Probability and Computing – Lower bounds using Yao’s Principle

Stefan Walzer, Maximilian Katzmann | WS 2023/2024
Some of this lecture’s content is covered in Thomas Worsch’s notes from 2019.
Content

1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of \(\bar{\Lambda} \)-Trees
 - Proof Sketch of Tarsi's Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Content

1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of $\tilde{\Lambda}$-Trees
 - Proof Sketch of Tarsi’s Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of $\bar{\Lambda}$-Trees
 - Proof Sketch of Tarsi’s Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Prisoner’s Dilemma

Setting

- strategies 😈 and 😂 available to both players
- table shows payoffs for players depending on chosen strategies
- here: always better to choose 😂
 → pair (😂, 😈) is unique equilibrium

Definition: Equilibrium

Combination of strategies such that no one can profit by unilaterally switching his or her own strategy.
A cat and mouse game

Someone always regrets their decision

<table>
<thead>
<tr>
<th></th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>🍀 -42</td>
<td>🍀 should have played 🍀</td>
</tr>
<tr>
<td>🍀 2\ 1</td>
<td>🍀 should have played 🍀</td>
</tr>
<tr>
<td>0\0</td>
<td>🍀 should have played 🍀</td>
</tr>
<tr>
<td>0\1</td>
<td>🍀 should have played 🍀</td>
</tr>
</tbody>
</table>

→ No combination of *pure* strategies is an *equilibrium*.

Equilibrium

Combination of strategies such that no one can profit by unilaterally switching his or her own strategy.
Nash Equilibria

What a Game is

- Finite sets S_1, S_2 of pure strategies.
- Utility functions $u_1, u_2 : S_1 \times S_2 \rightarrow \mathbb{R}$.

How a Game is played

- Players pick a strategy simultaneously \rightarrow gives pair $(s_1, s_2) \in S_1 \times S_2$.
- Player 1 gets payoff $u_1(s_1, s_2)$ and player 2 gets $u_2(s_1, s_2)$.

Existence of Mixed-Strategy Nash Equilibria

There exist distributions S_1 on S_1 and S_2 on S_2, called mixed strategies such that (S_1, S_2) is an equilibrium:

player 1 cannot increase expected payoff: $\mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[u_1(s_1, s_2)] = \max_{s_1 \in S_1} \mathbb{E}_{s_2 \sim S_2}[u_1(s_1, s_2)]$.

player 2 cannot increase expected payoff: $\mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[u_2(s_1, s_2)] = \max_{s_2 \in S_2} \mathbb{E}_{s_1 \sim S_1}[u_2(s_1, s_2)]$.

Remark: Theorem holds for $n \geq 3$ players as well.
Nash Equilibrium in Cat & Mouse Game

<table>
<thead>
<tr>
<th></th>
<th>🦷</th>
<th>🧶</th>
</tr>
</thead>
<tbody>
<tr>
<td>🦷</td>
<td>-4\2</td>
<td>2\1</td>
</tr>
<tr>
<td>🧶</td>
<td>0\0</td>
<td>0\1</td>
</tr>
</tbody>
</table>

Equilibrium

\[S_мышь = \{ \begin{array}{c} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \end{array} \} \]

\[S_мышь = \{ \begin{array}{c} \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \end{array} \} \]

Verification of Equilibrium Property: Calculating Expected Payoffs

for 🦷:
- playing 🤡 gives expected payoff
 \[
 \frac{1}{3} \cdot (-4) + \frac{2}{3} \cdot 2 = 0
 \]
- playing 🧶 gives expected payoff
 \[
 \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 0 = 0
 \]
- playing \(S_мышь \) is a mix of both
 \(\rightarrow \) also expected payoff 0.

for 🧶:
- playing 🤡 gives expected payoff
 \[
 \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1
 \]
- playing 🧶 gives expected payoff
 \[
 \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1
 \]
- playing \(S_мышь \) is a mix of both
 \(\rightarrow \) also expected payoff 1.

