \text{c} \\
0 \quad \text{c} \\
\end{array}
\]

\[
P := \mathbb{F}_p \times \mathbb{F}_p \setminus \{(b, b) \mid b \in \mathbb{F}_p \}
\]
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b$.
 $$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$ (regular!)

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \to P$.

- Define bad set $B := \{(c, d) \in P \mid c \mod m = d \mod m\}$.
 \leftarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$\Pr_{a,b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)}[h(x) = h(y)]$$

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof that $H_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim H_{p,m}^{\text{lin}}} [h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$, $d = (a \times y) \oplus b$ \iff $(c, d) = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$.

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \to P$.

- Define bad set $B := \{(c, d) \in P \mid c \mod m = d \mod m \}$.

\leftarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$\Pr_{a,b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)} [h(x) = h(y)] = \Pr_{a,b} [((a \times x) \oplus b) \mod m = ((a \times y) \oplus b) \mod m]$
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}^*_p, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b$.

 $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$)
 from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow P$.

- Define bad set $B := \{(c, d) \in P \mid c \mod m = d \mod m\}$.

 \rightarrow from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

$$\Pr_{a,b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)}[h(x) = h(y)] = \Pr_{a,b}[((a \times x) \oplus b) \mod m = ((a \times y) \oplus b) \mod m]$$

$$= \Pr_{a,b}[c \mod m = d \mod m] = \Pr_{a,b}[(c, d) \in B]$$
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{x \mapsto \left((a \times x) \oplus b \right) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}} [h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$, $d = (a \times y) \oplus b \iff \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$. \\
 \[
 \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x \cdot a + b \\ y \cdot a + b \end{pmatrix} \mod m.
 \]

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow P$.

- Define \textit{bad set} $B := \{(c, d) \in P \mid c \mod m = d \mod m \}$. \\
 \[
 \Pr_{a, b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)} [h(x) = h(y)] = \Pr_{a, b} [((a \times x) \oplus b) \mod m = ((a \times y) \oplus b) \mod m]
 \]
 \[
 = \Pr_{a, b} [c \mod m = d \mod m] = \Pr_{a, b} [(c, d) \in B] = \Pr_{c, d \sim \mathcal{U}(P)} [(c, d) \in B]
 \]
Proof that $H_{p,m}^{lin} := \{ x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim H_{p,m}^{lin}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$ and $d = (a \times y) \oplus b$. Then $c = d$ if and only if $\begin{pmatrix} (a \times x) \oplus b \\ (a \times y) \oplus b \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$.

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow P$.

- Define bad set $B := \{(c, d) \in P \mid c \mod m = d \mod m\}$. Then $|B| \leq \frac{1}{m}$.

$P := \mathbb{F}_p \times \mathbb{F}_p \setminus \{(b, b) \mid b \in \mathbb{F}_p\}$

$$
\Pr_{a,b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)}[h(x) = h(y)] = \Pr_{a,b}[((a \times x) \oplus b) \mod m = ((a \times y) \oplus b) \mod m]
$$

$$
= \Pr_{a,b}[c \mod m = d \mod m] = \Pr_{a,b}[(c, d) \in B] = \Pr_{c,d \sim \mathcal{U}(P)}[(c, d) \in B] = \frac{|B|}{|P|}
$$
Proof that $\mathcal{H}_{p,m}^{\text{lin}} := \{x \mapsto ((a \times x) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p\}$ is 1-universal.

Let $x \neq y \in \mathbb{F}_p$. (To show: $\Pr_{h \sim \mathcal{H}_{p,m}^{\text{lin}}}[h(x) = h(y)] \leq 1/m$.)

- Define $c = (a \times x) \oplus b$, $d = (a \times y) \oplus b \iff \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x & 1 \\ y & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$.

- The mapping $(a, b) \mapsto (c, d)$ is a bijection (for every $x \neq y$) from $\mathbb{F}_p^* \times \mathbb{F}_p \rightarrow P$.

- Define bad set $B := \{(c, d) \in P \mid c \mod m = d \mod m\}$.

\implies from picture: $\frac{|B|}{|P|} \leq \frac{1}{m}$.

\begin{align*}
\Pr_{a,b \sim \mathcal{U}(\mathbb{F}_p^* \times \mathbb{F}_p)}[h(x) = h(y)] &= \Pr_{a,b}[(a \times x) \oplus b \mod m = (a \times y) \oplus b \mod m] \\
&= \Pr_{a,b}[c \mod m = d \mod m] = \Pr_{a,b}[(c, d) \in B] = \Pr_{c,d \sim \mathcal{U}(P)}[(c, d) \in B] = \frac{|B|}{|P|} \leq \frac{1}{m}. \quad \square
\end{align*}
Theorem
If \(\mathcal{H} \subseteq [m]^D \) is a \(c \)-universal hash family then \(T_{\text{chaining}}(n, m, \mathcal{H}) \leq 2 + c\alpha = O(1) \) if \(\alpha \in O(1) \) and \(c \in O(1) \).

Proof: Mostly the same.

\[
\forall S \subseteq [D], \forall x \in D : \quad \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right]
\]
Analysis of Hash Table with Chaining
... using a Universal Hash Family

Theorem
If $\mathcal{H} \subseteq [m]^D$ is a c-universal hash family then $T_{\text{chaining}}(n, m, \mathcal{H}) \leq 2 + c\alpha = O(1)$ if $\alpha \in O(1)$ and $c \in O(1)$.

Proof: Mostly the same.

$$\forall S \subseteq [D], \forall x \in D : \quad \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left| \{ y \in S \mid h(y) = h(x) \} \right| \right]$$

$$= \ldots = 2 + \sum_{y \in S \setminus \{x\}} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)]$$

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
Theorem
If $\mathcal{H} \subseteq [m]^D$ is a c-universal hash family then $T_{\text{chaining}}(n, m, \mathcal{H}) \leq 2 + c\alpha = O(1)$ if $\alpha \in O(1)$ and $c \in O(1)$.

Proof: Mostly the same.

\[
\forall S \subseteq [D], \forall x \in D : \quad \mathbb{E}_{h \sim \mathcal{U}(\mathcal{H})} \left[1 + \left\{ y \in S \mid h(y) = h(x) \right\} \right] \\
= \ldots = 2 + \sum_{y \in S \setminus \{x\}} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(y) = h(x)] \\
= 2 + \sum_{y \in S \setminus \{x\}} \frac{c}{m} \leq 2 + \frac{cn}{m} = 2 + c\alpha. \quad \square
\]
Examples for Universal Hash Families

-

 "((ax + b) \mod p) \mod m" is 1-universal

 as discussed: \(D = \mathbb{F}_p \), \(R = [m] \),

 \(\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times b) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \} \)
“\((ax + b) \mod p) \mod m\)” is 1-universal as discussed: \(D = \mathbb{F}_p\), \(R = [m]\), \(H_{p,m}^{\text{lin}} := \{x \mapsto ((a \times b) \oplus b) \mod m \mid a \in \mathbb{F}^*_p, b \in \mathbb{F}_p\}\).