Nash Equilibria in 2-Player Zero-Sum Games

Yao’s Minimax Principle

Applications of Yao’s Principle

ITI, Algorithm Engineering & Scalable Algorithms
1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of \(\bar{\mathcal{T}} \)-Trees
 - Proof Sketch of Tarsi's Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Two Player Zero Sum Games and their Matrix Formulation

- Finite sets of pure strategies
 - S_1 for player 1
 - S_2 for player 2
- utility function $u : S_1 \times S_2 \rightarrow \mathbb{R}$
 - player 1 gets $u(s_1, s_2)$
 - player 2 gets $-u(s_1, s_2)$

- Implicit sets of pure strategies
 - $S_1 = [n]$ for the row player
 - $S_2 = [m]$ for the column players
- matrix $M \in \mathbb{R}^{n \times m}$
 - row player gets M_{s_1, s_2}
 - column player gets $-M_{s_1, s_2}$

<table>
<thead>
<tr>
<th></th>
<th>🧥</th>
<th>📄</th>
<th>🐿</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧥</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>📄</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>🐿</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Unique equilibrium of 🧥 📄 🐿

$S_1 = S_2 = \{ \text{🧥} : \frac{1}{3}, \text{프로그램} : \frac{1}{3}, \text{🪨} : \frac{1}{3} \}$

Nash Equilibria in 2-Player Zero-Sum Games

Yao's Minimax Principle

Applications of Yao's Principle
Nash Equilibria for Two-Player Zero-Sum Games

Nash’s Theorem (1950), Special Case for Two-Player Zero-Sum Games

For any $M \in \mathbb{R}^{n \times m}$ there exist distributions S^*_1 on $[n]$ and S^*_2 on $[m]$ such that

$$E_{s_1 \sim S^*_1, s_2 \sim S^*_2}[M_{s_1, s_2}] = \max_{s_1 \in [n]} E_{s_2 \sim S^*_2}[M_{s_1, s_2}] = \min_{s_2 \in [m]} E_{s_1 \sim S^*_1}[M_{s_1, s_2}].$$

Intuition: When the players play according to S^*_1 and S^*_2, then no player can benefit by deviating from his strategy.

Corollary: Loomis (1946) Von Neumann (1928)

For any $M \in \mathbb{R}^{n \times m}$ we have

$$\max_{S_1} \min_{s_2 \in [m]} E_{s_1 \sim S_1}[M_{s_1, s_2}] = \min_{S_2} \max_{s_1 \in [n]} E_{s_2 \sim S_2}[M_{s_1, s_2}]$$

where S_1 and S_2 are distributions on $[n]$ and $[m]$, respectively

Intuition

No first-mover disadvantage if

- first player plays mixed strategy
- second player (wlog) pure strategy

Next: Proof of Loomis’ Theorem assuming Nash’s Theorem.
Lemma: First Mover’s Disadvantage

Lemma Φ: Exchanging min and max

Let X and Y be sets and $u : X \times Y \rightarrow \mathbb{R}$ a function. In our setting\(^1\)

$$\max_{y \in Y} \min_{x \in X} u(x, y) \leq \min_{x \in X} \max_{y \in Y} u(x, y)$$

\(^1\) In general min and max may not be well-defined...

Proof.

$$\max_{y \in Y} \min_{x \in X} u(x, y) = \min_{x \in X} u(x, y^*) \leq \min_{x \in X} \max_{y \in Y} u(x, y).$$

Relevance

Being the second player to choose is never a disadvantage.
Lemma: When pure strategies are sufficient

Lemma Δ: Minima over sets of distributions

Let X be a set and $u : X \to \mathbb{R}$ a function. Let D be the set of all distributions on X. In our setting:

$$\min_{x \in X} u(x) = \min_{\mathcal{X} \in D} \mathbb{E}_{x \sim \mathcal{X}}[u(x)].$$

Relevance for us

The last player to choose a strategy may always choose a pure strategy.

Proof by Example

Here is a list of numbers $X = \{12, 42, 73, 101\}$.

- Task 1: Find the minimum!
 \[\text{Duh, it’s 12.}\]
- Task 2: Design a wheel of fortune involving only numbers from X with minimum expectation!
 \[\text{Duh, take 12 everywhere.}\]
Proof of Loomis’s Theorem

Let S_1^* and S_2^* be the mixed strategies from Nash’s Theorem.

$$
\min_{S_2} \max_{s_1 \in [n]} \mathbb{E}_{s_2 \sim S_2}[M_{s_1, s_2}]
\leq \max_{s_1 \in [n]} \mathbb{E}_{s_2 \sim S_2^*}[M_{s_1, s_2}]
= \min_{s_2 \in [m]} \mathbb{E}_{s_1 \sim S_1^*}[M_{s_1, s_2}]
= \min_{S_2} \mathbb{E}_{s_1 \sim S_1^*, s_2 \sim S_2}[M_{s_1, s_2}]
\leq \max_{S_1} \min_{S_2} \mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[M_{s_1, s_2}]
= \max_{S_1} \mathbb{E}_{s_1 \sim S_1}[M_{s_1, s_2}]
\leq \min_{S_2} \max_{S_1} \mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[M_{s_1, s_2}]
= \min_{S_2} \mathbb{E}_{s_2 \sim S_2}[M_{s_1, s_2}]
\leq \max_{S_1} \min_{S_2} \mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[M_{s_1, s_2}]
= \max_{S_1} \mathbb{E}_{s_1 \sim S_1}[M_{s_1, s_2}]
\leq \min_{S_2} \max_{S_1} \mathbb{E}_{s_1 \sim S_1, s_2 \sim S_2}[M_{s_1, s_2}]
= \min_{S_2} \mathbb{E}_{s_2 \sim S_2}[M_{s_1, s_2}]
$$

Start and end with same term. Hence all “≤” are “=”. Hence terms of interest are “=”.

Corollary: Loomis (1946) Von Neumann (1928)

For any $M \in \mathbb{R}^{n \times m}$ we have

$$
\max_{S_1} \min_{S_2} \mathbb{E}_{s_1 \sim S_1}[M_{s_1, s_2}] = \min_{S_2} \max_{S_1} \mathbb{E}_{s_2 \sim S_2}[M_{s_1, s_2}]
$$

Nash Equilibria in 2-Player Zero-Sum Games

Yao’s Minimax Principle

Applications of Yao’s Principle

15/39

WS 2023/2024

Stefan Walzer, Maximilian Katzmann: Yao’s Principle

ITI, Algorithm Engineering & Scalable Algorithms
Content

1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of Ā-Trees
 - Proof Sketch of Tarsi's Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Algorithm Design as a 2-Player Zero-Sum Game

Setting
For a given computational problem P let

- **Algos**: finite set of deterministic algorithms
- **Inputs**: finite set of inputs
- $C(A, I) \in \mathbb{R}$ cost of $A \in \text{Algos}$ on $I \in \text{Inputs}$.

Example: Sorting
For given $n \in \mathbb{N}$ (finite, though possibly $n \to \infty$ later)

- $P = \text{“sort } n \text{ numbers comparison-based”}$
- $C(A, I) = \# \text{ of comparisons of } A \text{ for input } I$
- **Inputs** = S_n //permutations of $[n]$
- **Algos** = e.g. suitable set of decision trees

A Two-Player Zero-Sum Game

- Designer chooses (randomised) algorithm, i.e. a distribution on **Algos**.
 \leftrightarrow Goal: Minimise (expected) cost.
- Adversary chooses (randomised) input, i.e. a distribution on **Inputs**.
 \leftrightarrow Goal: Maximise (expected) cost.

Example: Sorting (x, y, z)

<table>
<thead>
<tr>
<th>Adversary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2, 3)</td>
</tr>
<tr>
<td>$x < y$ then $y < z$ then $z < x$</td>
</tr>
<tr>
<td>$y < z$ then $z < x$ then $x < y$</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
<tr>
<td>$x < y$ then $y < z$ then $z < x$</td>
</tr>
<tr>
<td>$y < z$ then $z < x$ then $x < y$</td>
</tr>
<tr>
<td>\ldots</td>
</tr>
</tbody>
</table>

Recall: Exercise Sheet 0, Exercise 1.
Definition: Randomised Complexity

\[C := \min_{A \text{ dist. on Algos}} \max_{I \in \text{Inputs}} \mathbb{E}_{A \sim A}[C(A, I)] \]

\[\text{designer moves first} \]

\[\text{Loomis} \]

\[= \max_{I \text{ dist. on Inputs}} \min_{A \in \text{Algos}} \mathbb{E}_{I \sim I}[C(A, I)] \]

\[\text{adversary moves first} \]

Yao’s Principle: (Upper and) Lower Bounds on \(C \)

Let \(A_0 \) be a distribution on \(\text{Algos} \) and \(I_0 \) a distribution on \(\text{Inputs} \). Then

\[\max_{I \in \text{Inputs}} \mathbb{E}_{A \sim A_0}[C(A, I)] \geq C \geq \min_{A \in \text{Algos}} \mathbb{E}_{I \sim I_0}[C(A, I)]. \]