“\((ax \mod p) \mod m\)” is only 2-universal:

\[
D = \mathbb{F}_p, \quad R = [m],
\]
\[
H = \{x \mapsto (a \times b) \mod m \mid a \in \mathbb{F}^*_p\}.
\]
Examples for Universal Hash Families

- "((ax + b) \mod p) \mod m" is 1-universal

as discussed: \(D = \mathbb{F}_p, \quad R = [m], \)
 \(\mathcal{H}_{p,m}^{\text{lin}} := \{ x \mapsto ((a \times b) \oplus b) \mod m \mid a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \} \)

- "(ax \mod p) \mod m" is only 2-universal:
 \(D = \mathbb{F}_p, \quad R = [m], \)
 \(\mathcal{H} = \{ x \mapsto (a \times b) \mod m \mid a \in \mathbb{F}_p^* \} \)

- **Multiply-Shift** is 2-universal:
 \(D = \{0, \ldots, 2^w - 1\}, \quad R = \{0, \ldots, 2^\ell - 1\} \)
 \(\mathcal{H} = \{ x \mapsto \lfloor ((a \cdot x + b) \mod 2^w) / 2^{w-\ell} \rfloor \mid \text{odd } a \in \{1, \ldots, 2^w - 1\}, b \in \{0, \ldots, 2^w - 1\} \}. \)
Examples for Universal Hash Families

- "\((ax + b) \mod p) \mod m\)" is 1-universal

 as discussed: \(D = \mathbb{F}_p\), \(R = [m]\),

 \(\mathcal{H}_{p,m}^{\text{lin}} := \{x \mapsto ((a \times b) \oplus b) \mod m | a \in \mathbb{F}_p^*, b \in \mathbb{F}_p\}\)

- "\((ax \mod p) \mod m\)" is only 2-universal:

 \(D = \mathbb{F}_p\), \(R = [m]\),

 \(\mathcal{H} = \{x \mapsto (a \times b) \mod m | a \in \mathbb{F}_p^*\}\)

- **Multiply-Shift** is 2-universal:

 \(D = \{0, \ldots, 2^w - 1\}\), \(R = \{0, \ldots, 2^\ell - 1\}\)

 \(\mathcal{H} = \{x \mapsto \lfloor((a \cdot x + b) \mod 2^w)/2^{w-\ell}\rfloor | \text{odd } a \in \{1, \ldots, 2^w - 1\}, b \in \{0, \ldots, 2^w - 1\}\}\)

Selling point of multiply shift:
- "\(x \mod 2^w\)" drops some higher order bits
- "\(\lfloor x/2^{w-\ell} \rfloor\)" drops some lower order bits
- No division or modulo operation needed!

For \(w = 32\) (taken from Thorup 2015):

```c
uint32_t hash(uint32_t x, uint32_t l, uint64_t a) {
    return (a * x + b) >> (64-l);
}
```
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \# \text{ of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations

- **Insert.** Put \(x \) into first empty bucket.
- **Lookup.** Look for \(x \), abort when encountering empty bucket.
- **Delete.** Lookup and remove \(x \) and check if a key to the right wants to move into the hole.

For details see https://en.wikipedia.org/wiki/Linear_probing.

Running Times

- **Lookup(\(x \in S \)):** At most \(x \)'s insertion time.
- **Lookup(\(x \not\in S \)):** At most the time it would take to insert \(x \) now.
- **Delete(\(x \in S \)):** At most the time it would take to insert \(y \not\in S \) with \(h(y) = h(x) \).

It suffices to understand insertion times!

Theorem: Linear Probing under SUHA

Let \(T_{n,m} \) be the random insertion time into a linear probing hash table. If \(1 \leq \alpha = \frac{n}{m} < \alpha_{\text{max}} \) for some \(\alpha_{\text{max}} < 1 \) then under SUHA we have

\[E[T_{n,m}] = O\left(\frac{1}{\left(1 - \alpha_{\text{max}}\right)^2}\right) = O\left(\frac{1}{\alpha_{\text{max}}}\right). \]

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Hash Table with Linear Probing

\[S: \text{set of } n \text{ keys} \]
\[m: \# \text{ of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations
For key \(x \) probe buckets \(h(x) \), \(h(x) + 1 \), \(h(x) + 2 \), \ldots \) (mod \(m \)).

Insert. Put \(x \) into first empty bucket.

Lookup. Look for \(x \), abort when encountering empty bucket.

Delete. Lookup and remove \(x \) and check if a key to the right wants to move into the hole.

Running Times
Lookups \(x \in S \): At most \(x \)'s insertion time.
Lookups \(x \not\in S \): At most the time it would take to insert \(x \) now.
Deletions \(x \in S \): At most the time it would take to insert \(y \not\in S \) with \(h(y) = h(x) \).

→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let \(T_{n,m} \) be the random insertion time into a linear probing hash table. If \(\frac{1}{2} \leq \alpha = \frac{n}{m} < \alpha_{\text{max}} \) for some \(\alpha_{\text{max}} < 1 \) then under SUHA we have

\[E[T_{n,m}] = O\left(\frac{1}{(1 - \alpha_{\text{max}})^2}\right) = O\left(\frac{1}{1}\right). \]
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \# \text{ of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

Insert. Put \(x \) into first empty bucket.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

WS 2023/2024 Stefan Walzer, Maximilian Katzmann: Classic Hash Tables

ITI, Algorithm Engineering & Scalable Algorithms
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \# \text{ of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m} \).

Insert. Put \(x \) into first empty bucket.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \# \text{ of buckets} \]
\[\alpha = n / m \]

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

Insert. Put \(x \) into first empty bucket.

Operations

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \# \text{ of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

Insert. Put \(x \) into first empty bucket.
Operations

For key x probe buckets $h(x), h(x) + 1, h(x) + 2, \ldots$ (mod m).

Insert. Put x into first empty bucket.
Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m}$.

- **Insert.** Put x into first empty bucket.
- **Lookup.** Look for x, abort when encountering empty bucket.

Conceptions: What is a Hash Function?

- Use Case 1: Hash Table with Chaining
- Use Case 2: Linear Probing
- Conclusion
- References
Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

- **Insert.** Put \(x \) into first empty bucket.
- **Lookup.** Look for \(x \), abort when encountering empty bucket.
- **Delete.** Lookup and remove \(x \) and \(\triangle \) check if a key to the right wants to move into the hole.