\text{Tightness:} Loomis implies that “=” is possible.

\[\leftrightarrow \text{Can attain lower bounds on } C \text{ by thinking about deterministic algorithm only!} \]
Content

1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of \overline{A}-Trees
 - Proof Sketch of Tarsi’s Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Computational Problem: $\bar{\wedge}$-Tree-Evaluation

Problem: Evaluate $\bar{\wedge}$-Tree of depth d
- \textbf{Inputs} = $\{0, 1\}^n$ for $n = 2^d$. Specify bits at leaves.
- \textbf{Algos} = Algorithms computing value at root.
- $C(A, I) = \#$ bits of I that A examines
 \leftrightarrow query complexity of A on I

Goal
Bound randomised query complexity

$$C = \min_{A \text{ dist. on Algos}} \max_{I \in \text{Inputs}} \mathbb{E}_{A \sim A}[C(A, I)].$$

Example and possible formalisation of \textbf{Algos} (that we won’t use)
Each $A \in \text{Algos}$ corresponds to a \textit{decision tree}. In the example:
- $C(A, (1, 0, 1, 0)) = 4$
- $C(A, (0, 1, 0, 1)) = 2$

Each leaf queried at most once per path
\Rightarrow depth $\leq n \Rightarrow |\text{Algos}| < \infty$
∧-∨-trees are ∨-trees are ∧-trees

See exercise sheet 1 ("Die Wälder von NORwegen")

Deterministic Query Complexity is n (Lecture 1, Slide 8)

For all $A \in \text{Algos}$ there exists $I \in \text{Inputs}$ such that $C(A, I) = n$.

Randomised Query Complexity is $O(n \log_4(3)) \approx O(n^{0.792})$ (Lecture 1, Slide 10)

Let \mathcal{A} be the randomised algorithm that evaluates one of the two depth $d - 1$ subtrees at random (recursively) and, if that yields 1, also evaluates the other subtree (recursively).

$$\max_{l \in \text{Inputs}} \mathbb{E}_{A \sim \mathcal{A}}[C(A, I)] = O(3^{d/2}) = O(n \log_4(3)).$$

Goal: Show lower bound of $\Omega(\varphi^d) \approx \Omega(n^{0.694})$ using Yao's Principle (φ is the golden ratio).

Remark: actual complexity is $\Theta(n \log_4(3))$, but that's more difficult.
Warm Up: A simple lower bound

Observation
For any even $d \in \mathbb{N}$ and $A \in \text{Algos}$ we have $C(A, (0, \ldots, 0)) \geq 2^{d/2}$.

Corollary: Randomised Complexity is $\Omega(\sqrt{n})$

$$
C = \min_{\mathcal{A} \text{ dist. on Algos}} \max_{I \in \text{Inputs}} \mathbb{E}_{A \sim \mathcal{A}}[C(A, I)] \\
\geq \min_{\mathcal{A} \text{ dist. on Algos}} \mathbb{E}_{A \sim \mathcal{A}}[C(A, (0, \ldots, 0))] \\
\geq \min_{\mathcal{A} \text{ dist. on Algos}} \mathbb{E}_{A \sim \mathcal{A}}[2^{d/2}] \\
\geq 2^{d/2} = 2^{\log_2(n)/2} = n^{1/2}.
$$

Note Yao’s spirit: Lower bound on randomised complexity from result on deterministic algorithms.
A stronger lower bound

Theorem (Tarsi 1984)

For any \(p \in [0, 1] \) simpleEval is optimal for input distribution \(I_p \), i.e.

\[
\min_{A \in \text{Algos}} \mathbb{E}_{I \sim I_p} [C(A, l)] = \mathbb{E}_{I \sim I_p} [C(\text{simpleEval}, l)].
\]

Lemma

If \(p_0 = \frac{\sqrt{5} - 1}{2} \) and \(\varphi \) is the golden ratio then

\[
\mathbb{E}_{I \sim I_{p_0}} [C(\text{simpleEval}, l)] = (1 + p_0)^d = \varphi^d.
\]

Corollary: \(C = \Omega(\varphi^d) \approx \Omega(n^{0.694}) \)

\[
C \geq \min_{A \in \text{Algos}} \mathbb{E}_{I \sim I_{p_0}} [C(A, l)] = \mathbb{E}_{I \sim I_{p_0}} [C(\text{simpleEval}, l)]
\]

\[
= \varphi^d = \varphi^{\log_2 n} = n^{\log_2 \varphi} \approx n^{0.694}.
\]

Independent Bernoulli Inputs

Let \(I_p = \text{Ber}(p)^n \) be the distribution where leafs are assigned independently values with distribution \(\text{Ber}(p) \).

Deterministic Algorithm

Algorithm simpleEval\((T)\):

- if \(T = \text{leaf}(b) \) then
 - return \(b \)
- else
 - \((T_\ell, T_r) \leftarrow T\)
 - if simpleEval\((T_\ell) = 0\) then
 - return \(1 \)
 - else
 - return \(-\text{simpleEval}(T_r)\)
Proof of Lemma: Cost of simpleEval on I_{p_0}

Lemma

If $p_0 = \frac{\sqrt{5} - 1}{2}$ and ϕ is the golden ratio then

$$\mathbb{E}_{l \sim I_{p_0}} [C(\text{simpleEval}, l)] = (1 + p_0)^d = \phi^d.$$

Proof (cf. Exercise “Die Wälder von NORwegen”)

- $p_0 = \frac{\sqrt{5} - 1}{2}$ is the solution to $p = 1 - p^2$.
- If $a, b \sim \text{Ber}(p_0)$ then $a \wedge b \sim \text{Ber}(1 - p_0^2) = \text{Ber}(p_0)$.
- For $l \sim I_{p_0}$ the probability that an internal tree node evaluates to 1 is p_0.
- Let $c_d := \mathbb{E}_{l \sim I_{p_0}} [C(\text{simpleEval}, l)]$ for trees of depth d. Then
 - $c_0 = 1$ // tree of depth 0 is just the leaf
 - $c_d = c_{d-1} + p_0 \cdot c_{d-1} = (1 + p_0) c_{d-1} \equiv (1 + p_0)(1 + p_0)^{d-1} = (1 + p_0)^d$
 // Always one recursive call, with probability p a second one.

Deterministic Algorithm

Algorithm `simpleEval(T)`:

```
if $T = \text{leaf}(b)$ then
    return $b$
else
    $(T_\ell, T_r) \leftarrow T$
    if `simpleEval($T_\ell$)` = 0 then
        return 1
    else
        return $\neg$`simpleEval($T_r$)`
```

Nash Equilibria in 2-Player Zero-Sum Games

Yao's Minimax Principle

Applications of Yao's Principle
Content

1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
 - Evaluation of $\tilde{\Lambda}$-Trees
 - Proof Sketch of Tarsi's Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Tarsi's Theorem

Theorem (Tarsi 1984)

For any $p \in [0, 1]$ simpleEval is optimal for input distribution \mathcal{I}_p, i.e.

$$\min_{A \in \text{Algos}} \mathbb{E}_{I \sim \mathcal{I}_p} [C(A, I)] = \mathbb{E}_{I \sim \mathcal{I}_p} [C(\text{simpleEval}, I)].$$

Proof idea:

- Take optimal Algorithm A.
- Transform A into simpleEval step by step.
- Show: Expected query complexity never increases.
Definition: Superleafs

A superleaf consists of two sibling leafs and their parent.

Lemma

For any \(p \in [0, 1] \) and any \(A \in \text{Algos} \) there exists \(A' \in \text{Algos} \) such that

\[
E_{I \sim I_p}[C(A', I)] \leq E_{I \sim I_p}[C(A, I)]
\]

\(A' \) behaves on any superleaf \(T = (\ell, r) \) like simpleEval:

- Property i: never visits \(r \) before \(\ell \)
- Property ii: never visits \(r \) if \(\ell = 0 \)
- Property iii: immediately visits \(r \) after visiting \(\ell \) if \(\ell = 1 \)