\(\triangle \) For details see https://en.wikipedia.org/wiki/Linear_probing
Hash Table with Linear Probing

- **S**: set of \(n \) keys
- **m**: \# of buckets
- \(\alpha = n/m \)

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

- Insert. Put \(x \) into first empty bucket.
- Lookup. Look for \(x \), abort when encountering empty bucket.
- Delete. Lookup and remove \(x \) and \(\bigtriangleup \) check if a key to the right wants to move into the hole.

\(<\rightarrow\) For details see https://en.wikipedia.org/wiki/Linear_probing

Running Times

- **Lookup\((x \in S) \)**: At most \(x \)'s insertion time.

Theorem: Linear Probing under SUHA

Let \(T_{n,m} \) be the random insertion time into a linear probing hash table. If \(1/2 \leq \alpha = n/m < \alpha_{\text{max}} \) for some \(\alpha_{\text{max}} < 1 \) then under SUHA we have

\[
E[T_{n,m}] = O\left(\frac{1}{\left(1 - \alpha_{\text{max}}\right)^2}\right) = O\left(\frac{1}{\alpha}\right).
\]

Conceptions: What is a Hash Function?
- Use Case 1: Hash Table with Chaining
- Use Case 2: Linear Probing

Conclusion

References
Hash Table with Linear Probing

\[S : \text{set of } n \text{ keys} \]
\[m : \text{\# of buckets} \]
\[\alpha = \frac{n}{m} \]

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \) (mod \(m \)).

Insert. Put \(x \) into first empty bucket.

Lookup. Look for \(x \), abort when encountering empty bucket.

Delete. Lookup and remove \(x \) and \(\triangle \) check if a key to the right wants to move into the hole.

\[\xrightarrow{\text{For details see}} \text{https://en.wikipedia.org/wiki/Linear_probing} \]

Running Times

- Lookup(\(x \in S \)): At most \(x \)'s insertion time.
- Lookup(\(x \notin S \)): At most the time it \textit{would take} to insert \(x \) now.

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
Hash Table with Linear Probing

Operations

For key \(x \) probe buckets \(h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m} \).

- **Insert.** Put \(x \) into first empty bucket.
- **Lookup.** Look for \(x \), abort when encountering empty bucket.
- **Delete.** Lookup and remove \(x \) and \(\triangle \) check if a key to the right wants to move into the hole.

\(S \) : set of \(n \) keys
\(m \): # of buckets
\(\alpha = \frac{n}{m} \)

Running Times

- **Lookup** \((x \in S)\): At most \(x \)'s insertion time.
- **Lookup** \((x \notin S)\): At most the time it would take to insert \(x \) now.
- **Delete** \((x \in S)\): At most the time it would take to insert \(y \notin S \) with \(h(y) = h(x) \).

\(\rightarrow \) For details see https://en.wikipedia.org/wiki/Linear_probing

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m}$.

- **Insert.** Put x into first empty bucket.
- **Lookup.** Look for x, abort when encountering empty bucket.
- **Delete.** Lookup and remove x and check if a key to the right wants to move into the hole.

\triangleright For details see https://en.wikipedia.org/wiki/Linear_probing

Running Times

- **Lookup($x \in S$):** At most x’s insertion time.
- **Lookup($x \notin S$):** At most the time it would take to insert x now.
- **Delete($x \in S$):** At most the time it would take to insert $y \notin S$ with $h(y) = h(x)$.

\triangleright It suffices to understand insertion times!

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References

21/35 WS 2023/2024 Stefan Walzer, Maximilian Katzmann: Classic Hash Tables
ITI, Algorithm Engineering & Scalable Algorithms
Hash Table with Linear Probing

S : set of n keys
m : # of buckets
$\alpha = n/m$

Operations

For key x probe buckets $h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m}$.

- Insert. Put x into first empty bucket.
- Lookup. Look for x, abort when encountering empty bucket.
- Delete. Lookup and remove x and \triangle check if a key to the right wants to move into the hole.

\Rightarrow For details see https://en.wikipedia.org/wiki/Linear_probing

Running Times

- Lookup($x \in S$): At most x’s insertion time.
- Lookup($x \notin S$): At most the time it would take to insert x now.
- Delete($x \in S$): At most the time it would take to insert $y \notin S$ with $h(y) = h(x)$.

\Rightarrow It suffices to understand insertion times!

Theorem: Linear Probing under SUHA

Let $T_{n,m}$ be the random insertion time into a linear probing hash table. If $\frac{1}{2} \leq \alpha = \frac{n}{m} < \alpha_{\text{max}}$ for some $\alpha_{\text{max}} < 1$ then under SUHA we have

$$E[T_{n,m}] = O(1).$$
Hash Table with Linear Probing

Operations

For key x probe buckets $h(x), h(x) + 1, h(x) + 2, \ldots \pmod{m}$.

- Insert. Put x into first empty bucket.
- Lookup. Look for x, abort when encountering empty bucket.
- Delete. Lookup and remove x and △ check if a key to the right wants to move into the hole.

S : set of n keys
m : # of buckets
$\alpha = n/m$

Running Times

- Lookup($x \in S$): At most x’s insertion time.
- Lookup($x \notin S$): At most the time it would take to insert x now.
- Delete($x \in S$): At most the time it would take to insert $y \notin S$ with $h(y) = h(x)$.

\leftrightarrow It suffices to understand insertion times!

Theorem: Linear Probing under SUHA

Let $T_{n,m}$ be the random insertion time into a linear probing hash table. If $\frac{1}{2} \leq \alpha = \frac{n}{m} < \alpha_{\text{max}}$ for some $\alpha_{\text{max}} < 1$ then under SUHA we have

$$\mathbb{E}[T_{n,m}] = \mathcal{O}\left(\frac{1}{(1-\alpha_{\text{max}})^2}\right) = \mathcal{O}(1).$$

(not here)
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
For $X \sim Bin(n, p)$ and $\varepsilon \in [0, 1]$ we have $\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] \leq \exp(-\varepsilon^2\mathbb{E}[X]/3)$.
Preparation: A concentration bound

Chernoff

For $X \sim Bin(n, p)$ and $\varepsilon \in [0, 1]$ we have $\Pr[X \ge (1 + \varepsilon)\mathbb{E}[X]] \le \exp(-\varepsilon^2\mathbb{E}[X]/3)$.

Lemma: $\Pr[\ge k \text{ hits in segment of length } k]$

Let $k \in \mathbb{N}$ and $X = |\{y \in S \mid h(y) \in \{1, \ldots, k\}\}|$. Then $\Pr[X \ge k] \le \exp(-(1 - \alpha)^2k/3)$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Preparation: A concentration bound

Chernoff

For $X \sim \text{Bin}(n, p)$ and $\varepsilon \in [0, 1]$ we have $\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] \leq \exp(-\varepsilon^2 \mathbb{E}[X]/3)$.