Proof Idea

- We fix every superleaf one by one. Let \(T \) be the superleaf that needs fixing.
- Property i: Switch roles of \(\ell \) and \(r \) if needed. Does not change the expected cost.
- Property ii: \(r \) does not contribute to result. Not visiting \(r \) reduces expected cost.
- Property iii: More difficult. See next slide.
\[C_A := \mathbb{E}\{C(A, I)\} = \mathbb{E}\{C_0 + \bar{\alpha} \cdot (1 + \bar{p}C_1 + p \cdot (C_2 + \bar{\beta}(1 + \bar{p}C_3 + pC_4)))\} \]
\[C_B := \mathbb{E}\{C(B, I)\} = \mathbb{E}\{C_0 + \bar{\alpha} \cdot (1 + \bar{p}C_1 + p \cdot (1 + \bar{p}C_1 + p(C_2 + \bar{\beta}C_4)))\} \]
\[C_D := \mathbb{E}\{C(D, I)\} = \mathbb{E}\{C_0 + \bar{\alpha} \cdot (C_2 + \bar{\beta}(1 + \bar{p}C_3 + p(1 + \bar{p}C_3 + pC_4)))\} \]

\[(C_B - C_A) + p \cdot (C_D - C_A) = \ldots = 0 \]
\[\Rightarrow C_B - C_A \leq 0 \lor C_D - C_A \leq 0 \]
\[\Rightarrow B \text{ or } D \text{ (or both) are at least as good as } A \text{ and both visit superleaf } (\ell, r) \text{ as desired.} \]
Theorem (Tarsi 1984)

For any \(p \in [0, 1] \) simpleEval is optimal for input distribution \(\mathcal{I}_p \), i.e.

\[
\min_{A \in \text{Algos}} \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A, I)] = \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(\text{simpleEval}, I)].
\]

We use induction on \(d \). For \(d = 0 \) simpleEval is clearly optimal. Let now \(d \geq 1 \).

Let \(A \in \text{Algos} \) be an algorithm minimising \(\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A, I)] \).

By Lemma: There exists \(A' \in \text{Algos} \) that behaves like simpleEval on superleafs such that

\[
\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A', I)] \leq \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A, I)].
\]

Let \(L' \) be the number of superleafs visited by \(A' \) and \(L \) the number of superleafs visited by simpleEval.

Superleafs evaluate to 1 with probability \(1 - p^2 \) independently and are in a complete binary tree of depth \(d - 1 \).

Apply induction for \(d' = d - 1 \) and \(p' = 1 - p^2 \).

\[
\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [L] \leq \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [L'].
\]

The expected cost for evaluating a superleaf is \(1 + p \).

Hence

\[
\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A', I)] = (1 + p)\mathbb{E}[L']
\]
\[
\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A, I)] = (1 + p)\mathbb{E}[L]
\]

Finally we obtain:

\[
\mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(\text{simpleEval}, I)] = (1 + p)\mathbb{E}[L] \leq (1 + p)\mathbb{E}[L']
\]
\[
= \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A', I)] \leq \mathbb{E}_{\mathcal{I} \sim \mathcal{I}_p} [C(A, I)].
\]

Hence, simpleEval is optimal for \(\mathcal{I}_p \). \(\square \)
1. Nash Equilibria in 2-Player Zero-Sum Games
 - Games and Nash Equilibria
 - Two Player Zero Sum Games
 - Loomis' Theorem for Two-Player Zero Sum Games

2. Yao's Minimax Principle

3. Applications of Yao's Principle
 - Evaluation of $\bar{\Delta}$-Trees
 - Proof Sketch of Tarsi's Theorem (nicht prüfungsrelevant)
 - The Ski-Rental Problem
Ski Rental – A Prototypical Online Problem

Setting: You are on a ski trip
Trip lasts for unknown number of days $l \in \mathbb{N}$
("as long as there is snow").
Every day, if no skis bought yet:
- RENT skis for one day for cost 1 or
- BUY skis for cost $B \in \mathbb{N}$.

Goal: Minimise Competitive Ratio
The competitive ratio of distribution \mathcal{A} on Algos is

$$C_{\mathcal{A}} = \sup_{l \in \text{Inputs}} \frac{\mathbb{E}_{A \sim \mathcal{A}}[C(A, l)]}{\text{OPT}(l)}.$$

Framing using Online Algorithms
- **Inputs** = \mathbb{N}: number of days (not known in advance)
- **Algos** = \mathbb{N}: specify day for choosing BUY
- cost for $A \in \text{Algos}$ on $l \in \text{Inputs}$:

$$C(A, l) = \begin{cases} l & \text{if } l < A \\ A - 1 + B & \text{otherwise.} \end{cases}$$

- cost of optimum offline solution

$$\text{OPT}(l) = \begin{cases} l & \text{if } l < B \\ B & \text{otherwise.} \end{cases}$$
Break-Even is the best deterministic algorithm

Observation

The algorithm breakEven := B has competitive ratio \(\frac{2B-1}{B} \approx 2 \).