Lemma: $\Pr[\geq k \text{ hits in segment of length } k]$

Let $k \in \mathbb{N}$ and $X = |\{y \in S \mid h(y) \in \{1, \ldots, k\}\}|$.

Then $\Pr[X \geq k] \leq \exp(-(1 - \alpha)^2 k/3)$.

Proof

Let $S = \{x_1, \ldots, x_n\}$ and $X_i = \mathbb{1}_{\{h(x_i) \in \{1, \ldots, k\}\}} \sim \text{Ber}(\frac{k}{m})$.

Then $X = \sum_{i \in [n]} X_i \sim \text{Bin}(n, \frac{k}{m})$ with $\mathbb{E}[X] = \frac{kn}{m} = \alpha k$.
Preparation: A concentration bound

Chernoff

For $X \sim \text{Bin}(n, p)$ and $\varepsilon \in [0, 1]$ we have $\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] \leq \exp(-\varepsilon^2 \mathbb{E}[X]/3)$.

Lemma: $\Pr[\geq k \text{ hits in segment of length } k]$

Let $k \in \mathbb{N}$ and $X = |\{y \in S \mid h(y) \in \{1, \ldots, k\}\}|$.

Then $\Pr[X \geq k] \leq \exp(-(1 - \alpha)^2 k/3)$.

Proof

Let $S = \{x_1, \ldots, x_n\}$ and $X_i = 1_{\{h(x_i) \in \{1, \ldots, k\}\}} \sim \text{Ber}(\frac{k}{m})$. Then $X = \sum_{i \in [n]} X_i \sim \text{Bin}(n, \frac{k}{m})$ with $\mathbb{E}[X] = \frac{kn}{m} = \alpha k$.

$\Pr[X \geq k] = \Pr[X \geq \frac{1}{\alpha} \mathbb{E}[X]]$

$= \Pr[X \geq (1 + \frac{1-\alpha}{\alpha})\mathbb{E}[X]]$

$\leq \exp(-(\frac{1-\alpha}{\alpha})^2 \alpha k/3)$

$\leq \exp(-(1 - \alpha)^2 k/3)$. (using $\frac{1}{2} \leq \alpha \leq 1$)
Proof: Linear Probing Insertions under SUHA take $\mathcal{O}(1)$

$$\mathbb{E}[T]$$

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof: Linear Probing Insertions under SUHA take $\mathcal{O}(1)$

$\mathbb{E}[T] \leq \mathbb{E}[B]$

Reasoning:

1. **Union Bound.**
2. $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
3. Note: Keys stored in block cannot come in from the left.
4. Chernoff argument from previous slide.
Proof: Linear Probing Insertions under SUHA take $O(1)$

\[\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] \]
Proof: Linear Probing Insertions under SUHA take $O(1)$

$$
\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr\left[\bigcup_{d=0}^{k-1} A_{h(x)-d,h(x)-d+k-1}\right]
$$

Reasoning:

(1) Union Bound.

(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

(3) Note: Keys stored in block cannot come in from the left.

(4) Chernoff argument from previous slide.
Proof: Linear Probing Insertions under SUHA take $O(1)$

$$\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1} \right]$$

$$(1) \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \Pr\left[A_{h(x)-d, h(x)-d+k-1} \right]$$

Reasoning:

(1) Union Bound.
Proof: Linear Probing Insertions under SUHA take $O(1)$

\[\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr \left[\bigcup_{d=0}^{k-1} A_{h(x)-d,h(x)-d+k-1} \right] \]

\[\leq \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \Pr \left[A_{h(x)-d,h(x)-d+k-1} \right] = \sum_{k \geq 1} k \cdot k \cdot \Pr[A_{1,k}] \]

Reasoning:

(1) Union Bound.

(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.
Proof: Linear Probing Insertions under SUHA take $O(1)$

\[\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr \left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1} \right] \]

\[\leq \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \Pr \left[A_{h(x)-d, h(x)-d+k-1} \right] \]

\[\leq \sum_{k \geq 1} k^2 \cdot \Pr[|\{y \in S | h(y) \in \{1, \ldots, k\}| \geq k] \]

Reasoning:

(1) Union Bound.

(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

(3) Note: Keys stored in block cannot come in from the left.
Proof: Linear Probing Insertions under SUHA take $O(1)$

$$E[T] \leq E[B] = \sum_{k \geq 1} k \cdot Pr[B = k] = \sum_{k \geq 1} k \cdot Pr \left(\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1} \right)$$

$$\leq \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} Pr \left[A_{h(x)-d, h(x)-d+k-1} \right] \quad \text{(1)}$$

$$= \sum_{k \geq 1} k \cdot k \cdot Pr[A_{1,k}] \quad \text{(2)}$$

$$\leq \sum_{k \geq 1} k^2 \cdot Pr[\{|y \in S | h(y) \in \{1, \ldots, k\}| \geq k] \quad \text{(3)}$$

$$\leq \sum_{k \geq 1} k^2 \cdot \exp(- (1 - \alpha)^2 k/3) \quad \text{(4)}$$

Reasoning:

(1) Union Bound.

(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

(3) Note: Keys stored in block cannot come in from the left.

(4) Chernoff argument from previous slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
Proof: Linear Probing Insertions under SUHA take $\mathcal{O}(1)$

\[
\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr\left[\bigcup_{d=0}^{k-1} A_{h(x)-d, h(x)-d+k-1}\right]
\]

\[
\leq \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \Pr[A_{h(x)-d, h(x)-d+k-1}] = \sum_{k \geq 1} k \cdot \Pr[A_{1,k}]
\]

\[
\leq \sum_{k \geq 1} k^2 \cdot \Pr[|\{y \in S \mid h(y) \in \{1, \ldots, k\}| \geq k]
\]

\[
\leq \sum_{k \geq 1} k^2 \cdot \exp(- (1 - \alpha)^2 k / 3)
\]

\[
\leq \sum_{k \geq 1} k^2 \cdot \exp(- (1 - \alpha_{\text{max}})^2 k / 3)
\]

Reasoning:

1. Union Bound.

2. $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

3. Note: Keys stored in block cannot come in from the left.

4. Chernoff argument from previous slide.
Proof: Linear Probing Insertions under SUHA take $\mathcal{O}(1)$

$$\mathbb{E}[T] \leq \mathbb{E}[B] = \sum_{k \geq 1} k \cdot \Pr[B = k] = \sum_{k \geq 1} k \cdot \Pr\left[\bigcup_{d=0}^{k-1} A_{h(x)-d,h(x)-d+k-1}\right]$$

$$\leq \sum_{k \geq 1} k \cdot \sum_{d=0}^{k-1} \Pr\left[A_{h(x)-d,h(x)-d+k-1}\right] = \sum_{k \geq 1} k \cdot \Pr[A_{1,k}]$$

$$\leq \sum_{k \geq 1} k^2 \cdot \Pr[|\{y \in S | h(y) \in \{1, \ldots, k\}| \geq k]$$

$$\leq \sum_{k \geq 1} k^2 \cdot \exp\left(-(1 - \alpha)^2 k / 3\right)$$

$$\leq \sum_{k \geq 1} k^2 \cdot \exp\left(-(1 - \alpha_{\max})^2 k / 3\right) = \mathcal{O}(1).$$

Wolfram Alpha gives: $\int_0^\infty k^2 \exp\left(-(1 - \alpha_{\max})^2 k / 3\right) = \frac{54}{(1 - \alpha_{\max})^6}$.