All other \(A \in \text{Algos} \) have competitive ratio \(\geq 2 \).

Proof

The worst ratio for \(A \in \text{Algos} \) with \(A > B \) is attained for input \(I = A \).

\[
C_A = \sup_{I \in \mathbb{N}} \frac{C(A, I)}{\text{OPT}(I)} = \frac{C(A, A)}{\text{OPT}(A)} = \frac{A - 1 + B}{B} = 1 + \frac{A - 1}{B} \geq 1 + 1 = 2.
\]

Recall

\(B \) is the cost to \text{BUY}.

\[\text{cost} \]

\[C(A, I) \]

\[\geq 2 \]

\[\text{OPT}(I) \]

\[B \]

\[A \]

\[I \]
A randomised algorithm can beat break-even

Observation (assuming wlog that B is a multiple of 3)

The randomised algorithm $\mathcal{A} = \mathcal{U}(\{\frac{2}{3}B, B\})$ has competitive ratio $\approx 1 + \frac{5}{6}$.

Proof

The competitive ratio of \mathcal{A} “spikes” for inputs $\frac{2}{3}B$ and B. It is decreasing in between and constant after B.

$$
\mathbb{E}_{A \sim A}[C(A, I)] = \frac{2}{3}B - 1 + \frac{1}{3}(1 + B) < \frac{7}{6}B, \quad \text{OPT}(\frac{2}{3}B) = \frac{2}{3}B,
$$

$$
\mathbb{E}_{A \sim A}[C(A, B)] = B + \frac{2}{3}B - 1 + \frac{1}{2}(\frac{1}{3}B) < \frac{11}{6}B, \quad \text{OPT}(B) = B.
$$

Hence $C_A = \sup_{I \in \mathbb{N}} \frac{\mathbb{E}_{A \sim A}[C(A, I)]}{\text{OPT}(I)} \leq \max \left\{ \frac{7}{6}, \frac{11}{6} \right\} = \frac{11}{6}$.
Goal: Lower bound

No randomised algorithm has competitive ratio better than ≈ 1.582.

What’s next?
Yao’s Principle for Online Algorithms

Theorem (see Online Optimization Lecture, Corollary 3.8, Prof. Yann Disser, Darmstadt, 2023)

For any distribution \mathcal{A}_0 on Algos and any distribution \mathcal{I}_0 on Inputs we have

$$C_{\mathcal{A}_0} \overset{\text{def}}{=} \sup_{I \in \text{Inputs}} \mathbb{E}_{A \sim \mathcal{A}_0}[C(A, I)] \geq \inf_{A \in \text{Algos}} \mathbb{E}_{I \sim \mathcal{I}_0}[C(A, I)] \mathbb{E}_{I \sim \mathcal{I}_0}[\text{OPT}(I)].$$

Remark

- Yao’s principle exists for other settings as well.
- Proof of “\geq” relatively easy to prove.
- Tightness typically follows from duality of optimisation problems or fixed point theorems.
 (though I’m not sure how it works here)
A hard distribution for Ski-Rental: Intuition

\[I_0 := \text{Geo}(\frac{1}{B}). \]

Why \(I_0 \)?

- distribution is memoryless.

 Assume no skis bought on day \(i \): Minimising expected future cost is the same problem as on day 1.

 \(\leftrightarrow \) wlog: either buy right away or not at all.

- expectation tuned such that

\[
\mathbb{E}_{l \sim I_0}[C(\text{never buy, } l)] = \mathbb{E}_{l \sim I_0}[C(\text{immediately buy, } l)] = B.
\]

\(\leftrightarrow \) all strategies equally good
A hard distribution for Ski-Rental: Analysis

Lemma

Let $I_0 := \text{Geo}(\frac{1}{B})$ and $q := 1 - \frac{1}{B} = \Pr[\bigstar]$. Then

i. $\mathbb{E}_{I \sim I_0}[C(A, I)] = B$ for all $A \in \mathbb{N}$.

ii. $\mathbb{E}_{I \sim I_0}[\text{OPT}(I)] = B(1 - (1 - \frac{1}{B})^B)$.