Reasoning:

(1) Union Bound.

(2) $h(x)$ is independent of keys in the table and hash distribution is invariant under cyclic shifts.

(3) Note: Keys stored in block cannot come in from the left.

(4) Chernoff argument from previous slide.
1. Conceptions: What is a Hash Function?
 - Hashing in the Wild
 - What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
 - Using SUHA
 - Using Universal Hashing

3. Use Case 2: Linear Probing
 - Using SUHA
 - Using Universal Hashing

4. Conclusion
(Mutual / Collective) Independence

A family \mathcal{E} of events is independent if $\forall k \in \mathbb{N}$ and distinct $E_1, \ldots, E_k \in \mathcal{E}$ we have

$$\Pr \left[\bigcap_{i=1}^{k} E_i \right] = \prod_{i=1}^{k} \Pr[E_i].$$

A family \mathcal{X} of discrete random variables is independent if $\forall k \in \mathbb{N}$, distinct $X_1, \ldots, X_k \in \mathcal{X}$ and all $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$\Pr \left[\bigwedge_{i=1}^{k} X_i = x_i \right] = \prod_{i=1}^{k} \Pr[X_i = x_i].$$
Pairwise Independence

A family \mathcal{E} of events is **pairwise independent** if for distinct $E_1, E_2 \in \mathcal{E}$ we have

$$\Pr[E_1 \cap E_2] = \Pr[E_1] \cdot \Pr[E_2].$$

A family \mathcal{X} of discrete random variables is **pairwise independent** if for all distinct $X_1, X_2 \in \mathcal{X}$ and all $x_1, x_2 \in \mathbb{R}$ we have

$$\Pr[X_1 = x_1 \land X_2 = x_2] = \Pr[X_1 = x_1] \cdot \Pr[X_2 = x_2].$$

d-wise Independence

A family \mathcal{E} of events is *d-wise independent* if $\forall k \in \{2, \ldots, d\}$ and distinct $E_1, \ldots, E_k \in \mathcal{E}$ we have

$$\Pr\left[\bigcap_{i=1}^k E_i\right] = \prod_{i=1}^k \Pr[E_i].$$

A family \mathcal{X} of discrete random variables is *d-wise independent* if $\forall k \in \{2, \ldots, d\}$, distinct $X_1, \ldots, X_k \in \mathcal{X}$ and all $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$\Pr\left[\bigwedge_{i=1}^k X_i = x_i\right] = \prod_{i=1}^k \Pr[X_i = x_i].$$
Definition: d-Independent Hash Family

A family \(\mathcal{H} \subseteq [R]^D \) of hash functions is *d-independent* if for distinct \(x_1, \ldots, x_d \in D \) and any \(i_1, \ldots, i_d \in R \):

\[
\Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x_1) = i_1 \land \ldots \land h(x_d) = i_d] = \prod_{j=1}^{d} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x_j) = i_j] = |R|^{-d}.
\]

Alternative Definition

\(\mathcal{H} \) is *d-independent* if for \(h \sim \mathcal{U}(\mathcal{H}) \) the family \((h(x))_{x \in D} \) of random variables is *d-independent* and \(h(x) \sim \mathcal{U}(R) \) for each \(x \in D \).

Theorem

Let \(D = R = F \) be a finite field. Then \(\mathcal{H} := \{ x \mapsto d - 1 \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_{d-1} \in F \} \) is a *d-independent* family.

Note: \(\mathcal{H} \subseteq F \rightarrow F \) is not yet useful.

Corollary: Smaller Ranges (proof omitted)

If \(m \) divides \(|F|\), then adding "mod \(m \)" gives a *d-independent* family \(\mathcal{H}' \subseteq [m] F \).

If \(m \) does not divide \(|F|\), then adding "mod \(m \)" gives a family \(\mathcal{H}' \subseteq [m] F \) such that for \(h \sim \mathcal{U}(\mathcal{H}') \) the family \((h(x))_{x \in F} \) is *d-independent* but only approximately uniformly distributed in \([m] F \).
Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq \{\mathbb{R} \}_{\mathbb{D}}$ of hash functions is *d-independent* if for distinct $x_1, \ldots, x_d \in D$ and any $i_1, \ldots, i_d \in R$:

$$\Pr_{h \sim U(\mathcal{H})}[h(x_1) = i_1 \land \ldots \land h(x_d) = i_d] = \prod_{j=1}^{d} \Pr_{h \sim U(\mathcal{H})}[h(x_j) = i_j] = |R|^{-d}.$$

Alternative Definition

\mathcal{H} is d-independent if for $h \sim U(\mathcal{H})$ the family $(h(x))_{x \in \mathbb{D}}$ of random variables is d-independent and $h(x) \sim U(\mathbb{R})$ for each $x \in \mathbb{D}$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Definition: d-Independent Hash Family

A family $\mathcal{H} \subseteq [R]^D$ of hash functions is **d-independent** if for distinct $x_1, \ldots, x_d \in D$ and any $i_1, \ldots, i_d \in R$:

$$\Pr_{h \sim \mathcal{U}(\mathcal{H})} [h(x_1) = i_1 \land \ldots \land h(x_d) = i_d] = \prod_{j=1}^{d} \Pr_{h \sim \mathcal{U}(\mathcal{H})} [h(x_j) = i_j] = |R|^{-d}.$$

Theorem

Let $D = R = \mathbb{F}$ be a finite field. Then

$$\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_{d-1} \in \mathbb{F} \}$$

is a d-independent family.

Note: $\mathcal{H} \subseteq \mathbb{F}^D \not\sim$ not yet useful.

Alternative Definition

\mathcal{H} is d-independent if for $h \sim \mathcal{U}(\mathcal{H})$

- the family $(h(x))_{x \in D}$ of random variables is d-independent
- $h(x) \sim \mathcal{U}(R)$ for each $x \in D$.

Conceptions: What is a Hash Function?
Use Case 1: Hash Table with Chaining
Use Case 2: Linear Probing
Conclusion
References
Definition: \(d\)-Independent Hash Family

A family \(\mathcal{H} \subseteq [R]^D\) of hash functions is \(d\)-independent if for distinct \(x_1, \ldots, x_d \in D\) and any \(i_1, \ldots, i_d \in R\):

\[
\Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x_1) = i_1 \land \ldots \land h(x_d) = i_d] = \prod_{j=1}^{d} \Pr_{h \sim \mathcal{U}(\mathcal{H})}[h(x_j) = i_j] = |R|^{-d}.
\]

Alternative Definition

\(\mathcal{H}\) is \(d\)-independent if for \(h \sim \mathcal{U}(\mathcal{H})\) the family \((h(x))_{x \in D}\) of random variables is \(d\)-independent and \(h(x) \sim \mathcal{U}(R)\) for each \(x \in D\).

Theorem

Let \(D = R = \mathbb{F}\) be a finite field. Then

\[
\mathcal{H} := \{x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_{d-1} \in \mathbb{F}\}
\]

is a \(d\)-independent family.

Corollary: Smaller Ranges (proof omitted)

- If \(m\) divides \(|\mathbb{F}|\), then adding “mod \(m\)” gives a \(d\)-independent family \(\mathcal{H}' \subseteq [m]^F\).
- If \(m\) does not divide \(|\mathbb{F}|\), then adding “mod \(m\)” gives a family \(\mathcal{H}' \subseteq [m]^F\) such that for \(h \sim \mathcal{U}(\mathcal{H}')\) the family \((h(x))_{x \in \mathbb{F}}\) is \(d\)-independent but only approximately uniformly distributed in \([m]\).
Proof: $\mathcal{H} := \{x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F}\}$ is d-independent

Let $x_1, \ldots, x_d \in \mathbb{F}$ be distinct keys and $i_1, \ldots, i_d \in \mathbb{F}$ arbitrary.

To show:

$\Pr_{h \sim \mathcal{U}(\mathcal{H})}[\forall j \in [d]: h(x_j) = i_j] = |\mathbb{F}| - d.$

For $h \in \mathcal{H}$ (given via $a_0, \ldots, a_d - 1$) the following is equivalent:

$h(x_1) = i_1 \iff a_0 + a_1 x_1 + \cdots + a_d - 1 x_d - 1 = i_1$ \(\iff\)

\vdots \(\iff\)

$a_0 + a_1 x_d + \cdots + a_d - 1 x_d - 1 = i_d$

$\iff \vec{a} = \text{Vandermonde matrix} \cdot \vec{i}$

Exactly one vector $\vec{a} = \text{Vandermonde matrix}^{-1} \cdot \vec{i}$ solves the equation.

$\Rightarrow \Pr_{h \sim \mathcal{U}(\mathcal{H})}[\forall j : h(x_j) = i_j] = \Pr_{\vec{a}_0, \ldots, \vec{a}_{d-1} \sim \mathcal{U}(\mathbb{F})}[\vec{a} = \text{Vandermonde matrix}^{-1} \cdot \vec{i}] = \mathbb{F} - d.$
Proof: $\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F} \}$ is d-independent

Let $x_1, \ldots, x_d \in \mathbb{F}$ be distinct keys and $i_1, \ldots, i_d \in \mathbb{F}$ arbitrary.

\leftrightarrow to show: $\Pr_{h \sim \mathcal{U(H)}}[\forall j \in [d]: h(x_j) = i_j] = |\mathbb{F}|^{-d}$.
Proof: \(\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F} \} \) is \(d \)-independent

Let \(x_1, \ldots, x_d \in \mathbb{F} \) be distinct keys and \(i_1, \ldots, i_d \in \mathbb{F} \) arbitrary.

\(\leftarrow \) to show: \(\Pr_{h \sim \mathcal{U}(\mathcal{H})}[\forall j \in [d] : h(x_j) = i_j] = |\mathbb{F}|^{-d} \).

For \(h \in \mathcal{H} \) (given via \(a_0, \ldots, a_{d-1} \)) the following is equivalent:

\[
\begin{align*}
 h(x_1) &= i_1 & a_0 + a_1 x_1 + \cdots + a_{d-1} x_1^{d-1} &= i_1 \\
 h(x_2) &= i_2 & a_0 + a_1 x_2 + \cdots + a_{d-1} x_2^{d-1} &= i_2 \\
 & \quad \quad \quad \quad \quad \quad \quad \quad \quad \cdots \\
 h(x_d) &= i_d & a_0 + a_1 x_d + \cdots + a_{d-1} x_d^{d-1} &= i_d
\end{align*}
\]

\[
\begin{pmatrix}
 1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & x_d & x_d^2 & \cdots & x_d^{d-1}
\end{pmatrix}
=
\begin{pmatrix}
 i_1 \\
 i_2 \\
 \vdots \\
 i_d
\end{pmatrix}
\]

Exactly one vector \(\vec{a} = M^{-1} \cdot \vec{i} \) solves the equation.

\(\Rightarrow \) \(\Pr_{h \sim \mathcal{U}(\mathcal{H})}[\forall j \in [d] : h(x_j) = i_j] = \Pr_{a_0, \ldots, a_{d-1} \sim \mathcal{U}(\mathbb{F})}[\vec{a} = M^{-1} \cdot \vec{i}] = |\mathbb{F}|^{-d} \).
Proof: $\mathcal{H} := \{x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F}\} \text{ is } d\text{-independent}$

Let $x_1, \ldots, x_d \in \mathbb{F}$ be distinct keys and $i_1, \ldots, i_d \in \mathbb{F}$ arbitrary.

\iff to show: $\Pr_{h \sim U(\mathcal{H})}[\forall j \in [d]: h(x_j) = i_j] = |\mathbb{F}|^{-d}$.

For $h \in \mathcal{H}$ (given via a_0, \ldots, a_{d-1}) the following is equivalent:

$$
\begin{align*}
 h(x_1) &= i_1 & a_0 + a_1 x_1 + \cdots + a_{d-1} x_1^{d-1} &= i_1 \\
 h(x_2) &= i_2 & a_0 + a_1 x_2 + \cdots + a_{d-1} x_2^{d-1} &= i_2 \\
 \vdots \\
 h(x_d) &= i_d & a_0 + a_1 x_d + \cdots + a_{d-1} x_d^{d-1} &= i_d \\
\end{align*}
$$

\iff

$$
\begin{pmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_d & x_d^2 & \cdots & x_d^{d-1}
\end{pmatrix}
\cdot
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{d-1}
\end{pmatrix}
=
\begin{pmatrix}
i_1 \\
i_2 \\
\vdots \\
i_d
\end{pmatrix}
$$

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof: \(\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F} \} \) is \(d \)-independent

Let \(x_1, \ldots, x_d \in \mathbb{F} \) be distinct keys and \(i_1, \ldots, i_d \in \mathbb{F} \) arbitrary.

\(\leftrightarrow \) to show: \(\Pr_{h \sim U(\mathcal{H})} [\forall j \in [d]: h(x_j) = i_j] = |\mathbb{F}|^{-d} \).