Seen before:

Any random variable X with values in \mathbb{N} satisfies

$$\mathbb{E}[X] = \sum_{j \geq 1} \Pr[X \geq j].$$

Lower bound for Ski-Rental

By Yao’s theorem any randomised algorithm A for ski-rental has competitive ratio at least

$$c_A \geq \inf_{A \in \text{Algos}} \frac{\mathbb{E}_{I \sim I_0}[C(A, I)]}{\mathbb{E}_{I \sim I_0}[\text{OPT}(I)]} = \frac{B}{B(1 - (1 - \frac{1}{B})^B)} = \frac{1}{1 - (1 - \frac{1}{B})^B}.$$

For large B the lower bound converges to

$$\lim_{B \to \infty} \frac{1}{1 - (1 - \frac{1}{B})^B} = \frac{1}{1 - 1/e} = \frac{e}{e - 1} \approx 1.582.$$
Upper bound for Ski-Rental

Remark: The lower bound is tight (Karlin et al. 1994)
There exists a distribution \mathcal{A} on $[B]$ such that $c_\mathcal{A} \leq \frac{e}{e-1}$.

Applications

Very basic online question:

Should I pay a small possibly recurring cost or a large one time cost?

Occurs in:
- Cache management.
- Networking.
- Scheduling.
- …
Algorithm Design as a Two-Player Game

- “we” choose algorithm to minimise cost
- “adversary” chooses input to maximise cost
- Nash/Loomis: It does not matter who moves first if mixed strategy is allowed for first player.

Yao’s Principle

Lower bound on worst-case expected cost of any randomised algorithm A_0 by analysing any deterministic algorithm on specific input distribution I_0.

$$\max_{i \in \text{Inputs}} \mathbb{E}_{A \sim A_0} [C(A, i)] \geq C \geq \min_{A \in \text{Algos}} \mathbb{E}_{I \sim I_0} [C(A, I)].$$

Can narrow down randomised complexity C of underlying problem from both sides.
Anhang: Mögliche Prüfungsfragen I

Spieltheorie:
- Was ist ein Zwei-Spieler-Spiel im Sinne der Spieltheorie?
- Was ist ein Nash-Equilibrium?
- Gibt es immer ein Nash-Equilibrium?
- Was ist ein Nullsummenspiel?
- Was besagt der Satz von Nash (für Zwei-Spieler Nullsummenspiele)?
- Was besagt der Satz von Loomis?
- Beweise den Satz von Loomis! (anspruchsvolle Aufgabe)

Yaos Prinzip:
- Worin besteht die Verbindung zwischen Spieltheorie und dem Entwurf von Algorithmen?
- Wie ist die randomisierte Komplexität (bzgl. einer Kostenfunktion C) normalerweise definiert? Welche andere Sichtweise ergibt sich darauf durch den Satz von Loomis?
- Formuliere Yaos Prinzip! Wofür ist es nützlich?
Anhang: Mögliche Prüfungsfragen II

Anwendung auf \wedge-Bäume:

- Welches Ziel haben wir uns bei der Auswertung von \wedge-Bäumen gesetzt? (Anfragekomplexität minimieren)
- Welche Worst-Case Kosten lassen sich mit einem deterministischen Algorithmus erreichen?
- Können randomisierte Algorithmen das besser? Wie?
- Man kann sich recht leicht überlegen, dass die randomisierte Komplexität $\Omega(\sqrt{n})$ beträgt. Wie ging das?
- Wir haben auch eine schärfere Analyse gesehen. Welche Komponenten hatte diese? Insbesondere: Wie kommt dabei Yao Prinzip zur Anwendung?
- Was besagt der Satz von Tarsi?

Ski-Rental-Problem:

- Formuliere das Ski-Rental Problem.
- Wie nennt man diese Art von Problem? (Online Problem)
- Spielt das nur im Wintersport eine Rolle? (nur Stichworte)
- Wie ist der kompetitive Faktor definiert?
Anhang: Mögliche Prüfungsfragen III

- Was ist der beste deterministische Algorithmus? Wie kann man das einsehen?
- Gibt es einen randomisierten Algorithmus der Break-Even schlagen kann? (nur die Idee)
- Formuliere Yaos Prinzip für Online Algorithmen.
- Welche Eingabeverteilung haben wir für die untere Schranke für Ski-Rental zugrunde gelegt? Was ist die Intuition?
- Welche Kosten ergeben sich für Online und Offline Algorithmen für diese Eingabeverteilung? Was lässt sich entsprechend über den kompetitiven Faktor sagen?