For \(h \in \mathcal{H} \) (given via \(a_0, \ldots, a_{d-1} \)) the following is equivalent:

\[
\begin{align*}
 h(x_1) &= i_1 \quad & a_0 + a_1 x_1 + \cdots + a_{d-1} x_1^{d-1} &= i_1 \\
 h(x_2) &= i_2 \quad & a_0 + a_1 x_2 + \cdots + a_{d-1} x_2^{d-1} &= i_2 \\
 \vdots \quad & \vdots \\
 h(x_d) &= i_d \quad & a_0 + a_1 x_d + \cdots + a_{d-1} x_d^{d-1} &= i_d
\end{align*}
\]

\(\iff \quad \begin{pmatrix}
 1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & x_d & x_d^2 & \cdots & x_d^{d-1}
\end{pmatrix}
\cdot
\begin{pmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{d-1}
\end{pmatrix}
\quad =
\begin{pmatrix}
 i_1 \\
 i_2 \\
 \vdots \\
 i_d
\end{pmatrix}
\]

Vandermonde matrix \(M \Rightarrow \) regular

\(\Rightarrow \quad \Pr_{h \sim U(\mathcal{H})} [\forall j \in [d]: h(x_j) = i_j] = \Pr_{a_0, \ldots, a_{d-1} \sim U(\mathbb{F})} [\vec{a} = \vec{i}] = \mathbb{F}^{-d} \).

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Proof: \(\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F} \} \) is \(d \)-independent

Let \(x_1, \ldots, x_d \in \mathbb{F} \) be distinct keys and \(i_1, \ldots, i_d \in \mathbb{F} \) arbitrary.
\(\iff \) to show: \(\Pr_{h \sim \mathcal{U}(\mathcal{H})} [\forall j \in [d]: h(x_j) = i_j] = |\mathbb{F}|^{-d} \).

For \(h \in \mathcal{H} \) (given via \(a_0, \ldots, a_{d-1} \)) the following is equivalent:

\[
\begin{align*}
h(x_1) &= i_1 & a_0 + a_1 x_1 + \cdots + a_{d-1} x_1^{d-1} &= i_1 \\
h(x_2) &= i_2 & a_0 + a_1 x_2 + \cdots + a_{d-1} x_2^{d-1} &= i_2 \\
\vdots & & \vdots \\
h(x_d) &= i_d & a_0 + a_1 x_d + \cdots + a_{d-1} x_d^{d-1} &= i_d
\end{align*}
\]

\[\iff\]

\[
\begin{pmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & x_d & x_d^2 & \cdots & x_d^{d-1} \\
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{d-1}
\end{pmatrix}
= \begin{pmatrix}
i_1 \\
i_2 \\
\vdots \\
i_d
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & x_d & x_d^2 & \cdots & x_d^{d-1} \\
\end{pmatrix}
M \Rightarrow \text{regular}
\]\n
Exactly one vector \(\vec{a} = M^{-1} \cdot \vec{i} \) solves the equation.
Proof: \(\mathcal{H} := \{ x \mapsto \sum_{i=0}^{d-1} a_i x^i \mid a_0, \ldots, a_d \in \mathbb{F} \} \) is \(d \)-independent

Let \(x_1, \ldots, x_d \in \mathbb{F} \) be distinct keys and \(i_1, \ldots, i_d \in \mathbb{F} \) arbitrary.
\(\iff \) to show : \(\Pr_{h \sim U(\mathcal{H})}[\forall j \in [d] : h(x_j) = i_j] = |\mathbb{F}|^{-d}. \)

For \(h \in \mathcal{H} \) (given via \(a_0, \ldots, a_{d-1} \)) the following is equivalent:

\[
\begin{align*}
 h(x_1) &= i_1 & a_0 + a_1 x_1 + \cdots + a_{d-1} x_1^{d-1} &= i_1 \\
 h(x_2) &= i_2 & a_0 + a_1 x_2 + \cdots + a_{d-1} x_2^{d-1} &= i_2 \\
 \vdots \\
 h(x_d) &= i_d & a_0 + a_1 x_d + \cdots + a_{d-1} x_d^{d-1} &= i_d
\end{align*}
\]

\(\iff \)

\[
\begin{pmatrix}
 1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{d-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & x_d & x_d^2 & \cdots & x_d^{d-1}
\end{pmatrix} \cdot \begin{pmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{d-1}
\end{pmatrix} = \begin{pmatrix}
 i_1 \\
 i_2 \\
 \vdots \\
 i_d
\end{pmatrix}
\]

Vandermonde matrix \(M \Rightarrow \) regular

Exactly one vector \(\vec{a} = M^{-1} \cdot \vec{i} \) solves the equation.

\[
\Rightarrow \Pr_{h \sim U(\mathcal{H})}[\forall j : h(x_j) = i_j] = \Pr_{a_0, \ldots, a_{d-1} \sim U(\mathbb{F})}[(\vec{a} = M^{-1} \cdot \vec{i})] = |\mathbb{F}|^{-d}. \quad \square
\]
Concentration Bound for d-Independent Variables

(Tricky) Exercise

Let $X_1, \ldots, X_n \sim \text{Ber}(p)$ be a d-independent family of random variables with $p = \Omega(1/n)$. Let $X = \sum_{i=1}^n X_i$. Then for any $\varepsilon > 0$ we have

$$\Pr[X - \mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] = O(\varepsilon^{-d} \mathbb{E}[X]^{-d/2}).$$
Concentration Bound for \(d\)-Independent Variables

(Tricky) Exercise

Let \(X_1, \ldots, X_n \sim Ber(p)\) be a \(d\)-independent family of random variables with \(p = \Omega(1/n)\). Let \(X = \sum_{i=1}^{n} X_i\). Then for any \(\varepsilon > 0\) we have

\[
\Pr[X - \mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] = O(\varepsilon^{-d} \mathbb{E}[X]^{-d/2}).
\]

Remark: Weaker than Chernoff, stronger than Chebyshev

Chebycheff gives \(\Pr[X - \mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] \leq \frac{1-p}{\varepsilon^2 \mathbb{E}[X]}\). (requires \(d = 2\))

Chernoff gave \(\Pr[X - \mathbb{E}[X] \geq \varepsilon \mathbb{E}[X]] \leq \exp(-\varepsilon^2 \mathbb{E}[X]/3)\). (requires \(d = n\)).
Lemma (last slide)

For d-independent $X_1, \ldots, X_n \sim \text{Ber}(p)$ and $X = \sum_{i \in [n]} X_i$ we have $\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] = O(\varepsilon^{-d}\mathbb{E}[X]^{-d/2})$.

Preparation: A Concentration Bound
again for d-independence
For d-independent $X_1, \ldots, X_n \sim Ber(p)$ and $X = \sum_{i \in [n]} X_i$ we have $Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] = O(\varepsilon^{-d} \mathbb{E}[X]^{-d/2})$.

Let $k \in \mathbb{N}$ and $X = |\{y \in S \mid h(y) \in \{1, \ldots, k\}\}|$. Then $Pr[X \geq k] \leq O((1 - \alpha)^{-d} k^{-d/2})$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Lemma (last slide)

For d-independent $X_1, \ldots, X_n \sim Ber(p)$ and $X = \sum_{i \in \llbracket n \rrbracket} X_i$ we have $\Pr[X \geq (1 + \varepsilon) \mathbb{E}[X]] = \mathcal{O}(\varepsilon^{-d} \mathbb{E}[X]^{-d/2})$.

Lemma: $\geq k$ hits in segment of length k

Let $k \in \mathbb{N}$ and $X = \left| \{y \in S \mid h(y) \in \{1, \ldots, k\} \} \right|$. Then $\Pr[X \geq k] \leq \mathcal{O}((1 - \alpha)^{-d} k^{-d/2})$.

Proof

Let $S = \{x_1, \ldots, x_n\}$ and $X_i = 1_{\{h(x_i) \in \{1, \ldots, k\}\}} \sim Ber\left(\frac{k}{m}\right)$. Then $X = \sum_{i \in \llbracket n \rrbracket} X_i$ fits the Lemma with $\mathbb{E}[X] = \frac{km}{m} = \alpha k$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Lemma (last slide)

For \(d \)-independent \(X_1, \ldots, X_n \sim \text{Ber}(p) \) and \(X = \sum_{i \in [n]} X_i \) we have \(\Pr[X \geq (1 + \varepsilon)\mathbb{E}[X]] = O(\varepsilon^{-d}\mathbb{E}[X]^{-d/2}) \).
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = \mathcal{O}(1)$$

Proof Sketch

$\mathbb{E}[T] \leq \mathbb{E}[B]$

Reasoning:

1. Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following.
2. Concentration bound from previous slide for $d = 8$.
3. If interested, see 3Blue1Brown video: https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = O(1)$$

Proof Sketch

$$\mathbb{E}[T]$$

Reasoning:

1. Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following.
2. Concentration bound from previous slide for $d = 8$.
3. If interested, see 3Blue1Brown video: https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

33/35
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = \mathcal{O}(1)$$

Proof Sketch

$$\mathbb{E}[T] \leq \mathbb{E}[B]$$

Reasoning:

1. Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following.
2. Concentration bound from previous slide for $d=8$.
3. If interested, see 3Blue1Brown video: https://www.youtube.com/watch?v=d-o3eB9sfls
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = O(1)$$

Proof Sketch

$$\mathbb{E}[T] \leq \mathbb{E}[B] \leq \ldots \leq \sum_{k \geq 1} k^2 \cdot \Pr[|\{y \in S \mid h(y) \in \{1, \ldots, k\}| \geq k]$$

Reasoning:

1. Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following. (this is the hand wavy part!)
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = O(1)$$

Proof Sketch

$$\mathbb{E}[T] \leq \mathbb{E}[B] \leq \ldots$$

$$\leq \sum_{k \geq 1} k^2 \cdot \Pr[\{y \in S \mid h(y) \in \{1, \ldots, k\}\}] \geq k$$

Reasoning:

(1) Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for $d = 8$.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = \mathcal{O}(1)$$

Proof Sketch

$$\mathbb{E}[T] \leq \mathbb{E}[B] \leq \ldots$$

$$\leq \sum_{k \geq 1} k^2 \cdot \Pr[\{y \in S \mid h(y) \in \{1, \ldots, k\}\} \geq k]$$

$$\leq \sum_{k \geq 1} k^2 \cdot \mathcal{O}((1 - \alpha)^{-8}k^{-8/2})$$

$$\leq \sum_{k \geq 1} k^{-2} \cdot \mathcal{O}((1 - \alpha)^{-8})$$

Reasoning:

(1) Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for $d = 8$.

Conceptions: What is a Hash Function?

Use Case 1: Hash Table with Chaining

Use Case 2: Linear Probing

Conclusion

References

33/35

WS 2023/2024

Stefan Walzer, Maximilian Katzmann: Classic Hash Tables

ITI, Algorithm Engineering & Scalable Algorithms
Theorem: Linear Probing with d-independence

Under the same conditions as before, except with 9-independent hash functions, the insertion time $T_{n,m}$ for linear probing satisfies:

$$\mathbb{E}[T_{n,m}] = O(1)$$

Proof Sketch

$$\mathbb{E}[T] \leq \mathbb{E}[B] \leq \ldots$$

$$\leq \sum_{k \geq 1} k^2 \cdot \Pr[\{y \in S \mid h(y) \in \{1, \ldots, k\}\} \geq k]$$

$$\leq \sum_{k \geq 1} k^2 \cdot O((1 - \alpha)^{-8} k^{-8/2})$$

$$\leq \sum_{k \geq 1} k^{-2} \cdot O((1 - \alpha)^{-8})$$

$$\leq \frac{\pi^2}{6} O((1 - \alpha)^{-8}) = O(1). \quad \square$$

Reasoning:

(1) Same as before, except we have to condition on $h(x)$ and may only use 8-independence in the following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for $d = 8$.

(3) If interested, see 3Blue1Brown video: https://www.youtube.com/watch?v=d-o3eB9sfls
Much more is known about insertion times of linear probing:

- Any 5-independent family gives $\mathcal{O}\left(\frac{1}{(1-\alpha)^2}\right)$.
 \rightarrow A. Pagh, R. Pagh, and Ruzic 2011

- An (artificially bad) 4-independent family gives $\Omega(\log n)$.
 \rightarrow Puiatracsucu and Thorup 2016

- A (well-designed) 4-independent family gives $\mathcal{O}\left(\frac{1}{(1-\alpha)^2}\right)$.
 \rightarrow Puiatracsucu and Thorup 2013
Technical Takeaway: Performance of Hash Tables

For both an **ideal hash function** (SUHA) and a random hash function from a suitable **universal class**, a hash table using **linear probing** or **chaining** provably has an expected running time of $\mathcal{O}(1)$ per operation.
Technical Takeaway: Performance of Hash Tables

For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash table using linear probing or chaining provably has an expected running time of $O(1)$ per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

high performance hash function (fast, not analysable) can be used for an algorithm or data structure using hashing

justifies & deepens understanding of analysis using SUHA

rigorously justifies & deepens understanding of analysis using universal hashing

hash function from universal class (possibly fast) requires & deepens understanding of
Technical Takeaway: Performance of Hash Tables

For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash table using linear probing or chaining provably has an expected running time of $O(1)$ per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

We’ll always use SUHA in the following. Less probability theory, more algorithms!
References I

Todo.